ggml : remove SVE paths

This commit is contained in:
Georgi Gerganov
2025-09-28 19:58:20 +03:00
parent d9e0e7c819
commit a8b0089a5b
4 changed files with 126 additions and 891 deletions

View File

@@ -8646,41 +8646,7 @@ static void ggml_compute_forward_ssm_scan_f32(
const int ii = i1 + h*nr;
const float x_dt = x[ii] * dt_soft_plus;
float sumf = 0.0f;
#if defined(GGML_SIMD)
#if defined(__ARM_FEATURE_SVE)
const int ggml_f32_epr = svcntw();
const int ggml_f32_step = 1 * ggml_f32_epr;
const int np = (nc & ~(ggml_f32_step - 1));
GGML_F32_VEC sum = GGML_F32_VEC_ZERO;
GGML_F32_VEC adA = GGML_F32_VEC_SET1(dA);
GGML_F32_VEC axdt = GGML_F32_VEC_SET1(x_dt);
for (int i = 0; i < np; i += ggml_f32_step) {
// TODO: maybe unroll more?
for (int j = 0; j < 1; j++) {
GGML_F32_VEC t0 = GGML_F32_VEC_LOAD(s0 + i + j*ggml_f32_epr + ii*nc);
GGML_F32_VEC t1 = GGML_F32_VEC_LOAD(B + i + j*ggml_f32_epr + g*nc);
GGML_F32_VEC t2 = GGML_F32_VEC_LOAD(C + i + j*ggml_f32_epr + g*nc);
t0 = GGML_F32_VEC_MUL(t0, adA);
t1 = GGML_F32_VEC_MUL(t1, axdt);
t0 = GGML_F32_VEC_ADD(t0, t1);
sum = GGML_F32_VEC_FMA(sum, t0, t2);
GGML_F32_VEC_STORE(s + i + j*ggml_f32_epr + ii*nc, t0);
}
}
sumf = GGML_F32xt_REDUCE_ONE(sum);
#elif defined(__riscv_v_intrinsic)
// todo: RVV implementation
const int np = 0;
#else
#if defined(GGML_SIMD) && !defined(__riscv_v_intrinsic)
const int np = (nc & ~(GGML_F32_STEP - 1));
GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
@@ -8711,7 +8677,6 @@ static void ggml_compute_forward_ssm_scan_f32(
// reduce sum0..sum3 to sum0
GGML_F32_VEC_REDUCE(sumf, sum);
#endif
#else
const int np = 0;
#endif
@@ -8741,30 +8706,6 @@ static void ggml_compute_forward_ssm_scan_f32(
for (int i1 = 0; i1 < nr; ++i1) {
const int ii = i1 + h*nr;
const float x_dt = x[ii] * dt_soft_plus;
#if defined(__ARM_FEATURE_SVE)
svfloat32_t vx_dt = GGML_F32_VEC_SET1(x_dt);
svfloat32_t vdt_soft_plus = GGML_F32_VEC_SET1(dt_soft_plus);
svfloat32_t r1_vector = GGML_F32_VEC_ZERO;
// d_state
// TODO: what happens when (d_state % svcntw()) != 0?
for (int64_t k = 0; k < nc; k += svcntw()) {
svfloat32_t vA = GGML_F32_VEC_LOAD(&A[h*nc + k]);
svfloat32_t vB = GGML_F32_VEC_LOAD(&B[k + g*nc]);
svfloat32_t vC = GGML_F32_VEC_LOAD(&C[k + g*nc]);
svfloat32_t vs0 = GGML_F32_VEC_LOAD(&s0[ii*nc + k]);
svfloat32_t t1 = GGML_F32_VEC_MUL(vdt_soft_plus, vA);
t1 = exp_ps_sve(svptrue_b32(), t1);
svfloat32_t t2 = GGML_F32_VEC_MUL(vx_dt, vB);
vs0 = GGML_F32_VEC_FMA(t2, vs0, t1);
r1_vector = GGML_F32_VEC_ADD(GGML_F32_VEC_MUL(vs0, vC), r1_vector);
GGML_F32_VEC_STORE(&s[ii*nc + k], vs0);
}
y[ii] = GGML_F32xt_REDUCE_ONE(r1_vector);
#else
float sumf = 0.0f;
// NOTE: can't really use GGML_SIMD here because d_state is usually 16
// and also because expf is used within the loop.
@@ -8779,7 +8720,6 @@ static void ggml_compute_forward_ssm_scan_f32(
s[i] = state;
}
y[ii] = sumf;
#endif
}
}
}
@@ -9231,14 +9171,6 @@ static void ggml_compute_forward_rwkv_wkv6_f32(
#define GGML_F32X_MUL GGML_F32x16_MUL
#define GGML_F32X_FMA GGML_F32x16_FMA
#define WKV_VECTOR_SIZE 16
#elif defined(__ARM_FEATURE_SVE) && defined(__aarch64__)
#define GGML_F32X GGML_F32xt
#define GGML_F32X_SET1 GGML_F32xt_SET1
#define GGML_F32X_LOAD GGML_F32xt_LOAD
#define GGML_F32X_STORE GGML_F32xt_STORE
#define GGML_F32X_MUL GGML_F32xt_MUL
#define GGML_F32X_FMA GGML_F32xt_FMA
#define WKV_VECTOR_SIZE 8
#elif defined(__ARM_NEON) && defined(__aarch64__)
#define GGML_F32X GGML_F32x4
#define GGML_F32X_SET1 GGML_F32x4_SET1
@@ -9251,11 +9183,7 @@ static void ggml_compute_forward_rwkv_wkv6_f32(
#ifdef WKV_VECTOR_SIZE
int wkv_vector_size;
#if defined(__ARM_FEATURE_SVE)
wkv_vector_size = svcntw();
#else
wkv_vector_size = WKV_VECTOR_SIZE;
#endif
wkv_vector_size = WKV_VECTOR_SIZE;
const int64_t vec_count = head_size / wkv_vector_size;
for (int64_t t = 0; t < T; t++) {
@@ -9447,14 +9375,6 @@ static void ggml_compute_forward_gla_f32(
#define GGML_F32X_MUL GGML_F32x16_MUL
#define GGML_F32X_FMA GGML_F32x16_FMA
#define GLA_VECTOR_SIZE 16
#elif defined(__ARM_FEATURE_SVE) && defined(__aarch64__)
#define GGML_F32X GGML_F32xt
#define GGML_F32X_SET1 GGML_F32xt_SET1
#define GGML_F32X_LOAD GGML_F32xt_LOAD
#define GGML_F32X_STORE GGML_F32xt_STORE
#define GGML_F32X_MUL GGML_F32xt_MUL
#define GGML_F32X_FMA GGML_F32xt_FMA
#define GLA_VECTOR_SIZE 8
#elif defined(__ARM_NEON) && defined(__aarch64__)
#define GGML_F32X GGML_F32x4
#define GGML_F32X_SET1 GGML_F32x4_SET1
@@ -9467,11 +9387,7 @@ static void ggml_compute_forward_gla_f32(
#ifdef GLA_VECTOR_SIZE
int gla_vector_size;
#if defined(__ARM_FEATURE_SVE)
gla_vector_size = svcntw();
#else
gla_vector_size = GLA_VECTOR_SIZE;
#endif
gla_vector_size = GLA_VECTOR_SIZE;
const int64_t vec_count = head_size / gla_vector_size;
for (int64_t t = 0; t < T; t++) {
@@ -9631,127 +9547,84 @@ static void ggml_compute_forward_rwkv_wkv7_f32(
GGML_ASSERT(C % HEADS == 0); // C must be divisible by HEADS
int64_t h_stride_2d = head_size * head_size;
#if defined(GGML_SIMD)
#if defined(__ARM_FEATURE_SVE) || defined(__riscv_v_intrinsic)
// scalar Route to scalar implementation //TODO: Write SVE code and RVV code
for (int64_t t = 0; t < T; t++) {
int64_t t_offset = t * t_stride;
int64_t state_offset = head_size * C * (t / (T / n_seqs));
float * state_cur = state + state_offset;
float * state_prev = t % (T / n_seqs) ? state_cur : (float*)dst->src[6]->data + state_offset;
#if defined(GGML_SIMD) && !defined(__riscv_v_intrinsic)
for (int64_t t = 0; t < T; t++) {
int64_t t_offset = t * t_stride;
int64_t state_offset = head_size * C * (t / (T / n_seqs));
float * state_cur = state + state_offset;
