mirror of
https://github.com/ggml-org/llama.cpp.git
synced 2025-11-08 10:07:01 +00:00
CUDA: fix crash on uneven context without FA (#16988)
This commit is contained in:
@@ -2113,7 +2113,7 @@ static bool ggml_cuda_should_fuse_mul_mat_vec_f(const ggml_tensor * tensor) {
|
||||
src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32;
|
||||
|
||||
const int cc = ggml_cuda_info().devices[ggml_cuda_get_device()].cc;
|
||||
use_mul_mat_vec_f = use_mul_mat_vec_f && ggml_cuda_should_use_mmvf(src0->type, cc, src0->ne, is_mul_mat_id ? src1->ne[2] : src1->ne[1]);
|
||||
use_mul_mat_vec_f = use_mul_mat_vec_f && ggml_cuda_should_use_mmvf(src0->type, cc, src0->ne, src0->nb, is_mul_mat_id ? src1->ne[2] : src1->ne[1]);
|
||||
|
||||
const bool split = ggml_backend_buft_is_cuda_split(src0->buffer->buft) ||
|
||||
ggml_backend_buft_is_cuda_split(src1->buffer->buft);
|
||||
@@ -2207,16 +2207,16 @@ static void ggml_cuda_mul_mat(ggml_backend_cuda_context & ctx, const ggml_tensor
|
||||
const int cc = ggml_cuda_info().devices[id].cc;
|
||||
const int warp_size = ggml_cuda_info().devices[id].warp_size;
|
||||
use_mul_mat_q = use_mul_mat_q && ggml_cuda_should_use_mmq(src0->type, cc, src1->ne[1]);
|
||||
use_mul_mat_f = use_mul_mat_f && ggml_cuda_should_use_mmf(src0->type, cc, warp_size, src0->ne, src1->ne[1], /*mul_mat_id=*/false);
|
||||
use_mul_mat_vec_f = use_mul_mat_vec_f && ggml_cuda_should_use_mmvf(src0->type, cc, src0->ne, src1->ne[1]);
|
||||
use_mul_mat_f = use_mul_mat_f && ggml_cuda_should_use_mmf(src0->type, cc, warp_size, src0->ne, src0->nb, src1->ne[1], /*mul_mat_id=*/false);
|
||||
use_mul_mat_vec_f = use_mul_mat_vec_f && ggml_cuda_should_use_mmvf(src0->type, cc, src0->ne, src0->nb, src1->ne[1]);
|
||||
any_gpus_with_slow_fp16 = any_gpus_with_slow_fp16 || !fast_fp16_hardware_available(cc);
|
||||
}
|
||||
} else {
|
||||
const int cc = ggml_cuda_info().devices[ctx.device].cc;
|
||||
const int warp_size = ggml_cuda_info().devices[ctx.device].warp_size;
|
||||
use_mul_mat_q = use_mul_mat_q && ggml_cuda_should_use_mmq(src0->type, cc, src1->ne[1]);
|
||||
use_mul_mat_f = use_mul_mat_f && ggml_cuda_should_use_mmf(src0->type, cc, warp_size, src0->ne, src1->ne[1], /*mul_mat_id=*/false);
|
||||
use_mul_mat_vec_f = use_mul_mat_vec_f && ggml_cuda_should_use_mmvf(src0->type, cc, src0->ne, src1->ne[1]);
|
||||
use_mul_mat_f = use_mul_mat_f && ggml_cuda_should_use_mmf(src0->type, cc, warp_size, src0->ne, src0->nb, src1->ne[1], /*mul_mat_id=*/false);
|
||||
use_mul_mat_vec_f = use_mul_mat_vec_f && ggml_cuda_should_use_mmvf(src0->type, cc, src0->ne, src0->nb, src1->ne[1]);
|
||||
any_gpus_with_slow_fp16 = any_gpus_with_slow_fp16 || !fast_fp16_hardware_available(cc);
|
||||
}
|
||||
|
||||
@@ -2287,7 +2287,7 @@ static void ggml_cuda_mul_mat_id(ggml_backend_cuda_context & ctx, ggml_tensor *
|
||||
return;
|
||||
}
|
||||
|
||||
if (ggml_cuda_should_use_mmf(src0->type, cc, WARP_SIZE, src0->ne, src1->ne[2], /*mul_mat_id=*/true)) {
|
||||
