sycl : unify unary kernels with a generic implementation and enable wide operator support (#17213)

* SYCL: add generic unary op implementation for multiple ops (ABS/SGN/…); unify non-contiguous access

* SYCL: update documentation and sycl.csv to reflect new unary op support

* update ops.md after syncing SYCL.csv changes

* Fix SYCL.csv merge conflict

* Update ops.md after fixing SYCL.csv conflicts

* Fix SYCL.csv tail after merge conflict and regenerate ops.md

* Fix line endings and final newline in SYCL.csv

* Remove TOPK_MOE entries from SYCL.csv as requested

* Update ops.md after removing TOPK_MOE from SYCL.csv

* Regenerated SYCL.csv and synced ops.md with upstream

* Update ops.md using create_ops_docs.py
This commit is contained in:
shani-f
2025-11-16 01:52:42 +02:00
committed by GitHub
parent 22e1ce2f81
commit 72bd7321a7
4 changed files with 2490 additions and 429 deletions

View File

@@ -14,7 +14,7 @@ Legend:
| Operation | BLAS | CANN | CPU | CUDA | Metal | OpenCL | SYCL | Vulkan | zDNN |
|-----------|------|------|------|------|------|------|------|------|------|
| ABS | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | 🟡 | ❌ |
| ABS | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | | 🟡 | ❌ |
| ACC | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ |
| ADD | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ | ❌ |
| ADD1 | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ❌ | ❌ |
@@ -23,7 +23,7 @@ Legend:
| ARGMAX | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ |
| ARGSORT | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | 🟡 | ❌ |
| CEIL | ❌ | ❌ | ✅ | 🟡 | ❌ | ❌ | 🟡 | ❌ | ❌ |
| CLAMP | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | | 🟡 | ❌ |
| CLAMP | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | 🟡 | ❌ |
| CONCAT | ❌ | ✅ | ✅ | 🟡 | ✅ | 🟡 | ✅ | ✅ | ❌ |
| CONT | ❌ | 🟡 | ✅ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | ❌ |
| CONV_2D | ❌ | ❌ | ✅ | ✅ | ❌ | ✅ | ❌ | ✅ | ❌ |
@@ -31,7 +31,7 @@ Legend:
| CONV_3D | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
| CONV_TRANSPOSE_1D | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ |
| CONV_TRANSPOSE_2D | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ | ❌ |
| COS | ❌ | ✅ | ✅ | ✅ | 🟡 | ❌ | | 🟡 | ❌ |
| COS | ❌ | ✅ | ✅ | ✅ | 🟡 | ❌ | 🟡 | 🟡 | ❌ |
| COUNT_EQUAL | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ✅ | ❌ |
| CPY | ❌ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | ❌ |
| CROSS_ENTROPY_LOSS | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ | ❌ |
@@ -40,8 +40,8 @@ Legend:
| DIAG_MASK_INF | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ | ❌ |
| DIV | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ | ❌ |
| DUP | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | ✅ | 🟡 | ❌ |
| ELU | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ | ❌ |
| EXP | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | 🟡 | ❌ |
| ELU | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | | ❌ | ❌ |
| EXP | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | | 🟡 | ❌ |
| EXPM1 | ❌ | ❌ | ✅ | 🟡 | ❌ | ❌ | ❌ | ❌ | ❌ |
| FILL | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
| FLASH_ATTN_EXT | ❌ | 🟡 | ✅ | 🟡 | 🟡 | ❌ | ❌ | 🟡 | ❌ |
@@ -50,27 +50,27 @@ Legend:
| GEGLU | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 | ❌ |
| GEGLU_ERF | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 | ❌ |
| GEGLU_QUICK | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 | ❌ |
| GELU | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | ❌ |
| GELU_ERF | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | ❌ |
| GELU_QUICK | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | ❌ |
| GELU | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | | 🟡 | ❌ |
| GELU_ERF | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | | 🟡 | ❌ |
| GELU_QUICK | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | | 🟡 | ❌ |
| GET_ROWS | ❌ | 🟡 | ✅ | 🟡 | ✅ | 🟡 | 🟡 | 🟡 | ❌ |
| GET_ROWS_BACK | ❌ | ❌ | 🟡 | 🟡 | ❌ | ❌ | ❌ | ❌ | ❌ |
| GROUP_NORM | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ |
| GROUP_NORM_MUL_ADD | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | | ❌ | ❌ |
| HARDSIGMOID | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | 🟡 | ❌ |
| HARDSWISH | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | 🟡 | ❌ |
| GROUP_NORM_MUL_ADD | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | | ❌ | ❌ |
| HARDSIGMOID | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | | 🟡 | ❌ |
| HARDSWISH | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | | 🟡 | ❌ |
| IM2COL | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | ✅ | ❌ |
