metal : initial Metal4 tensor API support (#16634)

* metal : rework mat-mat multiplication

* metal : initial Metal4 support

* cont

* metal : detect tensor support

* cont : better ifdefs

* metal : support tensors in mul_mm_id

* metal : add env for disabling tensor API

* tests : restore

* metal : remove unused constants

* metal : fix check for bfloat tensor support

* cont : handle API incompatibilities

* cont : handle even more incompatibilities

* metal : use tensor API only on M5 and later
This commit is contained in:
Georgi Gerganov
2025-11-06 14:45:10 +02:00
committed by GitHub
parent b7f9010d24
commit 5b180c3d60
4 changed files with 617 additions and 147 deletions

View File

@@ -35,7 +35,6 @@ struct ggml_metal {
// additional, inference-time compiled pipelines
ggml_metal_pipelines_t pipelines_ext;
bool use_bfloat;
bool use_fusion;
bool use_concurrency;
bool use_graph_optimize;
@@ -121,11 +120,10 @@ ggml_metal_t ggml_metal_init(ggml_metal_device_t dev) {
}
}
const struct ggml_metal_device_props * props_dev = ggml_metal_device_get_props(dev);
//const struct ggml_metal_device_props * props_dev = ggml_metal_device_get_props(dev);
res->d_queue = dispatch_queue_create("ggml-metal", DISPATCH_QUEUE_CONCURRENT);
res->use_bfloat = props_dev->has_bfloat;
res->use_fusion = getenv("GGML_METAL_FUSION_DISABLE") == nil;
res->use_concurrency = getenv("GGML_METAL_CONCURRENCY_DISABLE") == nil;
@@ -147,7 +145,6 @@ ggml_metal_t ggml_metal_init(ggml_metal_device_t dev) {
memset(res->fuse_cnt, 0, sizeof(res->fuse_cnt));
GGML_LOG_INFO("%s: use bfloat = %s\n", __func__, res->use_bfloat ? "true" : "false");
GGML_LOG_INFO("%s: use fusion = %s\n", __func__, res->use_fusion ? "true" : "false");
GGML_LOG_INFO("%s: use concurrency = %s\n", __func__, res->use_concurrency ? "true" : "false");
GGML_LOG_INFO("%s: use graph optimize = %s\n", __func__, res->use_graph_optimize ? "true" : "false");

View File

@@ -95,7 +95,9 @@ void ggml_metal_encoder_end_encoding(ggml_metal_encoder_t encoder);
typedef struct ggml_metal_library * ggml_metal_library_t;
ggml_metal_library_t ggml_metal_library_init(ggml_metal_device_t dev);
ggml_metal_library_t ggml_metal_library_init (ggml_metal_device_t dev);
ggml_metal_library_t ggml_metal_library_init_from_source(ggml_metal_device_t dev, const char * source, bool verbose);
void ggml_metal_library_free(ggml_metal_library_t lib);
ggml_metal_pipeline_t ggml_metal_library_get_pipeline (ggml_metal_library_t lib, const char * name);
@@ -193,6 +195,7 @@ struct ggml_metal_device_props {
bool has_simdgroup_mm;
bool has_unified_memory;
bool has_bfloat;
bool has_tensor;
bool use_residency_sets;
bool use_shared_buffers;

