mirror of
https://github.com/ggml-org/llama.cpp.git
synced 2025-10-27 08:21:30 +00:00
model : make falcon-h1 use shared mamba2 layer builder
This commit is contained in:
@@ -5021,7 +5021,10 @@ void llama_model::print_info() const {
|
||||
}
|
||||
}
|
||||
|
||||
if (arch == LLM_ARCH_MAMBA || arch == LLM_ARCH_MAMBA2 || arch == LLM_ARCH_JAMBA) {
|
||||
if (arch == LLM_ARCH_MAMBA ||
|
||||
arch == LLM_ARCH_MAMBA2 ||
|
||||
arch == LLM_ARCH_JAMBA ||
|
||||
arch == LLM_ARCH_FALCON_H1) {
|
||||
LLAMA_LOG_INFO("%s: ssm_d_conv = %u\n", __func__, hparams.ssm_d_conv);
|
||||
LLAMA_LOG_INFO("%s: ssm_d_inner = %u\n", __func__, hparams.ssm_d_inner);
|
||||
LLAMA_LOG_INFO("%s: ssm_d_state = %u\n", __func__, hparams.ssm_d_state);
|
||||
@@ -10292,8 +10295,11 @@ struct llm_graph_context_mamba : public llm_graph_context {
|
||||
y = ggml_swiglu_split(ctx0, ggml_cont(ctx0, z), y);
|
||||
|
||||
// grouped RMS norm
|
||||
y = ggml_reshape_4d(ctx0, y, d_inner / n_group, n_group, n_seq_tokens, n_seqs);
|
||||
y = build_norm(y, model.layers[il].ssm_norm, NULL, LLM_NORM_RMS, il);
|
||||
if (model.layers[il].ssm_norm) {
|
||||
y = ggml_reshape_4d(ctx0, y, d_inner / n_group, n_group, n_seq_tokens, n_seqs);
|
||||
y = build_norm(y, model.layers[il].ssm_norm, NULL, LLM_NORM_RMS, il);
|
||||
}
|
||||
|
||||
y = ggml_reshape_3d(ctx0, y, d_inner, n_seq_tokens, n_seqs);
|
||||
|
||||
// {d_inner, n_embd} @ {d_inner, n_seq_tokens, n_seqs} => {n_embd, n_seq_tokens, n_seqs}
|
||||
@@ -14919,10 +14925,8 @@ struct llm_build_ernie4_5 : public llm_graph_context {
|
||||
}
|
||||
};
|
||||
|
||||
struct llm_build_falcon_h1 : public llm_graph_context {
|
||||
const llama_model & model;
|
||||
|
||||
llm_build_falcon_h1(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params), model(model) {
|
||||
struct llm_build_falcon_h1 : public llm_graph_context_mamba {
|
||||
llm_build_falcon_h1(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context_mamba(params) {
|
||||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||||
|
||||
ggml_tensor * cur;
|
||||
@@ -14978,7 +14982,7 @@ struct llm_build_falcon_h1 : public llm_graph_context {
|
||||
cb(Kcur, "Kcur-post-rope", il);
|
||||
cb(Vcur, "Vcur-post-rope", il);
|
||||
|
||||
ggml_tensor * attn_out = build_attn(inp, gf,
|
||||
ggml_tensor * attn_out = build_attn(inp->get_attn(), gf,
|
||||
model.layers[il].wo, NULL,
|
||||
Qcur, Kcur, Vcur, nullptr, nullptr, kq_scale, il);
|
||||
cb(attn_out, "attn_out", il);
|
||||
@@ -14989,7 +14993,7 @@ struct llm_build_falcon_h1 : public llm_graph_context {
|
||||
// Mamba2 layer
|
||||
cb(cur, "ssm_in", il);
|
||||
|
||||
ggml_tensor * ssm_out = build_mamba2_layer(inp, gf, cur, ubatch, il);
|
||||
ggml_tensor * ssm_out = build_mamba2_layer(inp->get_recr(), gf, cur, model, ubatch, il);
|
||||
cb(ssm_out, "ssm_out", il);
|
||||
|
||||
// // Aggregation
|
||||
@@ -15045,139 +15049,6 @@ struct llm_build_falcon_h1 : public llm_graph_context {
|
||||
|
||||
ggml_build_forward_expand(gf, cur);
|
||||
}
|
||||
|
||||
ggml_tensor * build_mamba2_layer(
|
||||
llm_graph_input_mem_hybrid * inp,
|
||||
ggml_cgraph * gf,
|
||||
ggml_tensor * cur,
|
||||
const llama_ubatch & ubatch,
|
||||
int il) const {
|
||||