| IM2COL_3D | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ | ❌ |
| L2_NORM | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ |
| LEAKY_RELU | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | 🟡 | ❌ |
| LOG | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | | ❌ | ❌ |
| LOG | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | 🟡 | ❌ | ❌ |
| MEAN | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ |
| MUL | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ | ❌ |
| MUL_MAT | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 |
| MUL_MAT_ID | ❌ | 🟡 | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ❌ |
| NEG | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | 🟡 | ❌ |
| NEG | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | | 🟡 | ❌ |
| NORM | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 | ❌ |
| NORM_MUL_ADD | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | | ❌ | ❌ |
| NORM_MUL_ADD | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | | ❌ | ❌ |
| OPT_STEP_ADAMW | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ | ❌ |
| OPT_STEP_SGD | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ | ❌ |
| OUT_PROD | 🟡 | ❌ | 🟡 | 🟡 | ❌ | ❌ | 🟡 | ❌ | ❌ |
@@ -78,12 +78,12 @@ Legend:
| PAD_REFLECT_1D | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ❌ | ❌ |
| POOL_2D | ❌ | 🟡 | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ |
| REGLU | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 | ❌ |
| RELU | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | ❌ |
| RELU | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | | 🟡 | ❌ |
| REPEAT | ❌ | ✅ | ✅ | 🟡 | ✅ | 🟡 | ✅ | 🟡 | ❌ |
| REPEAT_BACK | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ✅ | ✅ | ❌ |
| RMS_NORM | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | ✅ | ❌ |
| RMS_NORM_BACK | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ✅ | ✅ | ❌ |
| RMS_NORM_MUL_ADD | ❌ | ✅ | ❌ | ❌ | ✅ | ✅ | | ❌ | ❌ |
| RMS_NORM_MUL_ADD | ❌ | ✅ | ❌ | ❌ | ✅ | ✅ | | ❌ | ❌ |
| ROLL | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ✅ | ✅ | ❌ |
| ROPE | ❌ | 🟡 | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ |
| ROPE_BACK | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ | ❌ |
@@ -93,29 +93,28 @@ Legend:
| SCALE | ❌ | 🟡 | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ |
| SET | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | 🟡 | ❌ | ❌ |
| SET_ROWS | ❌ | ❌ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | ❌ |
| SGN | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ | ❌ |
| SIGMOID | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | ❌ |
| SILU | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | ❌ |
| SGN | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | | ❌ | ❌ |
| SIGMOID | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | | 🟡 | ❌ |
| SILU | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | | 🟡 | ❌ |
| SILU_BACK | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ | ❌ |
| SIN | ❌ | ✅ | ✅ | ✅ | 🟡 | ❌ | | 🟡 | ❌ |
| SOFTCAP | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | | ❌ | ❌ |
| SIN | ❌ | ✅ | ✅ | ✅ | 🟡 | ❌ | 🟡 | 🟡 | ❌ |
| SOFTCAP | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | | ❌ | ❌ |
| SOFTPLUS | ❌ | ❌ | ✅ | 🟡 | ❌ | ❌ | ❌ | ❌ | ❌ |
| SOFT_MAX | ❌ | 🟡 | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ |
| SOFT_MAX_BACK | ❌ | ❌ | 🟡 | 🟡 | ❌ | ❌ | 🟡 | ✅ | ❌ |
| SOLVE_TRI | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
| SQR | ❌ | ✅ | ✅ | ✅ | 🟡 | ❌ | | 🟡 | ❌ |
| SQRT | ❌ | ✅ | ✅ | ✅ | 🟡 | ❌ | | 🟡 | ❌ |
| SQR | ❌ | ✅ | ✅ | ✅ | 🟡 | ❌ | 🟡 | 🟡 | ❌ |
| SQRT | ❌ | ✅ | ✅ | ✅ | 🟡 | ❌ | 🟡 | 🟡 | ❌ |
| SSM_CONV | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ |
| SSM_SCAN | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | 🟡 | ❌ |
| STEP | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ | ❌ |
| STEP | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | | ❌ | ❌ |
| SUB | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ | ❌ |
| SUM | ❌ | ✅ | ✅ | 🟡 | ❌ | ❌ | 🟡 | 🟡 | ❌ |
| SUM_ROWS | ❌ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 | ✅ | ❌ |
| SWIGLU | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 | ❌ |
| SWIGLU_OAI | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | 🟡 | ❌ |
| TANH | ❌ | ✅ | ✅ | 🟡 | 🟡 | ✅ | 🟡 | 🟡 | ❌ |
| TANH | ❌ | ✅ | ✅ | 🟡 | 🟡 | ✅ | | 🟡 | ❌ |
| TIMESTEP_EMBEDDING | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ |
| TOPK_MOE | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ✅ | ❌ | ❌ |
| TRI | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
| TRUNC | ❌ | ❌ | ✅ | 🟡 | ❌ | ❌ | 🟡 | ❌ | ❌ |
| UPSCALE | ❌ | 🟡 | ✅ | ✅ | 🟡 | ✅ | 🟡 | ✅ | ❌ |