if (ggml_cuda_should_use_mmf(src0->type, cc, WARP_SIZE, src0->ne, src0->nb, src1->ne[2], /*mul_mat_id=*/true)) {
|
||||
ggml_cuda_mul_mat_f(ctx, src0, src1, ids, dst);
|
||||
return;
|
||||
}
|
||||
|
||||
@@ -119,15 +119,21 @@ void ggml_cuda_mul_mat_f(ggml_backend_cuda_context & ctx, const ggml_tensor * sr
|
||||
}
|
||||
}
|
||||
|
||||
bool ggml_cuda_should_use_mmf(enum ggml_type type, int cc, int warp_size, const int64_t * src0_ne, const int src1_ncols, bool mul_mat_id) {
|
||||
|
||||
bool ggml_cuda_should_use_mmf(enum ggml_type type, int cc, int warp_size, const int64_t * src0_ne,
|
||||
const size_t * src0_nb, const int src1_ncols, bool mul_mat_id) {
|
||||
if (ggml_is_quantized(type)) {
|
||||
return false;
|
||||
}
|
||||
|
||||
if (src0_ne[0] % (warp_size * (4/ggml_type_size(type))) != 0) {
|
||||
const size_t ts = ggml_type_size(type);
|
||||
if (src0_ne[0] % (warp_size * (4/ts)) != 0) {
|
||||
return false;
|
||||
}
|
||||
for (size_t i = 0; i < GGML_MAX_DIMS; ++i) {
|
||||
if (src0_nb[i] % (2*ts) != 0) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
if (src0_ne[1] % MMF_ROWS_PER_BLOCK != 0) {
|
||||
return false;
|
||||
}
|
||||
|
||||
@@ -17,7 +17,7 @@ struct mmf_ids_data {
|
||||
|
||||
void ggml_cuda_mul_mat_f(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * ids, ggml_tensor * dst);
|
||||
|
||||
bool ggml_cuda_should_use_mmf(enum ggml_type type, int cc, int warp_size, const int64_t * scr0_ne, const int src1_ncols, bool mul_mat_id);
|
||||
bool ggml_cuda_should_use_mmf(enum ggml_type type, int cc, int warp_size, const int64_t * scr0_ne, const size_t * src0_nb, const int src1_ncols, bool mul_mat_id);
|
||||
|
||||
template <typename T, int rows_per_block, int cols_per_block, int nwarps, bool has_ids>
|
||||
__launch_bounds__(ggml_cuda_get_physical_warp_size()*nwarps, 1)
|
||||
|
||||
@@ -716,10 +716,16 @@ void ggml_cuda_op_mul_mat_vec_f(
|
||||
GGML_UNUSED_VARS(ctx, src1, dst, src1_ddq_i, src1_ncols, src1_padded_row_size);
|
||||
}
|
||||
|
||||
bool ggml_cuda_should_use_mmvf(enum ggml_type type, int cc, const int64_t * src0_ne, int64_t ne11) {
|
||||
bool ggml_cuda_should_use_mmvf(enum ggml_type type, int cc, const int64_t * src0_ne, const size_t * src0_nb, int64_t ne11) {
|
||||
if (src0_ne[0] % 2 != 0) {
|
||||
return false;
|
||||
}
|
||||
const size_t ts = ggml_type_size(type);
|
||||
for (size_t i = 0; i < GGML_MAX_DIMS; ++i) {
|
||||
if (src0_nb[i] % (2*ts) != 0) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
switch (type) {
|
||||
case GGML_TYPE_F32:
|
||||
if (GGML_CUDA_CC_IS_NVIDIA(cc)) {
|
||||
|
||||
@@ -9,4 +9,4 @@ void ggml_cuda_op_mul_mat_vec_f(
|
||||
const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
|
||||
const int64_t src1_padded_row_size, cudaStream_t stream);
|
||||
|
||||
bool ggml_cuda_should_use_mmvf(enum ggml_type type, int cc, const int64_t * src0_ne, int64_t ne11);
|
||||
bool ggml_cuda_should_use_mmvf(enum ggml_type type, int cc, const int64_t * src0_ne, const size_t * src0_nb, int64_t ne11);