const auto * kv_state = static_cast<const llama_memory_hybrid_context *>(mctx)->get_recr();
|
||||
|
||||
const auto kv_head = kv_state->get_head();
|
||||
|
||||
const int64_t d_conv = hparams.ssm_d_conv;
|
||||
const int64_t d_inner = hparams.ssm_d_inner;
|
||||
const int64_t d_state = hparams.ssm_d_state;
|
||||
const int64_t n_head = hparams.ssm_dt_rank;
|
||||
const int64_t head_dim = d_inner / n_head;
|
||||
const int64_t n_group = hparams.ssm_n_group;
|
||||
const int64_t n_seqs = ubatch.n_seqs;
|
||||
|
||||
const int64_t n_seq_tokens = ubatch.n_seq_tokens;
|
||||
|
||||
GGML_ASSERT(n_seqs != 0);
|
||||
GGML_ASSERT(ubatch.equal_seqs);
|
||||
GGML_ASSERT(ubatch.n_tokens == n_seq_tokens * n_seqs);
|
||||
|
||||
ggml_tensor * conv_states_all = kv_state->get_r_l(il);
|
||||
ggml_tensor * ssm_states_all = kv_state->get_s_l(il);
|
||||
|
||||
ggml_tensor * conv = build_rs(inp, gf, conv_states_all, hparams.n_embd_r(), n_seqs);
|
||||
conv = ggml_reshape_3d(ctx0, conv, d_conv - 1, d_inner + 2*n_group*d_state, n_seqs);
|
||||
|
||||
// {n_embd, n_tokens} => {n_embd, n_seq_tokens, n_seqs}
|
||||
cur = ggml_reshape_3d(ctx0, cur, cur->ne[0], n_seq_tokens, n_seqs);
|
||||
|
||||
// d_in_proj = 2 * self.d_inner + 2 * self.ngroups * self.d_state + self.nheads
|
||||
|
||||
// {n_embd, d_in_proj} @ {n_embd, n_seq_tokens, n_seqs} => {d_in_proj, n_seq_tokens, n_seqs}
|
||||
ggml_tensor * zxBCdt = build_lora_mm(model.layers[il].ssm_in, cur);
|
||||
cb(zxBCdt, "zxBCdt", il);
|
||||
|
||||
// split the above in three
|
||||
ggml_tensor * z = ggml_view_4d(ctx0, zxBCdt, head_dim, n_head, n_seq_tokens, n_seqs, head_dim*zxBCdt->nb[0], zxBCdt->nb[1], zxBCdt->nb[2], 0);
|
||||
ggml_tensor * xBC = ggml_view_3d(ctx0, zxBCdt, d_inner + 2*n_group*d_state, n_seq_tokens, n_seqs, zxBCdt->nb[1], zxBCdt->nb[2], d_inner*ggml_element_size(zxBCdt));
|
||||
ggml_tensor * dt = ggml_view_3d(ctx0, zxBCdt, n_head, n_seq_tokens, n_seqs, zxBCdt->nb[1], zxBCdt->nb[2], (2*d_inner + 2*n_group*d_state)*ggml_element_size(zxBCdt));
|
||||
|
||||
// conv
|
||||
{
|
||||
// => {d_conv - 1 + n_seq_tokens, d_inner + 2*n_group*d_state, n_seqs}
|
||||
ggml_tensor * conv_x = ggml_concat(ctx0, conv, ggml_transpose(ctx0, xBC), 0);
|
||||
|
||||
// copy last (d_conv - 1) columns back into the state cache
|
||||
ggml_tensor * last_conv = ggml_view_3d(ctx0, conv_x, d_conv - 1, d_inner + 2*n_group*d_state, n_seqs, conv_x->nb[1], conv_x->nb[2], n_seq_tokens*(conv_x->nb[0]));
|
||||
|
||||
ggml_build_forward_expand(gf,
|
||||
ggml_cpy(ctx0, last_conv,
|
||||
ggml_view_1d(ctx0, conv_states_all,
|
||||
(d_conv - 1)*(d_inner + 2*n_group*d_state)*(n_seqs),
|
||||
kv_head*(d_conv - 1)*(d_inner + 2*n_group*d_state)*ggml_element_size(conv_states_all))));
|
||||
|
||||
// 1D convolution
|
||||
// The equivalent is to make a self-overlapping view of conv_x
|
||||
// over d_conv columns at each stride in the 3rd dimension,
|
||||
// then element-wise multiply that with the conv1d weight,
|
||||
// then sum the elements of each row,
|
||||
// (the last two steps are a dot product over rows (also doable with mul_mat))
|
||||
// then permute away the ne[0] dimension,
|
||||
// and then you're left with the resulting x tensor.
|
||||
// For simultaneous sequences, all sequences need to have the same length.