File diff suppressed because it is too large Load Diff

View File

@@ -170,73 +170,31 @@ static __dpct_inline__ T op_trunc(T x) {
return sycl::trunc(x);
}
template<typename T>
static void unary_op_sgn_kernel(const T * x, T * dst, const int k, const sycl::nd_item<1> &item_ct1) {
SYCL_GLOBAL_ID_LOOP(k, item_ct1) {
dst[i] = op_sgn(x[i]);
}
}
template<typename T, typename F>
static void unary_op_generic_kernel(
const T * x,
T * dst,
const int k,
const int64_t ne0, const int64_t ne1, const int64_t ne2, const int64_t ne3,
const size_t nb0, const size_t nb1, const size_t nb2, const size_t nb3,
const size_t nbd0, const size_t nbd1, const size_t nbd2, const size_t nbd3,
const sycl::nd_item<1> & item_ct1,
F func) {
template<typename T>
static void unary_op_abs_kernel(const T * x, T * dst, const int k, const sycl::nd_item<1> &item_ct1) {
(void) ne3;
SYCL_GLOBAL_ID_LOOP(k, item_ct1) {
dst[i] = op_abs(x[i]);
}
}
const int64_t i0 = i % ne0;
const int64_t i1 = (i / ne0) % ne1;
const int64_t i2 = (i / (ne0*ne1)) % ne2;
const int64_t i3 = i / (ne0*ne1*ne2);
template<typename T>
static void unary_op_elu_kernel(const T * x, T * dst, const int k, const sycl::nd_item<1> &item_ct1) {
SYCL_GLOBAL_ID_LOOP(k, item_ct1) {
dst[i] = op_elu(x[i]);
}
}
const char * src_base = (const char *) x;
char * dst_base = (char *) dst;
template<typename T>
static void unary_op_gelu_kernel(const T * x, T * dst, const int k, const sycl::nd_item<1> &item_ct1) {
SYCL_GLOBAL_ID_LOOP(k, item_ct1) {
dst[i] = op_gelu(x[i]);
}
}
const T * srcp = (const T *)(src_base + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3 );
T * dstp = (T *)(dst_base + i0*nbd0 + i1*nbd1 + i2*nbd2 + i3*nbd3);
template<typename T>
static void unary_op_silu_kernel(const T * x, T * dst, const int k, const sycl::nd_item<1> &item_ct1) {
SYCL_GLOBAL_ID_LOOP(k, item_ct1) {
dst[i] = op_silu(x[i]);
}
}
template<typename T>
static void unary_op_gelu_quick_kernel(const T * x, T * dst, const int k, const sycl::nd_item<1> &item_ct1) {
SYCL_GLOBAL_ID_LOOP(k, item_ct1) {
dst[i] = op_gelu_quick(x[i]);
}
}
template<typename T>
static void unary_op_gelu_erf_kernel(const T * x, T * dst, const int k, const sycl::nd_item<1> &item_ct1) {
SYCL_GLOBAL_ID_LOOP(k, item_ct1) {
dst[i] = op_gelu_erf(x[i]);
}
}
template<typename T>
static void unary_op_tanh_kernel(const T * x, T * dst, const int k, const sycl::nd_item<1> &item_ct1) {
SYCL_GLOBAL_ID_LOOP(k, item_ct1) {
dst[i] = op_tanh(x[i]);
}
}
template<typename T>
static void unary_op_relu_kernel(const T * x, T * dst, const int k, const sycl::nd_item<1> &item_ct1) {
SYCL_GLOBAL_ID_LOOP(k, item_ct1) {
dst[i] = op_relu(x[i]);
}
}
template<typename T>
static void unary_op_sigmoid_kernel(const T * x, T * dst, const int k, const sycl::nd_item<1> &item_ct1) {
SYCL_GLOBAL_ID_LOOP(k, item_ct1) {
dst[i] = op_sigmoid(x[i]);
*dstp = func(*srcp);
}
}
@@ -261,27 +219,6 @@ static void unary_op_cos_kernel(const T * x, T * dst, const int k, const sycl::n
}
}
template<typename T>
static void unary_op_hardsigmoid_kernel(const T * x, T * dst, const int k, const sycl::nd_item<1> &item_ct1) {