View File

@@ -21,8 +21,9 @@
#define GGML_METAL_HAS_RESIDENCY_SETS 1
#endif
// overload of MTLGPUFamilyMetal3 (not available in some environments)
// overload of MTLGPUFamilyMetalX (not available in some environments)
static const NSInteger MTLGPUFamilyMetal3_GGML = 5001;
static const NSInteger MTLGPUFamilyMetal4_GGML = 5002;
// virtual address for GPU memory allocations
static atomic_uintptr_t g_addr_device = 0x000000400ULL;
@@ -261,6 +262,10 @@ ggml_metal_library_t ggml_metal_library_init(ggml_metal_device_t dev) {
[prep setObject:@"1" forKey:@"GGML_METAL_HAS_BF16"];
}
if (ggml_metal_device_get_props(dev)->has_tensor) {
[prep setObject:@"1" forKey:@"GGML_METAL_HAS_TENSOR"];
}
#if GGML_METAL_EMBED_LIBRARY
[prep setObject:@"1" forKey:@"GGML_METAL_EMBED_LIBRARY"];
#endif
@@ -298,6 +303,72 @@ ggml_metal_library_t ggml_metal_library_init(ggml_metal_device_t dev) {
return res;
}
ggml_metal_library_t ggml_metal_library_init_from_source(ggml_metal_device_t dev, const char * source, bool verbose) {
if (source == NULL) {
GGML_LOG_ERROR("%s: source is NULL\n", __func__);
return NULL;
}
id<MTLDevice> device = ggml_metal_device_get_obj(dev);
id<MTLLibrary> library = nil;
NSError * error = nil;
const int64_t t_start = ggml_time_us();
NSString * src = [[NSString alloc] initWithBytes:source
length:strlen(source)
encoding:NSUTF8StringEncoding];
if (!src) {
GGML_LOG_ERROR("%s: failed to create NSString from source\n", __func__);
return NULL;
}
@autoreleasepool {
NSMutableDictionary * prep = [NSMutableDictionary dictionary];
MTLCompileOptions * options = [MTLCompileOptions new];
options.preprocessorMacros = prep;
library = [device newLibraryWithSource:src options:options error:&error];
if (error) {
if (verbose) {
GGML_LOG_ERROR("%s: error compiling source: %s\n", __func__, [[error description] UTF8String]);
} else {
GGML_LOG_ERROR("%s: error compiling source\n", __func__);
}
library = nil;
}
[options release];
}
[src release];
if (!library) {
if (verbose) {
GGML_LOG_ERROR("%s: failed to create Metal library from source\n", __func__);
}
return NULL;
}
if (verbose) {
GGML_LOG_INFO("%s: compiled in %.3f sec\n", __func__, (ggml_time_us() - t_start) / 1e6);
}
ggml_metal_library_t res = calloc(1, sizeof(struct ggml_metal_library));
if (!res) {
GGML_LOG_ERROR("%s: calloc failed\n", __func__);
return NULL;
}
res->obj = library;
res->device = device;
res->pipelines = ggml_metal_pipelines_init();
return res;
}
void ggml_metal_library_free(ggml_metal_library_t lib) {
if (!lib) {
return;
@@ -345,9 +416,9 @@ ggml_metal_pipeline_t ggml_metal_library_compile_pipeline(ggml_metal_library_t l
if (!mtl_function) {
ggml_critical_section_end();
GGML_LOG_ERROR("%s: error: failed to compile pipeline: base = '%s', name = '%s'\n", __func__, base, name);
GGML_LOG_ERROR("%s: failed to compile pipeline: base = '%s', name = '%s'\n", __func__, base, name);
if (error) {
GGML_LOG_ERROR("%s: error: %s\n", __func__, [[error description] UTF8String]);
GGML_LOG_ERROR("%s: %s\n", __func__, [[error description] UTF8String]);
}
return nil;
@@ -355,13 +426,21 @@ ggml_metal_pipeline_t ggml_metal_library_compile_pipeline(ggml_metal_library_t l
res->obj = [lib->device newComputePipelineStateWithFunction:mtl_function error:&error];
ggml_metal_pipelines_add(lib->pipelines, name, res);
[mtl_function release];
GGML_LOG_DEBUG("%s: loaded %-40s %16p | th_max = %4d | th_width = %4d\n", __func__, name, (void *) res->obj,
(int) res->obj.maxTotalThreadsPerThreadgroup,
(int) res->obj.threadExecutionWidth);
if (res->obj.maxTotalThreadsPerThreadgroup == 0 || res->obj.threadExecutionWidth == 0) {
ggml_critical_section_end();
GGML_LOG_ERROR("%s: incompatible pipeline %s\n", __func__, name);
return nil;
}
ggml_metal_pipelines_add(lib->pipelines, name, res);
}
ggml_critical_section_end();
@@ -469,6 +548,126 @@ ggml_metal_device_t ggml_metal_device_init(void) {
dev->props.has_bfloat = [dev->mtl_device supportsFamily:MTLGPUFamilyMetal3_GGML];
dev->props.has_bfloat |= [dev->mtl_device supportsFamily:MTLGPUFamilyApple6];
if (getenv("GGML_METAL_BF16_DISABLE") != NULL) {
dev->props.has_bfloat = false;
}
dev->props.has_tensor = [dev->mtl_device supportsFamily:MTLGPUFamilyMetal4_GGML];
if (getenv("GGML_METAL_TENSOR_DISABLE") != NULL) {
dev->props.has_tensor = false;
}
// note: disable the tensor API by default for old chips because with the current implementation it is not useful
// - M2 Ultra: ~5% slower
// - M4, M4 Max: no significant difference
//
// TODO: try to update the tensor API kernels to at least match the simdgroup performance
if (getenv("GGML_METAL_TENSOR_ENABLE") == NULL &&
![[dev->mtl_device name] containsString:@"M5"] &&