float * state_prev = t % (T / n_seqs) ? state_cur : (float*)dst->src[6]->data + state_offset;
for (int64_t h = h_start; h < h_end; h++) {
int64_t h_offset = h * h_stride;
int64_t t_h_offset = t_offset + h_offset;
int64_t h_2d_offset = h * h_stride_2d;
for (int64_t h = h_start; h < h_end; h++) {
int64_t h_offset = h * h_stride;
int64_t t_h_offset = t_offset + h_offset;
int64_t h_2d_offset = h * h_stride_2d;
for (int64_t i = 0; i < head_size; i++) {
int64_t t_h_i_offset = t_h_offset + i;
int64_t h_2d_i_offset = h_2d_offset + i * h_stride;
for (int64_t ii = 0; ii < head_size; ii++) {
int64_t t_h_i_offset = t_h_offset + ii;
int64_t h_2d_i_offset = h_2d_offset + ii * h_stride;
float v_val = v[t_h_i_offset];
GGML_F32_VEC v_vec = GGML_F32_VEC_SET1(v[t_h_i_offset]);
float sa = 0, result = 0;
for (int64_t j = 0; j < head_size; j++) {
sa += a[t_h_offset + j] * state_prev[h_2d_i_offset + j];
}
for (int64_t j = 0; j < head_size; j++) {
int64_t t_h_j_offset = t_h_offset + j;
int64_t h_2d_i_j_offset = h_2d_i_offset + j;
float r_val = r[t_h_j_offset];
float w_val = w[t_h_j_offset];
float k_val = k[t_h_j_offset];
float b_val = b[t_h_j_offset];
float kv_val = v_val * k_val;
float prev_state_val = state_prev[h_2d_i_j_offset];
state_cur[h_2d_i_j_offset] = prev_state_val * w_val + kv_val + sa * b_val;
result += state_cur[h_2d_i_j_offset] * r_val;
}
dst_data[t_h_i_offset] = result;
}
}
}
#else
for (int64_t t = 0; t < T; t++) {
int64_t t_offset = t * t_stride;
int64_t state_offset = head_size * C * (t / (T / n_seqs));
float * state_cur = state + state_offset;
float * state_prev = t % (T / n_seqs) ? state_cur : (float*)dst->src[6]->data + state_offset;
for (int64_t h = h_start; h < h_end; h++) {
int64_t h_offset = h * h_stride;
int64_t t_h_offset = t_offset + h_offset;
int64_t h_2d_offset = h * h_stride_2d;
for (int64_t ii = 0; ii < head_size; ii++) {
int64_t t_h_i_offset = t_h_offset + ii;
int64_t h_2d_i_offset = h_2d_offset + ii * h_stride;
GGML_F32_VEC v_vec = GGML_F32_VEC_SET1(v[t_h_i_offset]);
float sa = 0;
{
GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
GGML_F32_VEC ax[GGML_F32_ARR];
GGML_F32_VEC ay[GGML_F32_ARR];
for (int64_t j = 0; j < head_size; j += GGML_F32_STEP) {
for (int64_t kk = 0; kk < GGML_F32_ARR; kk++) {
ax[kk] = GGML_F32_VEC_LOAD(&a[t_h_offset + j + kk * GGML_F32_EPR]);
ay[kk] = GGML_F32_VEC_LOAD(&state_prev[h_2d_i_offset + j + kk * GGML_F32_EPR]);
sum[kk] = GGML_F32_VEC_FMA(sum[kk], ax[kk], ay[kk]);
}
}
GGML_F32_VEC_REDUCE(sa, sum);
}
GGML_F32_VEC sa_vec = GGML_F32_VEC_SET1(sa);
int64_t j = 0;
GGML_F32_VEC result_vec[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
for (; j < head_size; j += GGML_F32_STEP) {
float sa = 0;
{
GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
GGML_F32_VEC ax[GGML_F32_ARR];
GGML_F32_VEC ay[GGML_F32_ARR];
for (int64_t j = 0; j < head_size; j += GGML_F32_STEP) {
for (int64_t kk = 0; kk < GGML_F32_ARR; kk++) {
int64_t t_h_j_offset = t_h_offset + j + kk * GGML_F32_EPR;
int64_t h_2d_i_j_offset = h_2d_i_offset + j + kk * GGML_F32_EPR;
GGML_F32_VEC r_vec = GGML_F32_VEC_LOAD(&r[t_h_j_offset]);
GGML_F32_VEC w_vec = GGML_F32_VEC_LOAD(&w[t_h_j_offset]);
GGML_F32_VEC k_vec = GGML_F32_VEC_LOAD(&k[t_h_j_offset]);
GGML_F32_VEC b_vec = GGML_F32_VEC_LOAD(&b[t_h_j_offset]);
k_vec = GGML_F32_VEC_MUL(v_vec, k_vec);
GGML_F32_VEC state_vec = GGML_F32_VEC_LOAD(&state_prev[h_2d_i_j_offset]);
// kv + s * decay + sa * b
state_vec = GGML_F32_VEC_FMA(k_vec, state_vec, w_vec);
state_vec = GGML_F32_VEC_FMA(state_vec, sa_vec, b_vec);
GGML_F32_VEC_STORE(&state_cur[h_2d_i_j_offset], state_vec);
result_vec[kk] = GGML_F32_VEC_FMA(result_vec[kk], state_vec, r_vec);
ax[kk] = GGML_F32_VEC_LOAD(&a[t_h_offset + j + kk * GGML_F32_EPR]);
ay[kk] = GGML_F32_VEC_LOAD(&state_prev[h_2d_i_offset + j + kk * GGML_F32_EPR]);
sum[kk] = GGML_F32_VEC_FMA(sum[kk], ax[kk], ay[kk]);
}
}
GGML_F32_VEC_REDUCE(dst_data[t_h_i_offset], result_vec);
GGML_F32_VEC_REDUCE(sa, sum);
}
// There shouldn't be left-overs though.
for (; j < head_size; j++) {
int64_t t_h_j_offset = t_h_offset + j;
int64_t h_2d_i_j_offset = h_2d_i_offset + j;
GGML_F32_VEC sa_vec = GGML_F32_VEC_SET1(sa);
float r_val = r[t_h_j_offset];
float w_val = w[t_h_j_offset];
float k_val = k[t_h_j_offset];
float b_val = b[t_h_j_offset];
float kv_val = v[t_h_i_offset] * k_val;
int64_t j = 0;
GGML_F32_VEC result_vec[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
for (; j < head_size; j += GGML_F32_STEP) {
for (int64_t kk = 0; kk < GGML_F32_ARR; kk++) {
int64_t t_h_j_offset = t_h_offset + j + kk * GGML_F32_EPR;
int64_t h_2d_i_j_offset = h_2d_i_offset + j + kk * GGML_F32_EPR;
float prev_state_val = state_prev[h_2d_i_j_offset];
state_cur[h_2d_i_j_offset] = prev_state_val * w_val + kv_val + sa * b_val;
dst_data[t_h_i_offset] += state_cur[h_2d_i_j_offset] * r_val;
GGML_F32_VEC r_vec = GGML_F32_VEC_LOAD(&r[t_h_j_offset]);
GGML_F32_VEC w_vec = GGML_F32_VEC_LOAD(&w[t_h_j_offset]);
GGML_F32_VEC k_vec = GGML_F32_VEC_LOAD(&k[t_h_j_offset]);
GGML_F32_VEC b_vec = GGML_F32_VEC_LOAD(&b[t_h_j_offset]);
k_vec = GGML_F32_VEC_MUL(v_vec, k_vec);
GGML_F32_VEC state_vec = GGML_F32_VEC_LOAD(&state_prev[h_2d_i_j_offset]);
// kv + s * decay + sa * b
state_vec = GGML_F32_VEC_FMA(k_vec, state_vec, w_vec);
state_vec = GGML_F32_VEC_FMA(state_vec, sa_vec, b_vec);
GGML_F32_VEC_STORE(&state_cur[h_2d_i_j_offset], state_vec);
result_vec[kk] = GGML_F32_VEC_FMA(result_vec[kk], state_vec, r_vec);
}
}
GGML_F32_VEC_REDUCE(dst_data[t_h_i_offset], result_vec);
// There shouldn't be left-overs though.