SYCL_GLOBAL_ID_LOOP(k, item_ct1) {
dst[i] = op_hardsigmoid(x[i]);
}
}
template<typename T>
static void unary_op_hardswish_kernel(const T * x, T * dst, const int k, const sycl::nd_item<1> &item_ct1) {
SYCL_GLOBAL_ID_LOOP(k, item_ct1) {
dst[i] = op_hardswish(x[i]);
}
}
template<typename T>
static void unary_op_exp_kernel(const T * x, T * dst, const int k, const sycl::nd_item<1> &item_ct1) {
SYCL_GLOBAL_ID_LOOP(k, item_ct1) {
dst[i] = op_exp(x[i]);
}
}
template<typename T>
static void unary_op_log_kernel(const T * x, T * dst, const int k, const sycl::nd_item<1> &item_ct1) {
SYCL_GLOBAL_ID_LOOP(k, item_ct1) {
@@ -289,19 +226,6 @@ static void unary_op_log_kernel(const T * x, T * dst, const int k, const sycl::n
}
}
template<typename T>
static void unary_op_neg_kernel(const T * x, T * dst, const int k, const sycl::nd_item<1> &item_ct1) {
SYCL_GLOBAL_ID_LOOP(k, item_ct1) {
dst[i] = op_neg(x[i]);
}
}
template<typename T>
static void unary_op_step_kernel(const T * x, T * dst, const int k, const sycl::nd_item<1> &item_ct1) {
SYCL_GLOBAL_ID_LOOP(k, item_ct1) {
dst[i] = op_step(x[i]);
}
}
template<typename T>
static void unary_op_leaky_relu_kernel(const T * x, T * dst, const int k, float negative_slope, const sycl::nd_item<1> &item_ct1) {
@@ -620,6 +544,48 @@ static inline void dispatch_ggml_sycl_op_upscale(ggml_backend_sycl_context & ctx
}
}
template<typename F>
static inline void ggml_sycl_op_unary(
ggml_backend_sycl_context & ctx, ggml_tensor * dst, F func) {
ggml_tensor * src0 = dst->src[0];
const int64_t ne0 = dst->ne[0];
const int64_t ne1 = dst->ne[1];
const int64_t ne2 = dst->ne[2];
const int64_t ne3 = dst->ne[3];
const size_t nb0 = src0->nb[0];
const size_t nb1 = src0->nb[1];
const size_t nb2 = src0->nb[2];
const size_t nb3 = src0->nb[3];
const size_t nbd0 = dst->nb[0];
const size_t nbd1 = dst->nb[1];
const size_t nbd2 = dst->nb[2];
const size_t nbd3 = dst->nb[3];
ggml_sycl_detail::dispatch_ggml_sycl_op_unary(ctx, dst,
[=](const auto* src, auto* dst_ptr, int k_elements, queue_ptr stream) {
const int num_blocks = ceil_div(k_elements, 256);
stream->parallel_for(
sycl::nd_range<1>(sycl::range<1>(num_blocks) * sycl::range<1>(256),
sycl::range<1>(256)),
[=](sycl::nd_item<1> item_ct1) {
unary_op_generic_kernel(
src, dst_ptr, k_elements,
ne0, ne1, ne2, ne3,
nb0, nb1, nb2, nb3,
nbd0, nbd1, nbd2, nbd3,
item_ct1,
func
);
});
});
}
static inline void ggml_sycl_op_arange(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_ASSERT(dst->type == GGML_TYPE_F32);
@@ -645,159 +611,75 @@ static inline void ggml_sycl_op_arange(ggml_backend_sycl_context & ctx, ggml_ten
static inline void ggml_sycl_op_sgn(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
ggml_sycl_detail::dispatch_ggml_sycl_op_unary(ctx, dst,
[](const auto* src, auto* dst_ptr, int k_elements, queue_ptr stream) {
const int num_blocks = ceil_div(k_elements, 256);
stream->parallel_for(
sycl::nd_range<1>(sycl::range<1>(num_blocks) * sycl::range<1>(256),
sycl::range<1>(256)),
[=](sycl::nd_item<1> item_ct1) {
unary_op_sgn_kernel(src, dst_ptr, k_elements, item_ct1);