![[dev->mtl_device name] containsString:@"M6"]) {
GGML_LOG_WARN("%s: tensor API disabled for pre-M5 device\n", __func__);
dev->props.has_tensor = false;
}
// double-check that the tensor API compiles
if (dev->props.has_tensor) {
const char * src_tensor_f16 = "\n"
"#include <metal_stdlib> \n"
"#include <metal_tensor> \n"
"#include <MetalPerformancePrimitives/MetalPerformancePrimitives.h> \n"
" \n"
"using namespace metal; \n"
"using namespace mpp::tensor_ops; \n"
" \n"
"kernel void dummy_kernel( \n"
" tensor<device half, dextents<int32_t, 2>> A [[buffer(0)]], \n"
" tensor<device half, dextents<int32_t, 2>> B [[buffer(1)]], \n"
" device float * C [[buffer(2)]], \n"
" uint2 tgid [[threadgroup_position_in_grid]]) \n"
"{ \n"
" auto tA = A.slice(0, (int)tgid.y); \n"
" auto tB = B.slice((int)tgid.x, 0); \n"
" \n"
" matmul2d< \n"
" matmul2d_descriptor(8, 8, dynamic_extent), \n"
" execution_simdgroups<4>> mm; \n"
" \n"
" auto cT = mm.get_destination_cooperative_tensor<decltype(tA), decltype(tB), float>(); \n"
" \n"
" auto sA = tA.slice(0, 0); \n"
" auto sB = tB.slice(0, 0); \n"
" mm.run(sB, sA, cT); \n"
" \n"
" auto tC = tensor<device float, dextents<int32_t, 2>, tensor_inline>(C, dextents<int32_t, 2>(4, 4)); \n"
" \n"
" cT.store(tC); \n"
"}";
GGML_LOG_INFO("%s: testing tensor API for f16 support\n", __func__);
ggml_metal_library_t lib = ggml_metal_library_init_from_source(dev, src_tensor_f16, false);
if (lib == NULL) {
GGML_LOG_WARN("%s: - the tensor API is not supported in this environment - disabling\n", __func__);
dev->props.has_tensor = false;
} else {
ggml_metal_pipeline_t ppl = ggml_metal_library_compile_pipeline(lib, "dummy_kernel", "dummy_kernel", nil);
if (!ppl) {
GGML_LOG_WARN("%s: - the tensor API is not supported in this environment - disabling\n", __func__);
dev->props.has_tensor = false;
}
ggml_metal_library_free(lib);
}
}
// try to compile a dummy kernel to determine if the tensor API is supported for bfloat
if (dev->props.has_tensor && dev->props.has_bfloat) {
const char * src_tensor_bf16 = "\n"
"#include <metal_stdlib> \n"
"#include <metal_tensor> \n"
"#include <MetalPerformancePrimitives/MetalPerformancePrimitives.h> \n"
" \n"
"using namespace metal; \n"
"using namespace mpp::tensor_ops; \n"
" \n"
"kernel void dummy_kernel( \n"
" tensor<device bfloat, dextents<int32_t, 2>> A [[buffer(0)]], \n"
" tensor<device bfloat, dextents<int32_t, 2>> B [[buffer(1)]], \n"
" device float * C [[buffer(2)]], \n"
" uint2 tgid [[threadgroup_position_in_grid]]) \n"
"{ \n"
" auto tA = A.slice(0, (int)tgid.y); \n"
" auto tB = B.slice((int)tgid.x, 0); \n"
" \n"
" matmul2d< \n"
" matmul2d_descriptor(8, 8, dynamic_extent), \n"
" execution_simdgroups<4>> mm; \n"
" \n"
" auto cT = mm.get_destination_cooperative_tensor<decltype(tA), decltype(tB), float>(); \n"
" \n"
" auto sA = tA.slice(0, 0); \n"
" auto sB = tB.slice(0, 0); \n"
" mm.run(sB, sA, cT); \n"
" \n"
" auto tC = tensor<device float, dextents<int32_t, 2>, tensor_inline>(C, dextents<int32_t, 2>(4, 4)); \n"
" \n"
" cT.store(tC); \n"
"}";
GGML_LOG_INFO("%s: testing tensor API for bfloat support\n", __func__);
ggml_metal_library_t lib = ggml_metal_library_init_from_source(dev, src_tensor_bf16, false);
if (lib == NULL) {
GGML_LOG_WARN("%s: - the tensor API does not support bfloat - disabling bfloat support\n", __func__);
dev->props.has_bfloat = false;
} else {
ggml_metal_pipeline_t ppl = ggml_metal_library_compile_pipeline(lib, "dummy_kernel", "dummy_kernel", nil);
if (!ppl) {
GGML_LOG_WARN("%s: - the tensor API does not support bfloat - disabling bfloat support\n", __func__);
dev->props.has_bfloat = false;
}
ggml_metal_library_free(lib);
}
}
dev->props.use_residency_sets = true;
#if defined(GGML_METAL_HAS_RESIDENCY_SETS)
@@ -476,7 +675,6 @@ ggml_metal_device_t ggml_metal_device_init(void) {
#endif
dev->props.use_shared_buffers = dev->props.has_unified_memory;
if (getenv("GGML_METAL_SHARED_BUFFERS_DISABLE") != NULL) {
dev->props.use_shared_buffers = false;
}
@@ -529,6 +727,7 @@ ggml_metal_device_t ggml_metal_device_init(void) {
GGML_LOG_INFO("%s: simdgroup matrix mul. = %s\n", __func__, dev->props.has_simdgroup_mm ? "true" : "false");
GGML_LOG_INFO("%s: has unified memory = %s\n", __func__, dev->props.has_unified_memory ? "true" : "false");
GGML_LOG_INFO("%s: has bfloat = %s\n", __func__, dev->props.has_bfloat ? "true" : "false");
GGML_LOG_INFO("%s: has tensor = %s\n", __func__, dev->props.has_tensor ? "true" : "false");
GGML_LOG_INFO("%s: use residency sets = %s\n", __func__, dev->props.use_residency_sets ? "true" : "false");
GGML_LOG_INFO("%s: use shared buffers = %s\n", __func__, dev->props.use_shared_buffers ? "true" : "false");