for (; j < head_size; j++) {
int64_t t_h_j_offset = t_h_offset + j;
int64_t h_2d_i_j_offset = h_2d_i_offset + j;
float r_val = r[t_h_j_offset];
float w_val = w[t_h_j_offset];
float k_val = k[t_h_j_offset];
float b_val = b[t_h_j_offset];
float kv_val = v[t_h_i_offset] * k_val;
float prev_state_val = state_prev[h_2d_i_j_offset];
state_cur[h_2d_i_j_offset] = prev_state_val * w_val + kv_val + sa * b_val;
dst_data[t_h_i_offset] += state_cur[h_2d_i_j_offset] * r_val;
}
}
}
#endif
}
#else
for (int64_t t = 0; t < T; t++) {
int64_t t_offset = t * t_stride;

View File

@@ -2,10 +2,6 @@
#include "ggml-cpu-impl.h"
#ifdef __ARM_FEATURE_SVE
#include <arm_sve.h>
#endif // __ARM_FEATURE_SVE
#if defined(__ARM_NEON) && !defined(__CUDACC__) && !defined(__MUSACC__)
// if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
//
@@ -149,164 +145,7 @@ inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
// number of elements to fit in a single register
//
#if defined(__ARM_FEATURE_SVE) && defined(__ARM_FEATURE_FMA)
#define GGML_SIMD
// F32 SVE
#define GGML_F32_EPR 8
#define DEFAULT_PG svptrue_b32()
#define GGML_F32xt svfloat32_t
#define GGML_F32xt_ZERO svdup_n_f32(0.0f)
#define GGML_F32xt_SET1(x) svdup_n_f32(x)
#define GGML_F32xt_LOAD_IMPL(pg, a, ...) svld1_f32(pg, a)
#define GGML_F32xt_LOAD(...) GGML_F32xt_LOAD_IMPL(DEFAULT_PG, __VA_ARGS__)
#define GGML_F32xt_STORE_IMPL(pg,a,b) svst1_f32(pg, a, b)
#define GGML_F32xt_STORE(...) GGML_F32xt_STORE_IMPL(DEFAULT_PG, __VA_ARGS__)
#define GGML_F32xt_FMA_IMPL(pg, a, b, c) svmad_f32_m(pg, b, c, a)
#define GGML_F32xt_FMA(...) GGML_F32xt_FMA_IMPL(DEFAULT_PG, __VA_ARGS__)
#define GGML_F32xt_ADD_IMPL(pg, a, b) svadd_f32_m(pg, a, b)
#define GGML_F32xt_ADD(...) GGML_F32xt_ADD_IMPL(DEFAULT_PG, __VA_ARGS__)
#define GGML_F32xt_MUL_IMPL(pg, a, b) svmul_f32_m(pg, a, b)
#define GGML_F32xt_MUL(...) GGML_F32xt_MUL_IMPL(DEFAULT_PG, __VA_ARGS__)
#define GGML_F32xt_REDUCE_ONE_IMPL(pg, a) svaddv(pg, a)
#define GGML_F32xt_REDUCE_ONE(...) GGML_F32xt_REDUCE_ONE_IMPL(DEFAULT_PG, __VA_ARGS__)
#define GGML_F32xt_REDUCE_IMPL(pg, res, sum1, sum2, sum3, sum4, sum5, sum6, sum7, sum8) \
{ \
sum1 = svadd_f32_m(DEFAULT_PG, sum1, sum2); \
sum3 = svadd_f32_m(DEFAULT_PG, sum3, sum4); \
sum5 = svadd_f32_m(DEFAULT_PG, sum5, sum6); \
sum7 = svadd_f32_m(DEFAULT_PG, sum7, sum8); \
sum1 = svadd_f32_m(DEFAULT_PG, sum1, sum3); \
sum5 = svadd_f32_m(DEFAULT_PG, sum5, sum7); \
sum1 = svadd_f32_m(DEFAULT_PG, sum1, sum5); \
(res) = (ggml_float) GGML_F32xt_REDUCE_ONE(sum1); \
}
#define GGML_F32xt_REDUCE(...) GGML_F32xt_REDUCE_IMPL(DEFAULT_PG, __VA_ARGS__)
#define GGML_F32_VEC GGML_F32xt
#define GGML_F32_VEC_ZERO GGML_F32xt_ZERO
#define GGML_F32_VEC_SET1 GGML_F32xt_SET1
#define GGML_F32_VEC_LOAD GGML_F32xt_LOAD
#define GGML_F32_VEC_STORE GGML_F32xt_STORE
#define GGML_F32_VEC_FMA GGML_F32xt_FMA
#define GGML_F32_VEC_ADD GGML_F32xt_ADD
#define GGML_F32_VEC_MUL GGML_F32xt_MUL
#define GGML_F32_VEC_REDUCE GGML_F32xt_REDUCE
// F16 SVE
#define DEFAULT_PG32 svptrue_b32()
#define DEFAULT_PG16 svptrue_b16()
#define GGML_F32Cxt svfloat16_t
#define GGML_F32Cxt_ZERO svdup_n_f16(0.0f)
#define GGML_F32Cxt_SET1(x) svdup_n_f16(x)
#define GGML_F32Cxt_LOAD(p) svld1_f16(DEFAULT_PG16, (const __fp16 *)(p))
#define GGML_F32Cxt_STORE(dst_ptr, src_vec) svst1_f16(DEFAULT_PG16, (__fp16 *)(dst_ptr), (src_vec))
#define GGML_F32Cxt_FMA_IMPL(pg, a, b, c) svmad_f16_x(pg, b, c, a)
#define GGML_F32Cxt_FMA(...) GGML_F32Cxt_FMA_IMPL(DEFAULT_PG16, __VA_ARGS__)
#define GGML_F32Cxt_ADD_IMPL(pg, a, b) svadd_f16_x(pg, a, b)
#define GGML_F32Cxt_ADD(...) GGML_F32Cxt_ADD_IMPL(DEFAULT_PG16, __VA_ARGS__)
#define GGML_F32Cxt_MUL_IMPL(pg, a, b) svmul_f16_x(pg, a, b)
#define GGML_F32Cxt_MUL(...) GGML_F32Cxt_MUL_IMPL(DEFAULT_PG16, __VA_ARGS__)
#define GGML_F32Cxt_REDUCE GGML_F16xt_REDUCE_MIXED
#define GGML_F16x_VEC GGML_F32Cxt
#define GGML_F16x_VEC_ZERO GGML_F32Cxt_ZERO
#define GGML_F16x_VEC_SET1 GGML_F32Cxt_SET1
#define GGML_F16x_VEC_LOAD(p, i) GGML_F32Cxt_LOAD(p)
#define GGML_F16x_VEC_STORE(p, r, i) GGML_F32Cxt_STORE((__fp16 *)(p), r)
#define GGML_F16x_VEC_FMA GGML_F32Cxt_FMA
#define GGML_F16x_VEC_ADD GGML_F32Cxt_ADD
#define GGML_F16x_VEC_MUL GGML_F32Cxt_MUL
#define GGML_F16x_VEC_REDUCE GGML_F32Cxt_REDUCE
#define GGML_F16xt_REDUCE_ONE_IMPL(pg, a) svaddv_f16(pg, a)
#define GGML_F16xt_REDUCE_ONE(...) GGML_F16xt_REDUCE_ONE_IMPL(DEFAULT_PG16, __VA_ARGS__)
#define GGML_F16xt_REDUCE_MIXED_IMPL(pg16, res, sum1, sum2, sum3, sum4) \
{ \
sum1 = svadd_f16_x(pg16, sum1, sum2); \
sum3 = svadd_f16_x(pg16, sum3, sum4); \
sum1 = svadd_f16_x(pg16, sum1, sum3); \
__fp16 sum_f16 = svaddv_f16(pg16, sum1); \
(res) = (ggml_float) sum_f16; \
}
#define GGML_F16xt_REDUCE_MIXED(...) GGML_F16xt_REDUCE_MIXED_IMPL(DEFAULT_PG16, __VA_ARGS__)
// F16 NEON
#if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
#define GGML_F16_STEP 32
#define GGML_F16_EPR 8
#define GGML_F16x8 float16x8_t
#define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
#define GGML_F16x8_SET1(x) vdupq_n_f16(x)
#define GGML_F16x8_LOAD(x) vld1q_f16((const __fp16 *)(x))
#define GGML_F16x8_STORE vst1q_f16