|
||||
|
||||
@@ -21,6 +21,8 @@ llama_context::llama_context(
|
||||
llama_context_params params) :
|
||||
model(model),
|
||||
balloc(std::make_unique<llama_batch_allocr>(model.hparams.n_pos_per_embd())) {
|
||||
// TODO warning when creating llama_context with awkward ctx size that is not a power of 2,
|
||||
// may need to be backend-dependent
|
||||
LLAMA_LOG_INFO("%s: constructing llama_context\n", __func__);
|
||||
|
||||
t_start_us = model.t_start_us;
|
||||
|
||||
@@ -3385,11 +3385,11 @@ struct test_mul_mat : public test_case {
|
||||
const std::array<int64_t, 2> bs; // dims 3 and 4
|
||||
const std::array<int64_t, 2> nr; // repeat in dims 3 and 4
|
||||
const std::array<int64_t, 4> per; // permutation of dimensions
|
||||
const bool v; // whether a and b are non-contiguous views
|
||||
const int64_t k_v; // size of k in memory, resulting in a non-contiguous view for k_v > k, no view for k_v == 0
|
||||
const uint32_t o; // number of outputs
|
||||
|
||||
std::string vars() override {
|
||||
return VARS_TO_STR10(type_a, type_b, m, n, k, bs, nr, per, v, o);
|
||||
return VARS_TO_STR10(type_a, type_b, m, n, k, bs, nr, per, k_v, o);
|
||||
}
|
||||
|
||||
double max_nmse_err() override {
|
||||
@@ -3410,8 +3410,8 @@ struct test_mul_mat : public test_case {
|
||||
std::array<int64_t, 2> bs = {10, 10},
|
||||
std::array<int64_t, 2> nr = {2, 2},
|
||||
std::array<int64_t, 4> per = {0, 1, 2, 3},
|
||||
bool v = false, uint32_t o = 1)
|
||||
: type_a(type_a), type_b(type_b), m(m), n(n), k(k), bs(bs), nr(nr), per(per), v(v), o(o) {}
|
||||
int64_t k_v = 0, uint32_t o = 1)
|
||||
: type_a(type_a), type_b(type_b), m(m), n(n), k(k), bs(bs), nr(nr), per(per), k_v(k_v), o(o) {}
|
||||
|
||||
ggml_tensor * build_graph(ggml_context * ctx) override {
|
||||
// C^T = A * B^T: (k, m) * (k, n) => (m, n)
|
||||
@@ -3421,7 +3421,7 @@ struct test_mul_mat : public test_case {
|
||||
const int npermuted = (per[0] != 0) + (per[1] != 1) + (per[2] != 2) + (per[3] != 3);
|
||||
if (npermuted > 0) {
|
||||
GGML_ASSERT(npermuted == 2);
|
||||
GGML_ASSERT(!v); // not handled
|
||||
GGML_ASSERT(k_v == 0); // not handled
|
||||
GGML_ASSERT(!ggml_is_quantized(type_a) || per[0] == 0);
|
||||
GGML_ASSERT(!ggml_is_quantized(type_b) || per[0] == 0);
|
||||
|
||||
@@ -3445,29 +3445,21 @@ struct test_mul_mat : public test_case {
|
||||
ggml_set_name(a, "a_permuted");
|
||||
ggml_set_name(b, "b_permuted");
|
||||
} else {
|
||||
if (v) {
|
||||
a = ggml_new_tensor_4d(ctx, type_a, k*2, m, bs[0], bs[1]);
|
||||
b = ggml_new_tensor_4d(ctx, type_b, k*2, n, bs[0]*nr[0], bs[1]*nr[1]);
|
||||
const int64_t k_physical = k_v == 0 ? k : k_v;
|
||||
a = ggml_new_tensor_4d(ctx, type_a, k_physical, m, bs[0], bs[1]);
|
||||
b = ggml_new_tensor_4d(ctx, type_b, k_physical, n, bs[0]*nr[0], bs[1]*nr[1]);
|
||||
|
||||
if (!ggml_is_quantized(type_a)) {
|
||||
if (bs[1] == 1 && nr[1] == 1) {
|
||||
ggml_set_param(a);
|
||||
}
|
||||