View File

@@ -9,6 +9,12 @@ __embed_ggml-common.h__
#include <metal_stdlib>
#ifdef GGML_METAL_HAS_TENSOR
#include <metal_tensor>
#include <MetalPerformancePrimitives/MetalPerformancePrimitives.h>
#endif
using namespace metal;
#define MAX(x, y) ((x) > (y) ? (x) : (y))
@@ -1742,7 +1748,7 @@ kernel void kernel_op_sum_f32(
float sumf = 0;
for (int64_t i0 = tpitg.x; i0 < args.np; i0 += ntg.x) {
for (uint64_t i0 = tpitg.x; i0 < args.np; i0 += ntg.x) {
sumf += src0[i0];
}
@@ -5467,6 +5473,7 @@ template [[host_name("kernel_flash_attn_ext_q8_0_dk576_dv512")]] kernel flash_at
#undef FA_TYPES
#undef FA_TYPES_BF
#undef FA_TYPES_F32
constant bool FC_flash_attn_ext_vec_has_mask [[function_constant(FC_FLASH_ATTN_EXT_VEC + 0)]];
constant bool FC_flash_attn_ext_vec_has_sinks [[function_constant(FC_FLASH_ATTN_EXT_VEC + 1)]];
@@ -6088,6 +6095,7 @@ template [[host_name("kernel_flash_attn_ext_vec_q5_1_dk576_dv512")]] kernel flas
template [[host_name("kernel_flash_attn_ext_vec_q8_0_dk576_dv512")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q8_0, 8, dequantize_q8_0_t4, block_q8_0, 8, dequantize_q8_0_t4, 576, 512, 2>;
#undef FA_TYPES
#undef FA_TYPES_F32
constant int32_t FC_flash_attn_ext_vec_reduce_DV [[function_constant(FC_FLASH_ATTN_EXT_VEC_REDUCE + 0)]];
constant int32_t FC_flash_attn_ext_vec_reduce_NWG [[function_constant(FC_FLASH_ATTN_EXT_VEC_REDUCE + 1)]];
@@ -8141,17 +8149,6 @@ kernel void kernel_set_rows_f(
constant bool FC_mul_mm_bc_inp [[function_constant(FC_MUL_MM + 0)]];
constant bool FC_mul_mm_bc_out [[function_constant(FC_MUL_MM + 1)]];
#define BLOCK_SIZE_M 64 // 8 simdgroup matrices from matrix A
#define BLOCK_SIZE_N 32 // 4 simdgroup matrices from matrix B
#define BLOCK_SIZE_K 32
#define THREAD_MAT_M 4 // each thread take 4 simdgroup matrices from matrix A
#define THREAD_MAT_N 2 // each thread take 2 simdgroup matrices from matrix B
#define THREAD_PER_BLOCK 128
#define THREAD_PER_ROW 2 // 2 thread for each row in matrix A to load numbers
#define THREAD_PER_COL 4 // 4 thread for each row in matrix B to load numbers
#define SG_MAT_SIZE 64 // simdgroup matrix is of shape 8x8
#define SG_MAT_ROW 8
// each block_q contains 16*nl weights
template<typename S0, typename S0_4x4, typename S0_8x8, typename S1, typename S1_2x4, typename S1_8x8, typename block_q, short nl, void (*dequantize_func)(device const block_q *, short, thread S0_4x4 &), typename T0, typename T0_4x4, typename T1, typename T1_2x4>
kernel void kernel_mul_mm(
@@ -8167,18 +8164,48 @@ kernel void kernel_mul_mm(
threadgroup S0 * sa = (threadgroup S0 *)(shmem);
threadgroup S1 * sb = (threadgroup S1 *)(shmem + 4096);
const int r0 = tgpig.y;
const int r1 = tgpig.x;
threadgroup float * sc = (threadgroup float *)(shmem);
constexpr int NR0 = 64;
constexpr int NR1 = 32;
constexpr int NK = 32;
constexpr int NL0 = NK/16;
constexpr int NL1 = NK/8;
const int im = tgpig.z;
const int r0 = tgpig.y*NR0;
const int r1 = tgpig.x*NR1;
// if this block is of 64x32 shape or smaller
const short n_rows = (args.ne0 - r0*BLOCK_SIZE_M < BLOCK_SIZE_M) ? (args.ne0 - r0*BLOCK_SIZE_M) : BLOCK_SIZE_M;
const short n_cols = (args.ne1 - r1*BLOCK_SIZE_N < BLOCK_SIZE_N) ? (args.ne1 - r1*BLOCK_SIZE_N) : BLOCK_SIZE_N;
const short nr0 = (args.ne0 - r0 < NR0) ? (args.ne0 - r0) : NR0;
const short nr1 = (args.ne1 - r1 < NR1) ? (args.ne1 - r1) : NR1;
// a thread shouldn't load data outside of the matrix
const short thread_row = ((short)tiitg/THREAD_PER_ROW) < n_rows ? ((short)tiitg/THREAD_PER_ROW) : n_rows - 1;
const short thread_col = ((short)tiitg/THREAD_PER_COL) < n_cols ? ((short)tiitg/THREAD_PER_COL) : n_cols - 1;
const short lr0 = ((short)tiitg/NL0) < nr0 ? ((short)tiitg/NL0) : nr0 - 1; // 0 .. 63
const short lr1 = ((short)tiitg/NL1) < nr1 ? ((short)tiitg/NL1) : nr1 - 1; // 0 .. 31
const short il0 = (tiitg % NL0);
short il = il0;
const int i12 = im%args.ne12;
const int i13 = im/args.ne12;
const uint64_t offset0 = (i12/args.r2)*args.nb02 + (i13/args.r3)*args.nb03;
const short offset1 = il0/nl;
device const block_q * x = (device const block_q *)(src0 + args.nb01*(r0 + lr0) + offset0) + offset1;
const short iy = 8*(tiitg % NL1);
device const T1 * y = (device const T1 *)(src1
+ args.nb13*i13
+ args.nb12*i12
+ args.nb11*(r1 + lr1)
+ args.nb10*iy);
#ifndef GGML_METAL_HAS_TENSOR
S0_8x8 ma[4];
S1_8x8 mb[2];
@@ -8187,36 +8214,36 @@ kernel void kernel_mul_mm(
for (short i = 0; i < 8; i++){
mc[i] = make_filled_simdgroup_matrix<float, 8>(0.f);
}
#else
auto tA = tensor<threadgroup S0, dextents<int32_t, 2>, tensor_inline>(sa, dextents<int32_t, 2>(NK, NR0));
auto tB = tensor<threadgroup S1, dextents<int32_t, 2>, tensor_inline>(sb, dextents<int32_t, 2>(NR1, NK ));
short il = (tiitg % THREAD_PER_ROW);
mpp::tensor_ops::matmul2d<