#define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
#define GGML_F16x8_ADD vaddq_f16
#define GGML_F16x8_MUL vmulq_f16
#define GGML_F16x8_REDUCE(res, x) \
do { \
int offset = GGML_F16_ARR >> 1; \
for (int i = 0; i < offset; ++i) { \
(x)[i] = vaddq_f16((x)[i], (x)[offset+i]); \
} \
offset >>= 1; \
for (int i = 0; i < offset; ++i) { \
(x)[i] = vaddq_f16((x)[i], (x)[offset+i]); \
} \
offset >>= 1; \
for (int i = 0; i < offset; ++i) { \
(x)[i] = vaddq_f16((x)[i], (x)[offset+i]); \
} \
const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 ((x)[0])); \
const float32x4_t t1 = vcvt_f32_f16(vget_high_f16((x)[0])); \
(res) = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
} while (0)
#define GGML_F16_VEC GGML_F16x8
#define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
#define GGML_F16_VEC_SET1 GGML_F16x8_SET1
#define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
#define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE((__fp16 *)(p), (r)[i])
#define GGML_F16_VEC_FMA GGML_F16x8_FMA
#define GGML_F16_VEC_ADD GGML_F16x8_ADD
#define GGML_F16_VEC_MUL GGML_F16x8_MUL
#define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
#else
// if FP16 vector arithmetic is not supported, we use FP32 instead
// and take advantage of the vcvt_ functions to convert to/from FP16
#define GGML_F16_STEP 16
#define GGML_F16_EPR 4
#define GGML_F32Cx4 float32x4_t
#define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
#define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
#define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16((const __fp16 *)(x)))
#define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
#define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
#define GGML_F32Cx4_ADD vaddq_f32
#define GGML_F32Cx4_MUL vmulq_f32
#define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
#define GGML_F16_VEC GGML_F32Cx4
#define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
#define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
#define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
#define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE((__fp16 *)(p), r[i])
#define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
#define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
#define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
#define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
#endif
#elif defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
#if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
#define GGML_SIMD

View File

@@ -18,73 +18,7 @@ void ggml_vec_dot_f32(int n, float * GGML_RESTRICT s, size_t bs, const float * G
#if defined(GGML_SIMD)
float sumf = 0.0f;
#if defined(__ARM_FEATURE_SVE)
const int sve_register_length = ggml_cpu_get_sve_cnt() * 8;
const int ggml_f32_epr = sve_register_length / 32;//8;//svcntw(); // SVE128:4, SVE256:8, SVE512:16
const int ggml_f32_step = 8 * ggml_f32_epr; // choose 8 SVE registers
const int np = (n & ~(ggml_f32_step - 1));
svfloat32_t sum1 = svdup_n_f32(0.0f);
svfloat32_t sum2 = svdup_n_f32(0.0f);
svfloat32_t sum3 = svdup_n_f32(0.0f);
svfloat32_t sum4 = svdup_n_f32(0.0f);
svfloat32_t sum5 = svdup_n_f32(0.0f);
svfloat32_t sum6 = svdup_n_f32(0.0f);
svfloat32_t sum7 = svdup_n_f32(0.0f);
svfloat32_t sum8 = svdup_n_f32(0.0f);
svfloat32_t ax1,ax2,ax3,ax4,ax5,ax6,ax7,ax8;
svfloat32_t ay1,ay2,ay3,ay4,ay5,ay6,ay7,ay8;
for (int i = 0; i < np; i += ggml_f32_step) {
ax1 = GGML_F32_VEC_LOAD(x + i);
ay1 = GGML_F32_VEC_LOAD(y + i);
sum1 = GGML_F32_VEC_FMA(sum1, ax1, ay1);
ax2 = GGML_F32_VEC_LOAD(x + i + 1*ggml_f32_epr);
ay2 = GGML_F32_VEC_LOAD(y + i + 1*ggml_f32_epr);
sum2 = GGML_F32_VEC_FMA(sum2, ax2, ay2);
ax3 = GGML_F32_VEC_LOAD(x + i + 2*ggml_f32_epr);
ay3 = GGML_F32_VEC_LOAD(y + i + 2*ggml_f32_epr);
sum3 = GGML_F32_VEC_FMA(sum3, ax3, ay3);
ax4 = GGML_F32_VEC_LOAD(x + i + 3*ggml_f32_epr);
ay4 = GGML_F32_VEC_LOAD(y + i + 3*ggml_f32_epr);
sum4 = GGML_F32_VEC_FMA(sum4, ax4, ay4);
ax5 = GGML_F32_VEC_LOAD(x + i + 4*ggml_f32_epr);
ay5 = GGML_F32_VEC_LOAD(y + i + 4*ggml_f32_epr);
sum5 = GGML_F32_VEC_FMA(sum5, ax5, ay5);
ax6 = GGML_F32_VEC_LOAD(x + i + 5*ggml_f32_epr);
ay6 = GGML_F32_VEC_LOAD(y + i + 5*ggml_f32_epr);
sum6 = GGML_F32_VEC_FMA(sum6, ax6, ay6);
ax7 = GGML_F32_VEC_LOAD(x + i + 6*ggml_f32_epr);
ay7 = GGML_F32_VEC_LOAD(y + i + 6*ggml_f32_epr);
sum7 = GGML_F32_VEC_FMA(sum7, ax7, ay7);
ax8 = GGML_F32_VEC_LOAD(x + i + 7*ggml_f32_epr);
ay8 = GGML_F32_VEC_LOAD(y + i + 7*ggml_f32_epr);
sum8 = GGML_F32_VEC_FMA(sum8, ax8, ay8);
}
// leftovers
// Since 8 unrolls are done in above loop, leftovers lie in range [0, ggml_f32_step] which is handled in below loop
const int np2 = (n & ~(ggml_f32_epr - 1));
for (int i = np; i < np2; i += ggml_f32_epr) {
ax1 = GGML_F32_VEC_LOAD(x + i);
ay1 = GGML_F32_VEC_LOAD(y + i);
sum1 = GGML_F32_VEC_FMA(sum1, ax1, ay1);
}
// maximum number of leftover elements will be less that ggml_f32_epr. Apply predicated svmad on available elements only
if (np2 < n) {
svbool_t pg = svwhilelt_b32(np2, n);
ax1 = svld1_f32(pg, x + np2);
ay1 = svld1_f32(pg, y + np2);