ggml_set_param(b);
|
||||
if (!ggml_is_quantized(type_a)) {
|
||||
if (bs[1] == 1 && nr[1] == 1) {
|
||||
ggml_set_param(a);
|
||||
}
|
||||
ggml_set_param(b);
|
||||
}
|
||||
|
||||
if (k_v != 0) {
|
||||
GGML_ASSERT(k_v > k);
|
||||
a = ggml_view_4d(ctx, a, k, m, bs[0], bs[1], a->nb[1], a->nb[2], a->nb[3], 0);
|
||||
b = ggml_view_4d(ctx, b, k, n, bs[0]*nr[0], bs[1]*nr[1], b->nb[1], b->nb[2], b->nb[3], 0);
|
||||
} else {
|
||||
a = ggml_new_tensor_4d(ctx, type_a, k, m, bs[0], bs[1]);
|
||||
b = ggml_new_tensor_4d(ctx, type_b, k, n, bs[0]*nr[0], bs[1]*nr[1]);
|
||||
|
||||
if (!ggml_is_quantized(type_a)) {
|
||||
if (bs[1] == 1 && nr[1] == 1) {
|
||||
ggml_set_param(a);
|
||||
}
|
||||
ggml_set_param(b);
|
||||
}
|
||||
}
|
||||
ggml_set_name(a, "a");
|
||||
ggml_set_name(b, "b");
|
||||
@@ -6901,7 +6893,7 @@ static std::vector<std::unique_ptr<test_case>> make_test_cases_eval() {
|
||||
test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 128, 45, 64, { 8, 1}, {4, 1}));
|
||||
test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 1056, 1, 193, {1, 1}, {4, 1}, {0, 2, 1, 3}));
|
||||
test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 1056, 1, 67, {1, 1}, {4, 1}, {0, 2, 1, 3}));
|
||||
test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F32, GGML_TYPE_F32, 16, 32, 32, { 1, 1}, {1, 1}, {0, 1, 2, 3}, true, 3));
|
||||
test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F32, GGML_TYPE_F32, 16, 32, 32, { 1, 1}, {1, 1}, {0, 1, 2, 3}, 64, 3));
|
||||
test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F32, GGML_TYPE_F32, 64, 77, 77, {12,1}, {1,1}));
|
||||
|
||||
#if 0
|
||||
@@ -6927,7 +6919,7 @@ static std::vector<std::unique_ptr<test_case>> make_test_cases_eval() {
|
||||
for (uint32_t k = 0; k < 2; ++k) {
|
||||
for (ggml_type type: {GGML_TYPE_F16, GGML_TYPE_BF16, GGML_TYPE_F32}) {
|
||||
test_cases.emplace_back(new test_mul_mat(type, GGML_TYPE_F32, 1056 + m, 1, 128 + k, {bs, bs2}, {nr, 1}, {0, 2, 1, 3}));
|
||||
test_cases.emplace_back(new test_mul_mat(type, GGML_TYPE_F32, 128 + m, 1, 1056 + k, {bs, bs2}, {nr, 1}, {0, 1, 2, 3}, true));
|
||||
test_cases.emplace_back(new test_mul_mat(type, GGML_TYPE_F32, 128 + m, 1, 1056 + k, {bs, bs2}, {nr, 1}, {0, 1, 2, 3}, 2*1056 + k));
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -7432,7 +7424,7 @@ static std::vector<std::unique_ptr<test_case>> make_test_cases_perf() {
|
||||
test_cases.emplace_back(new test_pad_reflect_1d(GGML_TYPE_F32, {3000, 384, 4, 1}));
|
||||
|
||||
test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 16416, 1, 128, {8, 1}, {4, 1}, {0, 2, 1, 3}));
|
||||
test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 128, 1, 16416, {8, 1}, {4, 1}, {0, 1, 2, 3}, true));
|
||||
test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 128, 1, 16416, {8, 1}, {4, 1}, {0, 1, 2, 3}, 2*16416));
|
||||
|
||||
for (int bs : {1, 2, 3, 4, 5, 8, 512}) {
|
||||
for (ggml_type type_a : all_types) {
|
||||
|
||||
Reference in New Issue
Block a user