mpp::tensor_ops::matmul2d_descriptor(NR1, NR0, NK, false, true, false, mpp::tensor_ops::matmul2d_descriptor::mode::multiply_accumulate),
execution_simdgroups<4>> mm;
const int i12 = im%args.ne12;
const int i13 = im/args.ne12;
auto cT = mm.get_destination_cooperative_tensor<decltype(tA), decltype(tB), float>();
#endif
const uint64_t offset0 = (i12/args.r2)*args.nb02 + (i13/args.r3)*args.nb03;
const short offset1 = il/nl;
device const block_q * x = (device const block_q *)(src0
+ args.nb01*(r0*BLOCK_SIZE_M + thread_row) + offset0) + offset1;
const short iy = (BLOCK_SIZE_K / THREAD_PER_COL * (tiitg % THREAD_PER_COL));
device const T1 * y = (device const T1 *)(src1
+ args.nb13*i13
+ args.nb12*i12
+ args.nb11*(r1*BLOCK_SIZE_N + thread_col)
+ args.nb10*iy);
for (int loop_k = 0; loop_k < args.ne00; loop_k += BLOCK_SIZE_K) {
for (int loop_k = 0; loop_k < args.ne00; loop_k += NK) {
#ifndef GGML_METAL_HAS_TENSOR
// load data and store to threadgroup memory
if (is_same<T0_4x4, block_q>::value && FC_mul_mm_bc_inp) {
threadgroup_barrier(mem_flags::mem_threadgroup);
// no need for dequantization
for (short i = 0; i < 16; i++) {
*(sa + SG_MAT_SIZE * ((tiitg/THREAD_PER_ROW/8) \
+ (tiitg%THREAD_PER_ROW)*16 + (i/8)*8) \
+ (tiitg/THREAD_PER_ROW)%8 + (i&7)*8) = loop_k + 16*il + i < args.ne00 ? ((device T0 *) x)[i] : 0;
const short sx = 2*il0 + i/8;
const short sy = (tiitg/NL0)/8;
//const short lx = i%8;
//const short ly = (tiitg/NL0)%8;
const short lx = (tiitg/NL0)%8;
const short ly = i%8;
const short ib = 8*sx + sy;
*(sa + 64*ib + 8*ly + lx) = loop_k + 16*il + i < args.ne00 ? *((device T0 *) x + i) : 0;
}
} else {
S0_4x4 temp_a;
@@ -8225,91 +8252,203 @@ kernel void kernel_mul_mm(
threadgroup_barrier(mem_flags::mem_threadgroup);
FOR_UNROLL (short i = 0; i < 16; i++) {
*(sa + SG_MAT_SIZE * ((tiitg/THREAD_PER_ROW/8) \
+ (tiitg%THREAD_PER_ROW)*16 + (i/8)*8) \
+ (tiitg/THREAD_PER_ROW)%8 + (i&7)*8) = temp_a[i/4][i%4];
const short sx = 2*il0 + i/8;
const short sy = (tiitg/NL0)/8;
//const short lx = i%8;
//const short ly = (tiitg/NL0)%8;
const short lx = (tiitg/NL0)%8;
const short ly = i%8;
const short ib = 8*sx + sy;
// NOTE: this is massively slower.. WTF?
//sa[64*ib + 8*ly + lx] = temp_a[i/4][i%4];
*(sa + 64*ib + 8*ly + lx) = temp_a[i/4][i%4];
}
}
if (FC_mul_mm_bc_inp) {
for (short i = 0; i < 8; ++i) {
sb[32*8*(tiitg%THREAD_PER_COL) + 8*(tiitg/THREAD_PER_COL) + i] = loop_k + iy + i < args.ne00 ? (S1) ((device T1 *) y)[i] : 0;
const short sx = (tiitg%NL1);
const short sy = (tiitg/NL1)/8;
const short lx = i;
const short ly = (tiitg/NL1)%8;
//const short lx = (tiitg/NL1)%8;
//const short ly = i;
const short ib = 4*sx + sy;
*(sb + 64*ib + 8*ly + lx) = loop_k + iy + i < args.ne00 ? (S1) *((device T1 *) y + i) : 0;
}
} else {
*(threadgroup S1_2x4 *)(sb + 32*8*(tiitg%THREAD_PER_COL) + 8*(tiitg/THREAD_PER_COL)) = (S1_2x4)(*((device T1_2x4 *) y));
const short sx = (tiitg%NL1);
const short sy = (tiitg/NL1)/8;
const short dx = sx;
const short dy = sy;
const short ly = (tiitg/NL1)%8;
const short ib = 4*sx + sy;
*(threadgroup S1_2x4 *)(sb + 64*ib + 8*ly) = (S1_2x4)(*((device T1_2x4 *) y));
}
#else
// load data and store to threadgroup memory
if (is_same<T0_4x4, block_q>::value && FC_mul_mm_bc_inp) {
threadgroup_barrier(mem_flags::mem_threadgroup);
// no need for dequantization
for (short i = 0; i < 16; i++) {
const short sx = 2*il0 + i/8;
const short sy = (tiitg/NL0)/8;
const short lx = i%8;
const short ly = (tiitg/NL0)%8;
//const short lx = (tiitg/NL0)%8;
//const short ly = i%8;
*(sa + NK*(8*sy + ly) + 8*sx + lx) = loop_k + 16*il + i < args.ne00 ? *((device T0 *) x + i) : 0;
}
} else {
S0_4x4 temp_a;
dequantize_func(x, il, temp_a);
threadgroup_barrier(mem_flags::mem_threadgroup);
FOR_UNROLL (short i = 0; i < 16; i++) {
const short sx = 2*il0 + i/8;
const short sy = (tiitg/NL0)/8;
const short lx = i%8;
const short ly = (tiitg/NL0)%8;
//const short lx = (tiitg/NL0)%8;
//const short ly = i%8;
*(sa + NK*(8*sy + ly) + 8*sx + lx) = temp_a[i/4][i%4];
}
}
if (FC_mul_mm_bc_inp) {
for (short i = 0; i < 8; ++i) {
const short sx = (tiitg%NL1);
const short sy = (tiitg/NL1)/8;
const short lx = i;
const short ly = (tiitg/NL1)%8;
//const short lx = (tiitg/NL1)%8;
//const short ly = i;
*(sb + NK*(8*sy + ly) + 8*sx + lx) = loop_k + iy + i < args.ne00 ? (S1) *((device T1 *) y + i) : 0;
}
} else {
const short sx = (tiitg%NL1);
const short sy = (tiitg/NL1)/8;
//const short lx = i;
const short ly = (tiitg/NL1)%8;
//const short lx = (tiitg/NL1)%8;
//const short ly = i;
*(threadgroup S1_2x4 *)(sb + NK*(8*sy + ly) + 8*sx) = (S1_2x4)(*((device T1_2x4 *) y));
}
#endif
il = (il + 2 < nl) ? il + 2 : il % 2;
x = (il < 2) ? x + (2 + nl - 1)/nl : x;
y += BLOCK_SIZE_K;
y += NK;
threadgroup_barrier(mem_flags::mem_threadgroup);