|
||||
xBC = ggml_ssm_conv(ctx0, conv_x, model.layers[il].ssm_conv1d);
|
||||
|
||||
// bias
|
||||
xBC = ggml_add(ctx0, xBC, model.layers[il].ssm_conv1d_b);
|
||||
|
||||
xBC = ggml_silu(ctx0, xBC);
|
||||
}
|
||||
|
||||
// ssm
|
||||
{
|
||||
// These correspond to V K Q in SSM/attention duality
|
||||
ggml_tensor * x = ggml_view_4d(ctx0, xBC, head_dim, n_head, n_seq_tokens, n_seqs, head_dim*xBC->nb[0], xBC->nb[1], xBC->nb[2], 0);
|
||||
|
||||
ggml_tensor * B = ggml_view_4d(ctx0, xBC, d_state, n_group, n_seq_tokens, n_seqs, d_state*xBC->nb[0], xBC->nb[1], xBC->nb[2], d_inner*ggml_element_size(xBC));
|
||||
|
||||
ggml_tensor * C = ggml_view_4d(ctx0, xBC, d_state, n_group, n_seq_tokens, n_seqs, d_state*xBC->nb[0], xBC->nb[1], xBC->nb[2], (d_inner + n_group*d_state)*ggml_element_size(xBC));
|
||||
|
||||
// {n_head, n_seq_tokens, n_seqs}
|
||||
dt = ggml_add(ctx0, ggml_cont(ctx0, dt), model.layers[il].ssm_dt_b);
|
||||
|
||||
ggml_tensor * A = model.layers[il].ssm_a;
|
||||
|
||||
// use the states and the indices provided by build_rs
|
||||
// (this is necessary in order to properly use the states before they are overwritten,
|
||||
// while avoiding to make unnecessary copies of the states)
|
||||
auto get_ssm_rows = [&](ggml_context * ctx, ggml_tensor * states, ggml_tensor * ids) {
|
||||
ggml_tensor * ssm = ggml_reshape_4d(ctx, states, d_state, head_dim, n_head, kv_state->get_size());
|
||||
|
||||
// TODO: use semistructured matrices to implement state-space duality
|
||||
// => {d_inner, n_seq_tokens, n_seqs} and {d_state, d_inner, n_seqs}
|
||||
return ggml_ssm_scan(ctx, ssm, x, dt, A, B, C, ids);
|
||||
};
|
||||
|
||||
ggml_tensor * y_ssm = build_rs(inp, gf, ssm_states_all, hparams.n_embd_s(), ubatch.n_seqs, get_ssm_rows);
|
||||
|
||||
// store last states
|
||||
ggml_build_forward_expand(gf,
|
||||
ggml_cpy(ctx0,
|
||||
ggml_view_1d(ctx0, y_ssm, d_state*d_inner*n_seqs, ggml_nelements(x)*x->nb[0]),
|
||||
ggml_view_1d(ctx0, ssm_states_all, d_state*d_inner*n_seqs, kv_head*d_state*d_inner*ggml_element_size(ssm_states_all))));
|
||||
|
||||
ggml_tensor * y = ggml_view_4d(ctx0, y_ssm, head_dim, n_head, n_seq_tokens, n_seqs, x->nb[1], n_head*x->nb[1], n_seq_tokens*n_head*x->nb[1], 0);
|
||||
|
||||
// TODO: skip computing output earlier for unused tokens
|
||||
|
||||
y = ggml_add(ctx0, y, ggml_mul(ctx0, x, model.layers[il].ssm_d));
|
||||
y = ggml_swiglu_split(ctx0, ggml_cont(ctx0, z), y);
|
||||
|
||||
// grouped RMS norm
|
||||
if (model.layers[il].ssm_norm) {
|
||||
y = ggml_reshape_4d(ctx0, y, d_inner / n_group, n_group, n_seq_tokens, n_seqs);
|
||||
y = build_norm(y, model.layers[il].ssm_norm, NULL, LLM_NORM_RMS, il);
|
||||
}
|
||||
|
||||
y = ggml_reshape_3d(ctx0, y, d_inner, n_seq_tokens, n_seqs);
|
||||
|
||||
// {d_inner, n_embd} @ {d_inner, n_seq_tokens, n_seqs} => {n_embd, n_seq_tokens, n_seqs}
|
||||
cur = build_lora_mm(model.layers[il].ssm_out, y);
|
||||
}
|
||||
|
||||
// {n_embd, n_seq_tokens, n_seqs} => {n_embd, n_tokens}
|
||||
cur = ggml_reshape_2d(ctx0, cur, cur->ne[0], n_seq_tokens * n_seqs);
|
||||
cb(cur, "mamba_out", il);
|
||||
return cur;
|
||||
}
|
||||
};
|
||||
|
||||
struct llm_build_arcee : public llm_graph_context {
|
||||
|
||||
Reference in New Issue
Block a user