sum1 = svmad_f32_m(pg, ax1, ay1, sum1);
}
// reduce sum1,sum2 to sum1
GGML_F32_VEC_REDUCE(sumf, sum1, sum2, sum3, sum4, sum5, sum6, sum7, sum8);
#elif defined(__riscv_v_intrinsic)
#if defined(__riscv_v_intrinsic)
int vl = __riscv_vsetvlmax_e32m8();
vfloat32m1_t vs = __riscv_vfmv_v_f_f32m1(0.0f, 1);
vfloat32m8_t vsum;
@@ -215,69 +149,7 @@ void ggml_vec_dot_f16(int n, float * GGML_RESTRICT s, size_t bs, ggml_fp16_t * G
#if defined(GGML_SIMD)
#if defined(__ARM_FEATURE_SVE)
const int sve_register_length = svcntb() * 8; //get vector length
const int ggml_f16_epr = sve_register_length / 16; // running when 16
const int ggml_f16_step = 8 * ggml_f16_epr; // choose 8 SVE registers
const int np= (n & ~(ggml_f16_step - 1));
svfloat16_t sum1 = svdup_n_f16(0.0f);
svfloat16_t sum2 = svdup_n_f16(0.0f);
svfloat16_t sum3 = svdup_n_f16(0.0f);
svfloat16_t sum4 = svdup_n_f16(0.0f);
svfloat16_t ax1, ax2, ax3, ax4, ax5, ax6, ax7, ax8;
svfloat16_t ay1, ay2, ay3, ay4, ay5, ay6, ay7, ay8;
for (int i = 0; i < np; i += ggml_f16_step) {
ax1 = GGML_F16x_VEC_LOAD(x + i + 0 * ggml_f16_epr, 0);
ay1 = GGML_F16x_VEC_LOAD(y + i + 0 * ggml_f16_epr, 0);
sum1 = GGML_F16x_VEC_FMA(sum1, ax1, ay1);
ax2 = GGML_F16x_VEC_LOAD(x + i + 1 * ggml_f16_epr, 1);
ay2 = GGML_F16x_VEC_LOAD(y + i + 1 * ggml_f16_epr, 1);
sum2 = GGML_F16x_VEC_FMA(sum2, ax2, ay2);
ax3 = GGML_F16x_VEC_LOAD(x + i + 2 * ggml_f16_epr, 2);
ay3 = GGML_F16x_VEC_LOAD(y + i + 2 * ggml_f16_epr, 2);
sum3 = GGML_F16x_VEC_FMA(sum3, ax3, ay3);
ax4 = GGML_F16x_VEC_LOAD(x + i + 3 * ggml_f16_epr, 3);
ay4 = GGML_F16x_VEC_LOAD(y + i + 3 * ggml_f16_epr, 3);
sum4 = GGML_F16x_VEC_FMA(sum4, ax4, ay4);
ax5 = GGML_F16x_VEC_LOAD(x + i + 4 * ggml_f16_epr, 4);
ay5 = GGML_F16x_VEC_LOAD(y + i + 4 * ggml_f16_epr, 4);
sum1 = GGML_F16x_VEC_FMA(sum1, ax5, ay5);
ax6 = GGML_F16x_VEC_LOAD(x + i + 5 * ggml_f16_epr, 5);
ay6 = GGML_F16x_VEC_LOAD(y + i + 5 * ggml_f16_epr, 5);
sum2 = GGML_F16x_VEC_FMA(sum2, ax6, ay6);
ax7 = GGML_F16x_VEC_LOAD(x + i + 6 * ggml_f16_epr, 6);
ay7 = GGML_F16x_VEC_LOAD(y + i + 6 * ggml_f16_epr, 6);
sum3 = GGML_F16x_VEC_FMA(sum3, ax7, ay7);
ax8 = GGML_F16x_VEC_LOAD(x + i + 7 * ggml_f16_epr, 7);
ay8 = GGML_F16x_VEC_LOAD(y + i + 7 * ggml_f16_epr, 7);
sum4 = GGML_F16x_VEC_FMA(sum4, ax8, ay8);
}
const int np2 = (n & ~(ggml_f16_epr - 1)); // round down to multiple of 8
for (int k = np; k < np2; k += ggml_f16_epr) {
svfloat16_t rx = GGML_F16x_VEC_LOAD(x + k, 0);
svfloat16_t ry = GGML_F16x_VEC_LOAD(y + k, 0);
sum1 = GGML_F16x_VEC_FMA(sum1, rx, ry);
}
if (np2 < n) {
svbool_t pg = svwhilelt_b16(np2, n);
svfloat16_t hx = svld1_f16(pg, (const __fp16 *)(x + np2));
svfloat16_t hy = svld1_f16(pg, (const __fp16 *)(y + np2));
sum1 = svmad_f16_x(pg, hx, hy, sum1);
}
GGML_F16x_VEC_REDUCE(sumf, sum1, sum2, sum3, sum4);
#elif defined(__riscv_v_intrinsic)
#if defined(__riscv_v_intrinsic)
#if defined(__riscv_zvfh)
int vl = __riscv_vsetvlmax_e32m2();
vfloat32m1_t vs = __riscv_vfmv_v_f_f32m1(0.0f, 1);

View File

@@ -118,150 +118,37 @@ inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * GG
x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
}
#if defined(GGML_SIMD)
#if defined(__ARM_FEATURE_SVE)
#if defined(GGML_SIMD) && !defined(__riscv_v_intrinsic)
const int np = (n & ~(GGML_F16_STEP - 1));
const int sve_register_length = svcntb() * 8;
const int ggml_f16_epr = sve_register_length / 16; // running when 16
const int ggml_f16_step = 8 * ggml_f16_epr; // choose 8 SVE registers
GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
const int np = (n & ~(ggml_f16_step - 1));
GGML_F16_VEC ax[GGML_F16_ARR];
GGML_F16_VEC ay[GGML_F16_ARR];
svfloat16_t sum_00 = svdup_n_f16(0.0f);
svfloat16_t sum_01 = svdup_n_f16(0.0f);
svfloat16_t sum_02 = svdup_n_f16(0.0f);
svfloat16_t sum_03 = svdup_n_f16(0.0f);
for (int i = 0; i < np; i += GGML_F16_STEP) {
for (int j = 0; j < GGML_F16_ARR; j++) {
ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
svfloat16_t sum_10 = svdup_n_f16(0.0f);
svfloat16_t sum_11 = svdup_n_f16(0.0f);
svfloat16_t sum_12 = svdup_n_f16(0.0f);
svfloat16_t sum_13 = svdup_n_f16(0.0f);
for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
svfloat16_t ax1, ax2, ax3, ax4, ax5, ax6, ax7, ax8;
svfloat16_t ay1, ay2, ay3, ay4, ay5, ay6, ay7, ay8;
for (int i = 0; i < np; i += ggml_f16_step) {
ay1 = GGML_F16x_VEC_LOAD(y + i + 0 * ggml_f16_epr, 0); // 8 elements
ax1 = GGML_F16x_VEC_LOAD(x[0] + i + 0*ggml_f16_epr, 0); // 8 elemnst
sum_00 = GGML_F16x_VEC_FMA(sum_00, ax1, ay1); // sum_00 = sum_00+ax1*ay1
ax1 = GGML_F16x_VEC_LOAD(x[1] + i + 0*ggml_f16_epr, 0); // 8 elements
sum_10 = GGML_F16x_VEC_FMA(sum_10, ax1, ay1);
ay2 = GGML_F16x_VEC_LOAD(y + i + 1 * ggml_f16_epr, 1); // next 8 elements
ax2 = GGML_F16x_VEC_LOAD(x[0] + i + 1*ggml_f16_epr, 1); // next 8 ekements
sum_01 = GGML_F16x_VEC_FMA(sum_01, ax2, ay2);
ax2 = GGML_F16x_VEC_LOAD(x[1] + i + 1*ggml_f16_epr, 1);
sum_11 = GGML_F16x_VEC_FMA(sum_11, ax2, ay2);
ay3 = GGML_F16x_VEC_LOAD(y + i + 2 * ggml_f16_epr, 2);
ax3 = GGML_F16x_VEC_LOAD(x[0] + i + 2*ggml_f16_epr, 2);
sum_02 = GGML_F16x_VEC_FMA(sum_02, ax3, ay3);