#ifndef GGML_METAL_HAS_TENSOR
// load matrices from threadgroup memory and conduct outer products
threadgroup const S0 * lsma = (sa + THREAD_MAT_M*SG_MAT_SIZE*(sgitg%2));
threadgroup const S1 * lsmb = (sb + THREAD_MAT_N*SG_MAT_SIZE*(sgitg/2));
threadgroup const S0 * lsma = (sa + 4*64*(sgitg%2));
threadgroup const S1 * lsmb = (sb + 2*64*(sgitg/2));
#pragma unroll(4)
for (short ik = 0; ik < BLOCK_SIZE_K/8; ik++) {
FOR_UNROLL (short ik = 0; ik < NK/8; ik++) {
simdgroup_barrier(mem_flags::mem_none);
#pragma unroll(4)
for (short i = 0; i < 4; i++) {
simdgroup_load(ma[i], lsma + SG_MAT_SIZE * i);
}
#pragma unroll(2)
for (short i = 0; i < 2; i++) {
simdgroup_load(mb[i], lsmb + SG_MAT_SIZE * i);
FOR_UNROLL (short i = 0; i < 4; i++) {
simdgroup_load(ma[i], lsma + 64*i, 8, 0, false);
}
simdgroup_barrier(mem_flags::mem_none);
#pragma unroll(8)
for (short i = 0; i < 8; i++){
FOR_UNROLL (short i = 0; i < 2; i++) {
simdgroup_load(mb[i], lsmb + 64*i, 8, 0, false);
}
simdgroup_barrier(mem_flags::mem_none);
FOR_UNROLL (short i = 0; i < 8; i++){
simdgroup_multiply_accumulate(mc[i], mb[i/4], ma[i%4], mc[i]);
}
lsma += (BLOCK_SIZE_M/SG_MAT_ROW)*SG_MAT_SIZE;
lsmb += (BLOCK_SIZE_N/SG_MAT_ROW)*SG_MAT_SIZE;
lsma += 8*64;
lsmb += 4*64;
}
#else
auto sA = tA.slice(0, 0);
auto sB = tB.slice(0, 0);
mm.run(sB, sA, cT);
#endif
}
if (!FC_mul_mm_bc_out || ((r0 + 1) * BLOCK_SIZE_M <= args.ne0 && (r1 + 1) * BLOCK_SIZE_N <= args.ne1)) {
if (!FC_mul_mm_bc_out || (r0 + NR0 <= args.ne0 && r1 + NR1 <= args.ne1)) {
// if no bounds checks on the output are needed, we can directly write to device memory
#ifdef GGML_METAL_HAS_TENSOR
device float * C = (device float *) dst +
(BLOCK_SIZE_M * r0 + 32*(sgitg & 1)) + \
(BLOCK_SIZE_N * r1 + 16*(sgitg >> 1)) * args.ne0 + im*args.ne1*args.ne0;
r0 + \
r1 * args.ne0 + im*args.ne1*args.ne0;
auto tC = tensor<device float, dextents<int32_t, 2>, tensor_inline>(C, dextents<int32_t, 2>(args.ne0, NR1));
cT.store(tC);
#else
device float * C = (device float *) dst +
(r0 + 32*(sgitg & 1)) + \
(r1 + 16*(sgitg >> 1)) * args.ne0 + im*args.ne1*args.ne0;
for (short i = 0; i < 8; i++) {
simdgroup_store(mc[i], C + 8 * (i%4) + 8 * args.ne0 * (i/4), args.ne0);
simdgroup_store(mc[i], C + 8*(i%4) + 8*args.ne0*(i/4), args.ne0, 0, false);
}
#endif
} else {
// block is smaller than 64x32, we should avoid writing data outside of the matrix
threadgroup_barrier(mem_flags::mem_threadgroup);
threadgroup float * temp_str = ((threadgroup float *) shmem) \
+ 32*(sgitg&1) + (16*(sgitg >> 1))*BLOCK_SIZE_M;
threadgroup float * temp_str = ((threadgroup float *) shmem) + 32*(sgitg&1) + (16*(sgitg >> 1))*NR0;
#ifdef GGML_METAL_HAS_TENSOR
auto tC = tensor<threadgroup float, dextents<int32_t, 2>, tensor_inline>(sc, dextents<int32_t, 2>(NR0, NR1));
cT.store(tC);
#else
for (short i = 0; i < 8; i++) {
simdgroup_store(mc[i], temp_str + 8*(i%4) + 8*BLOCK_SIZE_M*(i/4), BLOCK_SIZE_M);
simdgroup_store(mc[i], temp_str + 8*(i%4) + 8*NR0*(i/4), NR0, 0, false);
}
#endif
threadgroup_barrier(mem_flags::mem_threadgroup);
if (sgitg == 0) {
for (int j = tiitg; j < n_cols; j += BLOCK_SIZE_N) {
device float * D = (device float *) dst + (r0*BLOCK_SIZE_M) + (r1*BLOCK_SIZE_N + j)*args.ne0 + im*args.ne1*args.ne0;
for (int j = tiitg; j < nr1; j += NR1) {
device float * D = (device float *) dst + r0 + (r1 + j)*args.ne0 + im*args.ne1*args.ne0;
device float4 * D4 = (device float4 *) D;
threadgroup float * C = temp_str + (j*BLOCK_SIZE_M);
threadgroup float * C = temp_str + (j*NR0);
threadgroup float4 * C4 = (threadgroup float4 *) C;
int i = 0;
for (; i < n_rows/4; i++) {
for (; i < nr0/4; i++) {
*(D4 + i) = *(C4 + i);
}
i *= 4;
for (; i < n_rows; i++) {
for (; i < nr0; i++) {
*(D + i) = *(C + i);
}
}
@@ -8394,31 +8533,63 @@ kernel void kernel_mul_mm_id(
ushort tiitg[[thread_index_in_threadgroup]],
ushort tiisg[[thread_index_in_simdgroup]],
ushort sgitg[[simdgroup_index_in_threadgroup]]) {
threadgroup S0 * sa = (threadgroup S0 *)(shmem);
threadgroup S1 * sb = (threadgroup S1 *)(shmem + 4096);
const int r0 = tgpig.y;
const int r1 = tgpig.x;
threadgroup float * sc = (threadgroup float *)(shmem);
constexpr int NR0 = 64;
constexpr int NR1 = 32;
constexpr int NK = 32;
constexpr int NL0 = NK/16;
constexpr int NL1 = NK/8;
const int im = tgpig.z; // expert
const int r0 = tgpig.y*NR0;
const int r1 = tgpig.x*NR1;
device const uint32_t * tpe_u32 = (device const uint32_t *) (htpe);
device const int32_t * ids_i32 = (device const int32_t *) (hids);
const int32_t neh1 = tpe_u32[im];
if (r1*BLOCK_SIZE_N >= neh1) {
if (r1 >= neh1) {
return;
}
// if this block is of 64x32 shape or smaller
const short n_rows = (args.ne0 - r0*BLOCK_SIZE_M < BLOCK_SIZE_M) ? (args.ne0 - r0*BLOCK_SIZE_M) : BLOCK_SIZE_M;