});
});
ggml_sycl_detail::ggml_sycl_op_unary(ctx, dst, [](auto x) {
return op_sgn(x);
});
}
static inline void ggml_sycl_op_abs(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
ggml_sycl_detail::dispatch_ggml_sycl_op_unary(ctx, dst,
[](const auto* src, auto* dst_ptr, int k_elements, queue_ptr stream) {
const int num_blocks = ceil_div(k_elements, 256);
stream->parallel_for(
sycl::nd_range<1>(sycl::range<1>(num_blocks) * sycl::range<1>(256),
sycl::range<1>(256)),
[=](sycl::nd_item<1> item_ct1) {
unary_op_abs_kernel(src, dst_ptr, k_elements, item_ct1);
});
});
ggml_sycl_detail::ggml_sycl_op_unary(ctx, dst, [](auto x) {
return op_abs(x);
});
}
static inline void ggml_sycl_op_elu(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
ggml_sycl_detail::dispatch_ggml_sycl_op_unary(ctx, dst,
[](const auto* src, auto* dst_ptr, int k_elements, queue_ptr stream) {
const int num_blocks = ceil_div(k_elements, 256);
stream->parallel_for(
sycl::nd_range<1>(sycl::range<1>(num_blocks) * sycl::range<1>(256),
sycl::range<1>(256)),
[=](sycl::nd_item<1> item_ct1) {
unary_op_elu_kernel(src, dst_ptr, k_elements, item_ct1);
});
});
ggml_sycl_detail::ggml_sycl_op_unary(ctx, dst, [](auto x) {
return op_elu(x);
});
}
static inline void ggml_sycl_op_silu(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
ggml_sycl_detail::dispatch_ggml_sycl_op_unary(ctx, dst,
[](const auto* src, auto* dst_ptr, int k_elements, queue_ptr stream) {
const int num_blocks = ceil_div(k_elements, SYCL_SILU_BLOCK_SIZE);
stream->parallel_for(
sycl::nd_range<1>(sycl::range<1>(num_blocks) * sycl::range<1>(SYCL_SILU_BLOCK_SIZE),
sycl::range<1>(SYCL_SILU_BLOCK_SIZE)),
[=](sycl::nd_item<1> item_ct1) {
unary_op_silu_kernel(src, dst_ptr, k_elements, item_ct1);
});
});
ggml_sycl_detail::ggml_sycl_op_unary(ctx, dst, [](auto x) {
return op_silu(x);
});
}
static inline void ggml_sycl_op_gelu(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
ggml_sycl_detail::dispatch_ggml_sycl_op_unary(ctx, dst,
[](const auto* src, auto* dst_ptr, int k_elements, queue_ptr stream) {
const int num_blocks = ceil_div(k_elements, SYCL_GELU_BLOCK_SIZE);
stream->parallel_for(
sycl::nd_range<1>(sycl::range<1>(num_blocks) * sycl::range<1>(SYCL_GELU_BLOCK_SIZE),
sycl::range<1>(SYCL_GELU_BLOCK_SIZE)),
[=](sycl::nd_item<1> item_ct1) {
unary_op_gelu_kernel(src, dst_ptr, k_elements, item_ct1);
});
});
ggml_sycl_detail::ggml_sycl_op_unary(ctx, dst, [](auto x) {
return op_gelu(x);
});
}
static inline void ggml_sycl_op_gelu_quick(ggml_backend_sycl_context & ctx, ggml_tensor *dst) {
ggml_sycl_detail::dispatch_ggml_sycl_op_unary(ctx, dst,
[](const auto* src, auto* dst_ptr, int k_elements, queue_ptr stream) {
const int num_blocks = ceil_div(k_elements, SYCL_GELU_BLOCK_SIZE);
stream->parallel_for(
sycl::nd_range<1>(sycl::range<1>(num_blocks) * sycl::range<1>(SYCL_GELU_BLOCK_SIZE),
sycl::range<1>(SYCL_GELU_BLOCK_SIZE)),
[=](sycl::nd_item<1> item_ct1) {
unary_op_gelu_quick_kernel(src, dst_ptr, k_elements, item_ct1);
});
});
static inline void ggml_sycl_op_gelu_quick(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