ax1 = GGML_F16x_VEC_LOAD(x[1] + i + 2*ggml_f16_epr, 2);
sum_12 = GGML_F16x_VEC_FMA(sum_12, ax3, ay3);
ay4 = GGML_F16x_VEC_LOAD(y + i + 3 * ggml_f16_epr, 3);
ax4 = GGML_F16x_VEC_LOAD(x[0] + i + 3*ggml_f16_epr, 3);
sum_03 = GGML_F16x_VEC_FMA(sum_03, ax4, ay4);
ax4 = GGML_F16x_VEC_LOAD(x[1] + i + 3*ggml_f16_epr, 3);
sum_13 = GGML_F16x_VEC_FMA(sum_13, ax4, ay4);
ay5 = GGML_F16x_VEC_LOAD(y + i + 4 * ggml_f16_epr, 4);
ax5 = GGML_F16x_VEC_LOAD(x[0] + i + 4*ggml_f16_epr, 4);
sum_00 = GGML_F16x_VEC_FMA(sum_00, ax5, ay5);
ax5 = GGML_F16x_VEC_LOAD(x[1] + i + 4*ggml_f16_epr, 4);
sum_10 = GGML_F16x_VEC_FMA(sum_10, ax5, ay5);
ay6 = GGML_F16x_VEC_LOAD(y + i + 5 * ggml_f16_epr, 5);
ax6 = GGML_F16x_VEC_LOAD(x[0] + i + 5*ggml_f16_epr, 5);
sum_01 = GGML_F16x_VEC_FMA(sum_01, ax6, ay6);
ax6 = GGML_F16x_VEC_LOAD(x[1] + i + 5*ggml_f16_epr, 5);
sum_11 = GGML_F16x_VEC_FMA(sum_11, ax6, ay6);
ay7 = GGML_F16x_VEC_LOAD(y + i + 6 * ggml_f16_epr, 6);
ax7 = GGML_F16x_VEC_LOAD(x[0] + i + 6*ggml_f16_epr, 6);
sum_02 = GGML_F16x_VEC_FMA(sum_02, ax7, ay7);
ax7 = GGML_F16x_VEC_LOAD(x[1] + i + 6*ggml_f16_epr, 6);
sum_12 = GGML_F16x_VEC_FMA(sum_12, ax7, ay7);
ay8 = GGML_F16x_VEC_LOAD(y + i + 7 * ggml_f16_epr, 7);
ax8 = GGML_F16x_VEC_LOAD(x[0] + i + 7*ggml_f16_epr, 7);
sum_03 = GGML_F16x_VEC_FMA(sum_03, ax8, ay8);
ax8 = GGML_F16x_VEC_LOAD(x[1] + i + 7*ggml_f16_epr, 7);
sum_13 = GGML_F16x_VEC_FMA(sum_13, ax8, ay8);
}
const int np2 = (n & ~(ggml_f16_epr - 1));
for (int k = np; k < np2; k += ggml_f16_epr) {
svfloat16_t ry = GGML_F16x_VEC_LOAD(y + k, 0);
svfloat16_t rx = GGML_F16x_VEC_LOAD(x[0] + k, 0);
sum_00 = GGML_F16x_VEC_FMA(sum_00, rx, ry);
rx = GGML_F16x_VEC_LOAD(x[1] + k, 0);
sum_10 = GGML_F16x_VEC_FMA(sum_10, rx, ry);
}
if (np2 < n) {
svbool_t pg = svwhilelt_b16(np2, n);
svfloat16_t hx_0 = svld1_f16(pg, (const __fp16 *)(x[0] + np2));
svfloat16_t hx_1 = svld1_f16(pg, (const __fp16 *)(x[1] + np2));
svfloat16_t hy = svld1_f16(pg, (const __fp16 *)(y + np2));
sum_00 = svmad_f16_x(pg, hx_0, hy, sum_00);
sum_10 = svmad_f16_x(pg, hx_1, hy, sum_10);
}
GGML_F16x_VEC_REDUCE(sumf[0], sum_00, sum_01, sum_02, sum_03);
GGML_F16x_VEC_REDUCE(sumf[1], sum_10, sum_11, sum_12, sum_13);
#elif defined(__riscv_v_intrinsic)
// todo: RVV impl
for (int i = 0; i < n; ++i) {
for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
sumf[j] += (ggml_float)(GGML_CPU_FP16_TO_FP32(x[j][i])*GGML_CPU_FP16_TO_FP32(y[i]));
}
}
#else
const int np = (n & ~(GGML_F16_STEP - 1));
GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
GGML_F16_VEC ax[GGML_F16_ARR];
GGML_F16_VEC ay[GGML_F16_ARR];
for (int i = 0; i < np; i += GGML_F16_STEP) {
for (int j = 0; j < GGML_F16_ARR; j++) {
ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
}
sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
}
}
}
// reduce sum0..sum3 to sum0
for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
}
// reduce sum0..sum3 to sum0
for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
}
// leftovers
for (int i = np; i < n; ++i) {
for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
sumf[j] += (ggml_float)(GGML_CPU_FP16_TO_FP32(x[j][i])*GGML_CPU_FP16_TO_FP32(y[i]));
}
// leftovers
for (int i = np; i < n; ++i) {
for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
sumf[j] += (ggml_float)(GGML_CPU_FP16_TO_FP32(x[j][i])*GGML_CPU_FP16_TO_FP32(y[i]));
}
#endif
}
#else
for (int i = 0; i < n; ++i) {
for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
@@ -277,86 +164,7 @@ inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * GG
inline static void ggml_vec_mad_f32(const int n, float * GGML_RESTRICT y, const float * GGML_RESTRICT x, const float v) {
#if defined(GGML_SIMD)
#if defined(__ARM_FEATURE_SVE)
const int sve_register_length = ggml_cpu_get_sve_cnt() * 8;
const int ggml_f32_epr = sve_register_length / 32;//8;//svcntw(); // SVE128:4, SVE256:8, SVE512:16
const int ggml_f32_step = 8 * ggml_f32_epr; // choose 8 SVE registers
GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
const int np = (n & ~(ggml_f32_step - 1));
svfloat32_t ax1, ax2, ax3, ax4, ax5, ax6, ax7, ax8;
svfloat32_t ay1, ay2, ay3, ay4, ay5, ay6, ay7, ay8;
for (int i = 0; i < np; i += ggml_f32_step) {
ax1 = GGML_F32_VEC_LOAD(x + i);
ay1 = GGML_F32_VEC_LOAD(y + i);
ay1 = GGML_F32_VEC_FMA(ay1, ax1, vx);
GGML_F32_VEC_STORE(y + i, ay1);
ax2 = GGML_F32_VEC_LOAD(x + i + 1*ggml_f32_epr);
ay2 = GGML_F32_VEC_LOAD(y + i + 1*ggml_f32_epr);
ay2 = GGML_F32_VEC_FMA(ay2, ax2, vx);
GGML_F32_VEC_STORE(y + i + 1*ggml_f32_epr, ay2);
ax3 = GGML_F32_VEC_LOAD(x + i + 2*ggml_f32_epr);
ay3 = GGML_F32_VEC_LOAD(y + i + 2*ggml_f32_epr);
ay3 = GGML_F32_VEC_FMA(ay3, ax3, vx);
GGML_F32_VEC_STORE(y + i + 2*ggml_f32_epr, ay3);
ax4 = GGML_F32_VEC_LOAD(x + i + 3*ggml_f32_epr);
ay4 = GGML_F32_VEC_LOAD(y + i + 3*ggml_f32_epr);
ay4 = GGML_F32_VEC_FMA(ay4, ax4, vx);
GGML_F32_VEC_STORE(y + i + 3*ggml_f32_epr, ay4);
ax5 = GGML_F32_VEC_LOAD(x + i + 4*ggml_f32_epr);
ay5 = GGML_F32_VEC_LOAD(y + i + 4*ggml_f32_epr);
ay5 = GGML_F32_VEC_FMA(ay5, ax5, vx);
GGML_F32_VEC_STORE(y + i + 4*ggml_f32_epr, ay5);
ax6 = GGML_F32_VEC_LOAD(x + i + 5*ggml_f32_epr);