const short n_cols = ( neh1 - r1*BLOCK_SIZE_N < BLOCK_SIZE_N) ? ( neh1 - r1*BLOCK_SIZE_N) : BLOCK_SIZE_N;
const short nr0 = (args.ne0 - r0 < NR0) ? (args.ne0 - r0) : NR0;
const short nr1 = ( neh1 - r1 < NR1) ? ( neh1 - r1) : NR1;
// a thread shouldn't load data outside of the matrix
const short thread_row = ((short)tiitg/THREAD_PER_ROW) < n_rows ? ((short)tiitg/THREAD_PER_ROW) : n_rows - 1;
const short thread_col = ((short)tiitg/THREAD_PER_COL) < n_cols ? ((short)tiitg/THREAD_PER_COL) : n_cols - 1;
const short lr0 = ((short)tiitg/NL0) < nr0 ? ((short)tiitg/NL0) : nr0 - 1; // 0 .. 63
const short lr1 = ((short)tiitg/NL1) < nr1 ? ((short)tiitg/NL1) : nr1 - 1; // 0 .. 31
const short il0 = (tiitg % NL0);
short il = il0;
const int id = ids_i32[im*args.ne21 + r1 + lr1];
const short i11 = (id % args.ne20) % args.ne11;
const short i12 = (id / args.ne20);
const short i13 = 0;
const uint64_t offset0 = im*args.nb02 + i13*args.nb03;
const short offset1 = il0/nl;
device const block_q * x = (device const block_q *)(src0 + args.nb01*(r0 + lr0) + offset0) + offset1;
const short iy = 8*(tiitg % NL1);
device const T1 * y = (device const T1 *)(src1
+ args.nb13*i13
+ args.nb12*i12
+ args.nb11*i11
+ args.nb10*iy);
#ifndef GGML_METAL_HAS_TENSOR
S0_8x8 ma[4];
S1_8x8 mb[2];
@@ -8427,39 +8598,36 @@ kernel void kernel_mul_mm_id(
for (short i = 0; i < 8; i++){
mc[i] = make_filled_simdgroup_matrix<float, 8>(0.f);
}
#else
auto tA = tensor<threadgroup S0, dextents<int32_t, 2>, tensor_inline>(sa, dextents<int32_t, 2>(NK, NR0));
auto tB = tensor<threadgroup S1, dextents<int32_t, 2>, tensor_inline>(sb, dextents<int32_t, 2>(NR1, NK ));
short il = (tiitg % THREAD_PER_ROW);
mpp::tensor_ops::matmul2d<
mpp::tensor_ops::matmul2d_descriptor(NR1, NR0, NK, false, true, false, mpp::tensor_ops::matmul2d_descriptor::mode::multiply_accumulate),
execution_simdgroups<4>> mm;
const int id = ids_i32[im*args.ne21 + r1*BLOCK_SIZE_N + thread_col];
auto cT = mm.get_destination_cooperative_tensor<decltype(tA), decltype(tB), float>();
#endif
const short i11 = (id % args.ne20) % args.ne11;
const short i12 = (id / args.ne20);
const short i13 = 0;
const uint64_t offset0 = im*args.nb02 + i13*args.nb03;
const short offset1 = il/nl;
device const block_q * x = (device const block_q *)(src0
+ args.nb01*(r0*BLOCK_SIZE_M + thread_row) + offset0) + offset1;
const short iy = (BLOCK_SIZE_K / THREAD_PER_COL * (tiitg % THREAD_PER_COL));
device const T1 * y = (device const T1 *)(src1
+ args.nb13*i13
+ args.nb12*i12
+ args.nb11*i11
+ args.nb10*iy);
for (int loop_k = 0; loop_k < args.ne00; loop_k += BLOCK_SIZE_K) {
for (int loop_k = 0; loop_k < args.ne00; loop_k += NK) {
#ifndef GGML_METAL_HAS_TENSOR
// load data and store to threadgroup memory
if (is_same<T0_4x4, block_q>::value && FC_mul_mm_bc_inp) {
threadgroup_barrier(mem_flags::mem_threadgroup);
// no need for dequantization
for (short i = 0; i < 16; i++) {
*(sa + SG_MAT_SIZE * ((tiitg/THREAD_PER_ROW/8) \
+ (tiitg%THREAD_PER_ROW)*16 + (i/8)*8) \
+ (tiitg/THREAD_PER_ROW)%8 + (i&7)*8) = loop_k + 16*il + i < args.ne00 ? ((device T0 *) x)[i] : 0;
const short sx = 2*il0 + i/8;
const short sy = (tiitg/NL0)/8;
//const short lx = i%8;
//const short ly = (tiitg/NL0)%8;
const short lx = (tiitg/NL0)%8;
const short ly = i%8;
const short ib = 8*sx + sy;
*(sa + 64*ib + 8*ly + lx) = loop_k + 16*il + i < args.ne00 ? *((device T0 *) x + i) : 0;
}
} else {
S0_4x4 temp_a;
@@ -8468,85 +8636,188 @@ kernel void kernel_mul_mm_id(
threadgroup_barrier(mem_flags::mem_threadgroup);
FOR_UNROLL (short i = 0; i < 16; i++) {
*(sa + SG_MAT_SIZE * ((tiitg/THREAD_PER_ROW/8) \
+ (tiitg%THREAD_PER_ROW)*16 + (i/8)*8) \
+ (tiitg/THREAD_PER_ROW)%8 + (i&7)*8) = temp_a[i/4][i%4];
const short sx = 2*il0 + i/8;
const short sy = (tiitg/NL0)/8;
//const short lx = i%8;
//const short ly = (tiitg/NL0)%8;
const short lx = (tiitg/NL0)%8;
const short ly = i%8;
const short ib = 8*sx + sy;
// NOTE: this is massively slower.. WTF?
//sa[64*ib + 8*ly + lx] = temp_a[i/4][i%4];
*(sa + 64*ib + 8*ly + lx) = temp_a[i/4][i%4];
}
}
if (FC_mul_mm_bc_inp) {
for (short i = 0; i < 8; ++i) {
sb[32*8*(tiitg%THREAD_PER_COL) + 8*(tiitg/THREAD_PER_COL) + i] = loop_k + iy + i < args.ne00 ? (S1) ((device T1 *) y)[i] : 0;
const short sx = (tiitg%NL1);
const short sy = (tiitg/NL1)/8;
const short lx = i;
const short ly = (tiitg/NL1)%8;
//const short lx = (tiitg/NL1)%8;
//const short ly = i;
const short ib = 4*sx + sy;
*(sb + 64*ib + 8*ly + lx) = loop_k + iy + i < args.ne00 ? (S1) *((device T1 *) y + i) : 0;
}
} else {
*(threadgroup S1_2x4 *)(sb + 32*8*(tiitg%THREAD_PER_COL) + 8*(tiitg/THREAD_PER_COL)) = (S1_2x4)(*((device T1_2x4 *) y));
const short sx = (tiitg%NL1);
const short sy = (tiitg/NL1)/8;
const short dx = sx;
const short dy = sy;
const short ly = (tiitg/NL1)%8;