ggml_sycl_detail::ggml_sycl_op_unary(ctx, dst, [](auto x) {
return op_gelu_quick(x);
});
}
static inline void ggml_sycl_op_gelu_erf(ggml_backend_sycl_context & ctx, ggml_tensor *dst) {
ggml_sycl_detail::dispatch_ggml_sycl_op_unary(ctx, dst,
[](const auto* src, auto* dst_ptr, int k_elements, queue_ptr stream) {
const int num_blocks = ceil_div(k_elements, SYCL_GELU_BLOCK_SIZE);
stream->parallel_for(
sycl::nd_range<1>(sycl::range<1>(num_blocks) * sycl::range<1>(SYCL_GELU_BLOCK_SIZE),
sycl::range<1>(SYCL_GELU_BLOCK_SIZE)),
[=](sycl::nd_item<1> item_ct1) {
unary_op_gelu_erf_kernel(src, dst_ptr, k_elements, item_ct1);
});
});
static inline void ggml_sycl_op_gelu_erf(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
ggml_sycl_detail::ggml_sycl_op_unary(ctx, dst, [](auto x) {
return op_gelu_erf(x);
});
}
static inline void ggml_sycl_op_tanh(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
ggml_sycl_detail::dispatch_ggml_sycl_op_unary(ctx, dst,
[](const auto* src, auto* dst_ptr, int k_elements, queue_ptr stream) {
const int num_blocks = ceil_div(k_elements, SYCL_TANH_BLOCK_SIZE);
stream->parallel_for(
sycl::nd_range<1>(sycl::range<1>(num_blocks) * sycl::range<1>(SYCL_TANH_BLOCK_SIZE),
sycl::range<1>(SYCL_TANH_BLOCK_SIZE)),
[=](sycl::nd_item<1> item_ct1) {
unary_op_tanh_kernel(src, dst_ptr, k_elements, item_ct1);
});
});
ggml_sycl_detail::ggml_sycl_op_unary(ctx, dst, [](auto x) {
return op_tanh(x);
});
}
static inline void ggml_sycl_op_relu(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
ggml_sycl_detail::dispatch_ggml_sycl_op_unary(ctx, dst,
[](const auto* src, auto* dst_ptr, int k_elements, queue_ptr stream) {
const int num_blocks = ceil_div(k_elements, SYCL_RELU_BLOCK_SIZE);
stream->parallel_for(
sycl::nd_range<1>(sycl::range<1>(num_blocks) * sycl::range<1>(SYCL_RELU_BLOCK_SIZE),
sycl::range<1>(SYCL_RELU_BLOCK_SIZE)),
[=](sycl::nd_item<1> item_ct1) {
unary_op_relu_kernel(src, dst_ptr, k_elements, item_ct1);
});
});
ggml_sycl_detail::ggml_sycl_op_unary(ctx, dst, [](auto x) {
return op_relu(x);
});
}
static inline void ggml_sycl_op_hardsigmoid(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
ggml_sycl_detail::dispatch_ggml_sycl_op_unary(ctx, dst,
[](const auto* src, auto* dst_ptr, int k_elements, queue_ptr stream) {
const int num_blocks = ceil_div(k_elements, SYCL_HARDSIGMOID_BLOCK_SIZE);
stream->parallel_for(
sycl::nd_range<1>(sycl::range<1>(num_blocks) * sycl::range<1>(SYCL_HARDSIGMOID_BLOCK_SIZE),
sycl::range<1>(SYCL_HARDSIGMOID_BLOCK_SIZE)),
[=](sycl::nd_item<1> item_ct1) {
unary_op_hardsigmoid_kernel(src, dst_ptr, k_elements, item_ct1);
});
});
ggml_sycl_detail::ggml_sycl_op_unary(ctx, dst, [](auto x) {
return op_hardsigmoid(x);
});
}
static inline void ggml_sycl_op_hardswish(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
ggml_sycl_detail::dispatch_ggml_sycl_op_unary(ctx, dst,
[](const auto* src, auto* dst_ptr, int k_elements, queue_ptr stream) {
const int num_blocks = ceil_div(k_elements, SYCL_HARDSWISH_BLOCK_SIZE);
stream->parallel_for(