ay6 = GGML_F32_VEC_LOAD(y + i + 5*ggml_f32_epr);
ay6 = GGML_F32_VEC_FMA(ay6, ax6, vx);
GGML_F32_VEC_STORE(y + i + 5*ggml_f32_epr, ay6);
ax7 = GGML_F32_VEC_LOAD(x + i + 6*ggml_f32_epr);
ay7 = GGML_F32_VEC_LOAD(y + i + 6*ggml_f32_epr);
ay7 = GGML_F32_VEC_FMA(ay7, ax7, vx);
GGML_F32_VEC_STORE(y + i + 6*ggml_f32_epr, ay7);
ax8 = GGML_F32_VEC_LOAD(x + i + 7*ggml_f32_epr);
ay8 = GGML_F32_VEC_LOAD(y + i + 7*ggml_f32_epr);
ay8 = GGML_F32_VEC_FMA(ay8, ax8, vx);
GGML_F32_VEC_STORE(y + i + 7*ggml_f32_epr, ay8);
}
// leftovers
// Since 8 unrolls are done in above loop, leftovers lie in range [0, ggml_f32_step] which is handled in below loop
const int np2 = (n & ~(ggml_f32_epr - 1));
for (int i = np; i < np2; i += ggml_f32_epr) {
ax1 = GGML_F32_VEC_LOAD(x + i);
ay1 = GGML_F32_VEC_LOAD(y + i);
ay1 = GGML_F32_VEC_FMA(ay1, ax1, vx);
GGML_F32_VEC_STORE(y + i, ay1);
}
// maximum number of leftover elements will be less that ggml_f32_epr. Apply predicated svmad on available elements only
if (np2 < n) {
svbool_t pg =svwhilelt_b32(np2, n);
ax1 = svld1_f32(pg, x + np2);
ay1 = svld1_f32(pg, y + np2);
ay1 = svmad_f32_m(pg, ax1, vx, ay1);
svst1_f32(pg, y + np2, ay1);
}
#elif defined(__riscv_v_intrinsic)
#if defined(__riscv_v_intrinsic)
for (int i = 0, avl; i < n; i += avl) {
avl = __riscv_vsetvl_e32m8(n - i);
vfloat32m8_t ax = __riscv_vle32_v_f32m8(&x[i], avl);
@@ -396,113 +204,28 @@ inline static void ggml_vec_mad_f32(const int n, float * GGML_RESTRICT y, const
}
inline static void ggml_vec_mad_f16(const int n, ggml_fp16_t * GGML_RESTRICT y, const ggml_fp16_t * GGML_RESTRICT x, const float v) {
#if defined(GGML_SIMD)
#if defined(__ARM_FEATURE_SVE)
const int sve_register_length = svcntb() * 8;
const int ggml_f16_epr = sve_register_length / 16;
const int ggml_f16_step = 8 * ggml_f16_epr;
#if defined(GGML_SIMD) && !defined(__riscv_v_intrinsic)
const int np = (n & ~(GGML_F16_STEP - 1));
GGML_F16x_VEC vx = GGML_F16x_VEC_SET1(v);
GGML_F16_VEC vx = GGML_F16_VEC_SET1(v);
const int np= (n & ~(ggml_f16_step - 1));
GGML_F16_VEC ax[GGML_F16_ARR];
GGML_F16_VEC ay[GGML_F16_ARR];
svfloat16_t ax1, ax2, ax3, ax4, ax5, ax6, ax7, ax8;
svfloat16_t ay1, ay2, ay3, ay4, ay5, ay6, ay7, ay8;
for (int i = 0; i < np; i += ggml_f16_step) {
ax1 = GGML_F16x_VEC_LOAD(x + i + 0 * ggml_f16_epr, 0);
ay1 = GGML_F16x_VEC_LOAD(y + i + 0 * ggml_f16_epr, 0);
ay1 = GGML_F16x_VEC_FMA(ay1, ax1, vx);
for (int i = 0; i < np; i += GGML_F16_STEP) {
for (int j = 0; j < GGML_F16_ARR; j++) {
ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
ay[j] = GGML_F16_VEC_FMA(ay[j], ax[j], vx);
GGML_F16x_VEC_STORE(y + i + 0 * ggml_f16_epr, ay1, 0);
ax2 = GGML_F16x_VEC_LOAD(x + i + 1 * ggml_f16_epr, 1);
ay2 = GGML_F16x_VEC_LOAD(y + i + 1 * ggml_f16_epr, 1);
ay2 = GGML_F16x_VEC_FMA(ay2, ax2, vx);
GGML_F16x_VEC_STORE(y + i + 1 * ggml_f16_epr, ay2, 1);
ax3 = GGML_F16x_VEC_LOAD(x + i + 2 * ggml_f16_epr, 2);
ay3 = GGML_F16x_VEC_LOAD(y + i + 2 * ggml_f16_epr, 2);
ay3 = GGML_F16x_VEC_FMA(ay3, ax3, vx);
GGML_F16x_VEC_STORE(y + i + 2 * ggml_f16_epr, ay3, 2);
ax4 = GGML_F16x_VEC_LOAD(x + i + 3 * ggml_f16_epr, 3);
ay4 = GGML_F16x_VEC_LOAD(y + i + 3 * ggml_f16_epr, 3);
ay4 = GGML_F16x_VEC_FMA(ay4, ax4, vx);
GGML_F16x_VEC_STORE(y + i + 3 * ggml_f16_epr, ay4, 3);
ax5 = GGML_F16x_VEC_LOAD(x + i + 4 * ggml_f16_epr, 4);
ay5 = GGML_F16x_VEC_LOAD(y + i + 4 * ggml_f16_epr, 4);
ay5 = GGML_F16x_VEC_FMA(ay5, ax5, vx);
GGML_F16x_VEC_STORE(y + i + 4 * ggml_f16_epr, ay5, 4);
ax6 = GGML_F16x_VEC_LOAD(x + i + 5 * ggml_f16_epr, 5);
ay6 = GGML_F16x_VEC_LOAD(y + i + 5 * ggml_f16_epr, 5);
ay6 = GGML_F16x_VEC_FMA(ay6, ax6, vx);
GGML_F16x_VEC_STORE(y + i + 5 * ggml_f16_epr, ay6, 5);
ax7 = GGML_F16x_VEC_LOAD(x + i + 6 * ggml_f16_epr, 6);
ay7 = GGML_F16x_VEC_LOAD(y + i + 6 * ggml_f16_epr, 6);
ay7 = GGML_F16x_VEC_FMA(ay7, ax7, vx);
GGML_F16x_VEC_STORE(y + i + 6 * ggml_f16_epr, ay7, 6);
ax8 = GGML_F16x_VEC_LOAD(x + i + 7 * ggml_f16_epr, 7);
ay8 = GGML_F16x_VEC_LOAD(y + i + 7 * ggml_f16_epr, 7);
ay8 = GGML_F16x_VEC_FMA(ay8, ax8, vx);
GGML_F16x_VEC_STORE(y + i + 7 * ggml_f16_epr, ay8, 7);
GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j);
}
const int np2 = (n & ~(ggml_f16_epr - 1));
for (int k = np; k < np2; k += ggml_f16_epr) {
svfloat16_t rx = GGML_F16x_VEC_LOAD(x + k, 0);
svfloat16_t ry = GGML_F16x_VEC_LOAD(y + k, 0);
ry = GGML_F16x_VEC_FMA(ry, rx, vx);
}
GGML_F16x_VEC_STORE(y + k, ry, 0);
}
if (np2 < n) {
svbool_t pg = svwhilelt_b16(np2, n);
svfloat16_t hx = svld1_f16(pg, (const __fp16 *)(x + np2));
svfloat16_t hy = svld1_f16(pg, (const __fp16 *)(y + np2));
hy = svmad_f16_x(pg, hx, vx, hy);
svst1_f16(pg, (__fp16 *)(y + np2), hy);
}
#elif defined(__riscv_v_intrinsic)
// todo: RVV impl
// scalar
for (int i = 0; i < n; ++i) {
y[i] = GGML_CPU_FP32_TO_FP16(GGML_CPU_FP16_TO_FP32(y[i]) + GGML_CPU_FP16_TO_FP32(x[i])*v);
}
#else
const int np = (n & ~(GGML_F16_STEP - 1));
GGML_F16_VEC vx = GGML_F16_VEC_SET1(v);
GGML_F16_VEC ax[GGML_F16_ARR];
GGML_F16_VEC ay[GGML_F16_ARR];
for (int i = 0; i < np; i += GGML_F16_STEP) {
for (int j = 0; j < GGML_F16_ARR; j++) {
ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
ay[j] = GGML_F16_VEC_FMA(ay[j], ax[j], vx);
GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j);
}
}
// leftovers
for (int i = np; i < n; ++i) {
y[i] = GGML_CPU_FP32_TO_FP16(GGML_CPU_FP16_TO_FP32(y[i]) + GGML_CPU_FP16_TO_FP32(x[i])*v);
}
#endif
// leftovers
for (int i = np; i < n; ++i) {
y[i] = GGML_CPU_FP32_TO_FP16(GGML_CPU_FP16_TO_FP32(y[i]) + GGML_CPU_FP16_TO_FP32(x[i])*v);
}
#else
// scalar
for (int i = 0; i < n; ++i) {
@@ -523,14 +246,7 @@ inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int
}
#if defined(GGML_SIMD)
#if defined(__ARM_FEATURE_SVE)
// scalar Route to scalar implementation //TODO: Write SVE code
for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
for (int i = 0; i < n; ++i) {
y[i] += x[k][i]*v[k][0];
}
}
#elif defined(__riscv_v_intrinsic)
#if defined(__riscv_v_intrinsic)
for (int i = 0, avl; i < n; i += avl) {
avl = __riscv_vsetvl_e32m8(n - i);
vfloat32m8_t ay = __riscv_vle32_v_f32m8(&y[i], avl);
@@ -586,12 +302,7 @@ inline static void ggml_vec_mad1_f32(const int n, float * y, const float * x, co
#if defined(GGML_USE_ACCELERATE)
vDSP_vsmsa(x, 1, &s, &b, y, 1, n);
#elif defined(GGML_SIMD)
#if defined(__ARM_FEATURE_SVE)
// scalar ; TODO: Write SVE code
for (int i = 0; i < n; ++i) {
y[i] = x[i]*s + b;
}
#elif defined(__riscv_v_intrinsic)
#if defined(__riscv_v_intrinsic)
for (int i = 0, avl; i < n; i += avl) {
avl = __riscv_vsetvl_e32m8(n - i);
vfloat32m8_t ax = __riscv_vle32_v_f32m8(&x[i], avl);
@@ -634,33 +345,7 @@ inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
#if defined(GGML_USE_ACCELERATE)
vDSP_vsmul(y, 1, &v, y, 1, n);
#elif defined(GGML_SIMD)
#if defined(__ARM_FEATURE_SVE)
const int sve_register_length = ggml_cpu_get_sve_cnt() * 8;
const int ggml_f32_epr = sve_register_length / 32;//8;//svcntw(); // SVE128:4, SVE256:8, SVE512:16
const int ggml_f32_step = 2 * ggml_f32_epr;
GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
const int np = (n & ~(ggml_f32_step - 1));
svfloat32_t ay1;
svfloat32_t ay2;
for (int i = 0; i < np; i += ggml_f32_step) {
ay1 = GGML_F32_VEC_LOAD(y + i);
ay1 = GGML_F32_VEC_MUL(ay1, vx);
GGML_F32_VEC_STORE(y + i, ay1);
ay2 = GGML_F32_VEC_LOAD(y + i + 1*ggml_f32_epr);
ay2 = GGML_F32_VEC_MUL(ay2, vx);
GGML_F32_VEC_STORE(y + i + 1*ggml_f32_epr, ay2);
}
// leftovers
// maximum number of leftover elements will be less that ggml_f32_epr. Apply predicated svmad on available elements only
if (np < n) {
svbool_t pg = svwhilelt_b32(np, n);
ay1 = svld1_f32(pg, y + np);
ay1 = svmul_f32_m(pg, ay1, vx);
svst1_f32(pg, y + np, ay1);
}
#elif defined(__riscv_v_intrinsic)
#if defined(__riscv_v_intrinsic)
for (int i = 0, avl; i < n; i += avl) {
avl = __riscv_vsetvl_e32m8(n - i);
vfloat32m8_t ay = __riscv_vle32_v_f32m8(&y[i], avl);
@@ -697,60 +382,26 @@ inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
}
inline static void ggml_vec_scale_f16(const int n, ggml_fp16_t * y, const float v) {
#if defined(GGML_SIMD)
#if defined(__ARM_FEATURE_SVE)
const int sve_register_length = svcntb() * 8;
const int ggml_f16_epr = sve_register_length / 16;
const int ggml_f16_step = 2 * ggml_f16_epr;
#if defined(GGML_SIMD) && !defined(__riscv_v_intrinsic)
const int np = (n & ~(GGML_F16_STEP - 1));
GGML_F16x_VEC vx = GGML_F16x_VEC_SET1(v);
const int np = (n & ~(ggml_f16_step - 1));
svfloat16_t ay1, ay2;
GGML_F16_VEC vx = GGML_F16_VEC_SET1(v);
for (int i = 0; i < np; i += ggml_f16_step) {
ay1 = GGML_F16x_VEC_LOAD(y + i + 0*ggml_f16_epr, 0);
ay1 = GGML_F16x_VEC_MUL(ay1, vx);
GGML_F16x_VEC_STORE(y + i + 0*ggml_f16_epr, ay1, 0);
GGML_F16_VEC ay[GGML_F16_ARR];
ay2 = GGML_F16x_VEC_LOAD(y + i + 1*ggml_f16_epr, 1);
ay2 = GGML_F16x_VEC_MUL(ay2, vx);
GGML_F16x_VEC_STORE(y + i + 1*ggml_f16_epr, ay2, 1);
for (int i = 0; i < np; i += GGML_F16_STEP) {
for (int j = 0; j < GGML_F16_ARR; j++) {
ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
ay[j] = GGML_F16_VEC_MUL(ay[j], vx);
GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j);
}
// leftovers
// maximum number of leftover elements will be less that ggmlF_16x_epr. Apply predicated svmad on available elements only
if (np < n) {
svbool_t pg = svwhilelt_b16(np, n);
svfloat16_t hy = svld1_f16(pg, (__fp16 *)(y + np));
svfloat16_t out = svmul_f16_m(pg, hy, vx);
svst1_f16(pg, (__fp16 *)(y + np), out);
}
#elif defined(__riscv_v_intrinsic)
// todo: RVV impl
// scalar
for (int i = 0; i < n; ++i) {
y[i] = GGML_CPU_FP32_TO_FP16(GGML_CPU_FP16_TO_FP32(y[i])*v);
}
#else
const int np = (n & ~(GGML_F16_STEP - 1));
}
GGML_F16_VEC vx = GGML_F16_VEC_SET1(v);
GGML_F16_VEC ay[GGML_F16_ARR];
for (int i = 0; i < np; i += GGML_F16_STEP) {
for (int j = 0; j < GGML_F16_ARR; j++) {
ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
ay[j] = GGML_F16_VEC_MUL(ay[j], vx);
GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j);
}
}
// leftovers
for (int i = np; i < n; ++i) {
y[i] = GGML_CPU_FP32_TO_FP16(GGML_CPU_FP16_TO_FP32(y[i])*v);
}
#endif
// leftovers
for (int i = np; i < n; ++i) {
y[i] = GGML_CPU_FP32_TO_FP16(GGML_CPU_FP16_TO_FP32(y[i])*v);
}
#else
// scalar
for (int i = 0; i < n; ++i) {