const short ib = 4*sx + sy;
*(threadgroup S1_2x4 *)(sb + 64*ib + 8*ly) = (S1_2x4)(*((device T1_2x4 *) y));
}
#else
// load data and store to threadgroup memory
if (is_same<T0_4x4, block_q>::value && FC_mul_mm_bc_inp) {
threadgroup_barrier(mem_flags::mem_threadgroup);
// no need for dequantization
for (short i = 0; i < 16; i++) {
const short sx = 2*il0 + i/8;
const short sy = (tiitg/NL0)/8;
const short lx = i%8;
const short ly = (tiitg/NL0)%8;
//const short lx = (tiitg/NL0)%8;
//const short ly = i%8;
*(sa + NK*(8*sy + ly) + 8*sx + lx) = loop_k + 16*il + i < args.ne00 ? *((device T0 *) x + i) : 0;
}
} else {
S0_4x4 temp_a;
dequantize_func(x, il, temp_a);
threadgroup_barrier(mem_flags::mem_threadgroup);
FOR_UNROLL (short i = 0; i < 16; i++) {
const short sx = 2*il0 + i/8;
const short sy = (tiitg/NL0)/8;
const short lx = i%8;
const short ly = (tiitg/NL0)%8;
//const short lx = (tiitg/NL0)%8;
//const short ly = i%8;
*(sa + NK*(8*sy + ly) + 8*sx + lx) = temp_a[i/4][i%4];
}
}
if (FC_mul_mm_bc_inp) {
for (short i = 0; i < 8; ++i) {
const short sx = (tiitg%NL1);
const short sy = (tiitg/NL1)/8;
const short lx = i;
const short ly = (tiitg/NL1)%8;
//const short lx = (tiitg/NL1)%8;
//const short ly = i;
*(sb + NK*(8*sy + ly) + 8*sx + lx) = loop_k + iy + i < args.ne00 ? (S1) *((device T1 *) y + i) : 0;
}
} else {
const short sx = (tiitg%NL1);
const short sy = (tiitg/NL1)/8;
//const short lx = i;
const short ly = (tiitg/NL1)%8;
//const short lx = (tiitg/NL1)%8;
//const short ly = i;
*(threadgroup S1_2x4 *)(sb + NK*(8*sy + ly) + 8*sx) = (S1_2x4)(*((device T1_2x4 *) y));
}
#endif
il = (il + 2 < nl) ? il + 2 : il % 2;
x = (il < 2) ? x + (2 + nl - 1)/nl : x;
y += BLOCK_SIZE_K;
y += NK;
threadgroup_barrier(mem_flags::mem_threadgroup);
#ifndef GGML_METAL_HAS_TENSOR
// load matrices from threadgroup memory and conduct outer products
threadgroup const S0 * lsma = (sa + THREAD_MAT_M*SG_MAT_SIZE*(sgitg%2));
threadgroup const S1 * lsmb = (sb + THREAD_MAT_N*SG_MAT_SIZE*(sgitg/2));
threadgroup const S0 * lsma = (sa + 4*64*(sgitg%2));
threadgroup const S1 * lsmb = (sb + 2*64*(sgitg/2));
#pragma unroll(4)
for (short ik = 0; ik < BLOCK_SIZE_K/8; ik++) {
#pragma unroll(4)
for (short i = 0; i < 4; i++) {
simdgroup_load(ma[i], lsma + SG_MAT_SIZE * i);
FOR_UNROLL (short ik = 0; ik < NK/8; ik++) {
simdgroup_barrier(mem_flags::mem_none);
FOR_UNROLL (short i = 0; i < 4; i++) {
simdgroup_load(ma[i], lsma + 64*i, 8, 0, false);
}
simdgroup_barrier(mem_flags::mem_none);
#pragma unroll(2)
for (short i = 0; i < 2; i++) {
simdgroup_load(mb[i], lsmb + SG_MAT_SIZE * i);
FOR_UNROLL (short i = 0; i < 2; i++) {
simdgroup_load(mb[i], lsmb + 64*i, 8, 0, false);
}
#pragma unroll(8)
for (short i = 0; i < 8; i++){
simdgroup_barrier(mem_flags::mem_none);
FOR_UNROLL (short i = 0; i < 8; i++){
simdgroup_multiply_accumulate(mc[i], mb[i/4], ma[i%4], mc[i]);
}
lsma += (BLOCK_SIZE_M/SG_MAT_ROW)*SG_MAT_SIZE;
lsmb += (BLOCK_SIZE_N/SG_MAT_ROW)*SG_MAT_SIZE;
lsma += 8*64;
lsmb += 4*64;
}
#else
auto sA = tA.slice(0, 0);
auto sB = tB.slice(0, 0);
mm.run(sB, sA, cT);
#endif
}
// block is smaller than 64x32, we should avoid writing data outside of the matrix
threadgroup_barrier(mem_flags::mem_threadgroup);
threadgroup float * temp_str = ((threadgroup float *) shmem) \
+ 32*(sgitg&1) + (16*(sgitg >> 1))*BLOCK_SIZE_M;
#ifdef GGML_METAL_HAS_TENSOR
auto tC = tensor<threadgroup float, dextents<int32_t, 2>, tensor_inline>(sc, dextents<int32_t, 2>(NR0, NR1));
cT.store(tC);
#else
threadgroup float * temp_str = ((threadgroup float *) shmem) + 32*(sgitg&1) + (16*(sgitg >> 1))*NR0;
#pragma unroll(8)
for (short i = 0; i < 8; i++) {
simdgroup_store(mc[i], temp_str + 8*(i%4) + 8*BLOCK_SIZE_M*(i/4), BLOCK_SIZE_M);
simdgroup_store(mc[i], temp_str + 8*(i%4) + 8*NR0*(i/4), NR0, 0, false);
}
#endif
threadgroup_barrier(mem_flags::mem_threadgroup);
for (short j = sgitg; j < n_cols; j += 4) {
const int id = ids_i32[im*args.ne21 + r1*BLOCK_SIZE_N + j];
for (short j = sgitg; j < nr1; j += 4) {
const int id = ids_i32[im*args.ne21 + r1 + j];
const short ide = id % args.ne20;
const short idt = id / args.ne20;
device float * D = (device float *) dst + (r0*BLOCK_SIZE_M) + ide*args.ne0 + idt*args.ne1*args.ne0;
device float * D = (device float *) dst + r0 + ide*args.ne0 + idt*args.ne1*args.ne0;
device float4 * D4 = (device float4 *) D;
threadgroup float * C = (threadgroup float *) shmem + (j*BLOCK_SIZE_M);
threadgroup float * C = (threadgroup float *) shmem + j*NR0;
threadgroup float4 * C4 = (threadgroup float4 *) C;
int i = tiisg;
for (; i < n_rows/4; i += 32) {
for (; i < nr0/4; i += 32) {
*(D4 + i) = *(C4 + i);
}
i = (4*(n_rows/4)) + tiisg;
for (; i < n_rows; i += 32) {
i = (4*(nr0/4)) + tiisg;
for (; i < nr0; i += 32) {
*(D + i) = *(C + i);
}
}