sycl::nd_range<1>(sycl::range<1>(num_blocks) * sycl::range<1>(SYCL_HARDSWISH_BLOCK_SIZE),
sycl::range<1>(SYCL_HARDSWISH_BLOCK_SIZE)),
[=](sycl::nd_item<1> item_ct1) {
unary_op_hardswish_kernel(src, dst_ptr, k_elements, item_ct1);
});
});
ggml_sycl_detail::ggml_sycl_op_unary(ctx, dst, [](auto x) {
return op_hardswish(x);
});
}
static inline void ggml_sycl_op_exp(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
ggml_sycl_detail::dispatch_ggml_sycl_op_unary(ctx, dst,
[](const auto* src, auto* dst_ptr, int k_elements, queue_ptr stream) {
const int num_blocks = ceil_div(k_elements, SYCL_EXP_BLOCK_SIZE);
stream->parallel_for(
sycl::nd_range<1>(sycl::range<1>(num_blocks) * sycl::range<1>(SYCL_EXP_BLOCK_SIZE),
sycl::range<1>(SYCL_EXP_BLOCK_SIZE)),
[=](sycl::nd_item<1> item_ct1) {
unary_op_exp_kernel(src, dst_ptr, k_elements, item_ct1);
});
});
ggml_sycl_detail::ggml_sycl_op_unary(ctx, dst, [](auto x) {
return op_exp(x);
});
}
static inline void ggml_sycl_op_log(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
@@ -814,42 +696,22 @@ static inline void ggml_sycl_op_log(ggml_backend_sycl_context & ctx, ggml_tensor
}
static inline void ggml_sycl_op_neg(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
ggml_sycl_detail::dispatch_ggml_sycl_op_unary(ctx, dst,
[](const auto* src, auto* dst_ptr, int k_elements, queue_ptr stream) {
const int num_blocks = ceil_div(k_elements, SYCL_NEG_BLOCK_SIZE);
stream->parallel_for(
sycl::nd_range<1>(sycl::range<1>(num_blocks) * sycl::range<1>(SYCL_NEG_BLOCK_SIZE),
sycl::range<1>(SYCL_NEG_BLOCK_SIZE)),
[=](sycl::nd_item<1> item_ct1) {
unary_op_neg_kernel(src, dst_ptr, k_elements, item_ct1);
});
});
ggml_sycl_detail::ggml_sycl_op_unary(ctx, dst, [](auto x) {
return op_neg(x);
});
}
static inline void ggml_sycl_op_step(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
ggml_sycl_detail::dispatch_ggml_sycl_op_unary(ctx, dst,
[](const auto* src, auto* dst_ptr, int k_elements, queue_ptr stream) {
const int num_blocks = ceil_div(k_elements, SYCL_NEG_BLOCK_SIZE); // Using NEG block size
stream->parallel_for(
sycl::nd_range<1>(sycl::range<1>(num_blocks) * sycl::range<1>(SYCL_NEG_BLOCK_SIZE),
sycl::range<1>(SYCL_NEG_BLOCK_SIZE)),
[=](sycl::nd_item<1> item_ct1) {
unary_op_step_kernel(src, dst_ptr, k_elements, item_ct1);
});
});
ggml_sycl_detail::ggml_sycl_op_unary(ctx, dst, [](auto x) {
return op_step(x);
});
}
static inline void ggml_sycl_op_sigmoid(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
ggml_sycl_detail::dispatch_ggml_sycl_op_unary(ctx, dst,
[](const auto* src, auto* dst_ptr, int k_elements, queue_ptr stream) {
const int num_blocks = ceil_div(k_elements, SYCL_SIGMOID_BLOCK_SIZE);
stream->parallel_for(
sycl::nd_range<1>(sycl::range<1>(num_blocks) * sycl::range<1>(SYCL_SIGMOID_BLOCK_SIZE),
sycl::range<1>(SYCL_SIGMOID_BLOCK_SIZE)),
[=](sycl::nd_item<1> item_ct1) {
unary_op_sigmoid_kernel(src, dst_ptr, k_elements, item_ct1);
});
});
ggml_sycl_detail::ggml_sycl_op_unary(ctx, dst, [](auto x) {
return op_sigmoid(x);
});
}
static inline void ggml_sycl_op_sqrt(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {

View File

@@ -4360,21 +4360,22 @@ static bool ggml_backend_sycl_device_supports_op(ggml_backend_dev_t dev, const g
}
case GGML_OP_UNARY:
switch (ggml_get_unary_op(op)) {
case GGML_UNARY_OP_SGN:
case GGML_UNARY_OP_ABS:
case GGML_UNARY_OP_NEG:
case GGML_UNARY_OP_STEP:
case GGML_UNARY_OP_RELU:
case GGML_UNARY_OP_HARDSIGMOID:
case GGML_UNARY_OP_TANH:
case GGML_UNARY_OP_GELU:
case GGML_UNARY_OP_SILU:
case GGML_UNARY_OP_RELU:
case GGML_UNARY_OP_SIGMOID:
case GGML_UNARY_OP_HARDSIGMOID:
case GGML_UNARY_OP_HARDSWISH:
case GGML_UNARY_OP_GELU_QUICK:
case GGML_UNARY_OP_GELU_ERF:
case GGML_UNARY_OP_TANH:
case GGML_UNARY_OP_EXP:
case GGML_UNARY_OP_SGN:
case GGML_UNARY_OP_ABS:
case GGML_UNARY_OP_ELU:
return true;
case GGML_UNARY_OP_FLOOR:
case GGML_UNARY_OP_CEIL:
case GGML_UNARY_OP_ROUND: