mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-30 08:42:00 +00:00 
			
		
		
		
	Create convert-llama-7b-pth-to-gguf.py
This commit is contained in:
		
							
								
								
									
										302
									
								
								convert-llama-7b-pth-to-gguf.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										302
									
								
								convert-llama-7b-pth-to-gguf.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,302 @@ | ||||
| # 7b pth llama --> gguf conversion, GQA/70b not supported | ||||
| # Only models with a single datafile are supported, like 7B | ||||
| # HF files required in the model dir: config.json tokenizer_config.json tokenizer.json tokenizer.model | ||||
|  | ||||
| import gguf | ||||
| import gguf_namemap as tmap | ||||
| import os | ||||
| import sys | ||||
| import struct | ||||
| import json | ||||
| import numpy as np | ||||
| import torch | ||||
| from typing import Any, List | ||||
| from pathlib import Path | ||||
| from sentencepiece import SentencePieceProcessor | ||||
|  | ||||
|  | ||||
| #NDArray = np.ndarray[Any, Any] | ||||
| # compatible with python < 3.9 | ||||
| NDArray: 'TypeAlias' = 'np.ndarray[Any, Any]' | ||||
|  | ||||
| def count_model_parts(dir_model: str) -> int: | ||||
|     num_parts = 0 | ||||
|     for filename in os.listdir(dir_model): | ||||
|         if filename.startswith("consolidated."): | ||||
|             num_parts += 1 | ||||
|  | ||||
|     if num_parts > 0: | ||||
|         print("gguf: found " + str(num_parts) + " model parts") | ||||
|     return num_parts | ||||
|  | ||||
| if len(sys.argv) < 3: | ||||
|     print("Usage: convert-h5-to-ggml.py dir-model ftype\n") | ||||
|     print("  ftype == 0 -> float32") | ||||
|     print("  ftype == 1 -> float16") | ||||
|     sys.exit(1) | ||||
|  | ||||
|  | ||||
| # output in the same directory as the model | ||||
| dir_model = sys.argv[1] | ||||
| last_dir = os.path.basename(os.path.normpath(dir_model)) | ||||
|  | ||||
|  | ||||
| # possible tensor data types | ||||
| #   ftype == 0 -> float32 | ||||
| #   ftype == 1 -> float16 | ||||
| # | ||||
| # map from ftype to string | ||||
| ftype_str = ["f32", "f16"] | ||||
|  | ||||
| ftype = 1 | ||||
| if len(sys.argv) > 2: | ||||
|     ftype = int(sys.argv[2]) | ||||
|     if ftype < 0 or ftype > 1: | ||||
|         print("Invalid ftype: " + str(ftype)) | ||||
|         sys.exit(1) | ||||
|  | ||||
| fname_out = sys.argv[1] + "/ggml-model-" + ftype_str[ftype] + ".gguf" | ||||
|  | ||||
| print("gguf: loading model "+last_dir) | ||||
|  | ||||
| with open(dir_model + "/config.json", "r", encoding="utf-8") as f: | ||||
|     hparams = json.load(f) | ||||
|  | ||||
| if hparams["architectures"][0] != "LlamaForCausalLM": | ||||
|     print("Model architecture not supported: " + hparams["architectures"][0]) | ||||
|     sys.exit() | ||||
|  | ||||
| # get number of model parts | ||||
| num_parts = count_model_parts(dir_model) | ||||
|  | ||||
| if num_parts > 1: | ||||
|     print("gguf: Only models with a single datafile are supported.") | ||||
|     sys.exit() | ||||
|  | ||||
| gguf_writer = gguf.GGUFWriter.open(fname_out) | ||||
|  | ||||
|  | ||||
| print("gguf: get model metadata") | ||||
|  | ||||
| llm_arch = "llama" | ||||
| block_count = hparams["num_hidden_layers"] | ||||
| head_count = hparams["num_attention_heads"] | ||||
|  | ||||
| if "num_key_value_heads" in hparams: | ||||
|     head_count_kv = hparams["num_key_value_heads"] | ||||
| else: | ||||
|     head_count_kv = head_count | ||||
|  | ||||
| if "_name_or_path" in hparams: | ||||
|     hf_repo = hparams["_name_or_path"] | ||||
| else: | ||||
|     hf_repo="" | ||||
|  | ||||
| gguf_writer.add_architecture(llm_arch) | ||||
| gguf_writer.add_name(last_dir) | ||||
| gguf_writer.add_file_type( "All tensors F32" if ftype == 0 else "Most tensors F16, some F32") | ||||
| gguf_writer.add_source_hf_repo(hf_repo) | ||||
| gguf_writer.add_context_length(llm_arch, hparams["max_position_embeddings"]) | ||||
| gguf_writer.add_embedding_length(llm_arch, hparams["hidden_size"]) | ||||
| gguf_writer.add_block_count(llm_arch, block_count) | ||||
| gguf_writer.add_feed_forward_length(llm_arch, hparams["intermediate_size"]) | ||||
| gguf_writer.add_rope_dimension_count(llm_arch, hparams["hidden_size"] // hparams["num_attention_heads"]) | ||||
| gguf_writer.add_head_count(llm_arch, head_count) | ||||
| gguf_writer.add_head_count_kv(llm_arch, head_count_kv) | ||||
| gguf_writer.add_layer_norm_rms_eps(llm_arch, hparams["rms_norm_eps"]) | ||||
|  | ||||
|  | ||||
| # TOKENIZATION | ||||
|  | ||||
| print("gguf: get tokenizer metadata") | ||||
|  | ||||
| tokens: List[str] = [] | ||||
| scores: List[float] = [] | ||||
|  | ||||
| if Path(dir_model + "/tokenizer.model").is_file(): | ||||
|     # vocab type sentencepiece | ||||
|     print("gguf: get sentencepiece tokenizer vocab and scores") | ||||
|  | ||||
|     tokenizer = SentencePieceProcessor(dir_model + "/tokenizer.model") | ||||
|  | ||||
|     for i in range(tokenizer.vocab_size()): | ||||
|         text: bytes | ||||
|         if tokenizer.is_unknown(i): | ||||
|             text = " \u2047 ".encode("utf-8") | ||||
|         elif tokenizer.is_control(i): | ||||
|             text = b"" | ||||
|         if tokenizer.is_byte(i): | ||||
|             piece = tokenizer.id_to_piece(i) | ||||
|             if len(piece) != 6: | ||||
|                 raise Exception(f"Invalid token: {piece}") | ||||
|             byte_value = int(piece[3:-1], 16) | ||||
|             text = struct.pack("B", byte_value) | ||||
|         else: | ||||
|             text = tokenizer.id_to_piece(i).replace("\u2581", " ").encode("utf-8") | ||||
|         score: float = tokenizer.get_score(i) | ||||
|  | ||||
|         tokens.append(text) | ||||
|         scores.append(score) | ||||
|  | ||||
|     gguf_writer.add_tokenizer_model("llama") | ||||
|     gguf_writer.add_token_list(tokens) | ||||
|     gguf_writer.add_token_scores(scores) | ||||
|  | ||||
| if Path(dir_model + "/tokenizer.json").is_file(): | ||||
|     with open(dir_model + "/tokenizer.json", "r", encoding="utf-8") as f: | ||||
|         tokenizer = json.load(f) | ||||
|  | ||||
|     if "added_tokens" in tokenizer and Path(dir_model + "/tokenizer_config.json").is_file(): | ||||
|         print("gguf: get special token ids") | ||||
|  | ||||
|         with open(dir_model + "/tokenizer_config.json", "r", encoding="utf-8") as f: | ||||
|             tokenizer_config = json.load(f) | ||||
|  | ||||
|         # find special token ids | ||||
|  | ||||
|         if "bos_token" in tokenizer_config and tokenizer_config["bos_token"] != None: | ||||
|             for key in tokenizer["added_tokens"]: | ||||
|                 if key["content"] == tokenizer_config["bos_token"]["content"]: | ||||
|                     gguf_writer.add_bos_token_id(key["id"]) | ||||
|  | ||||
|         if "eos_token" in tokenizer_config and tokenizer_config["eos_token"] != None: | ||||
|             for key in tokenizer["added_tokens"]: | ||||
|                 if key["content"] == tokenizer_config["eos_token"]["content"]: | ||||
|                     gguf_writer.add_eos_token_id(key["id"]) | ||||
|  | ||||
|         if "unk_token" in tokenizer_config and tokenizer_config["unk_token"] != None: | ||||
|             for key in tokenizer["added_tokens"]: | ||||
|                 if key["content"] == tokenizer_config["unk_token"]["content"]: | ||||
|                     gguf_writer.add_unk_token_id(key["id"]) | ||||
|  | ||||
|         if "sep_token" in tokenizer_config and tokenizer_config["sep_token"] != None: | ||||
|             for key in tokenizer["added_tokens"]: | ||||
|                 if key["content"] == tokenizer_config["sep_token"]["content"]: | ||||
|                     gguf_writer.add_sep_token_id(key["id"]) | ||||
|  | ||||
|         if "pad_token" in tokenizer_config and tokenizer_config["pad_token"] != None: | ||||
|             for key in tokenizer["added_tokens"]: | ||||
|                 if key["content"] == tokenizer_config["pad_token"]["content"]: | ||||
|                     gguf_writer.add_pad_token_id(key["id"]) | ||||
|  | ||||
|  | ||||
| # TENSORS | ||||
|  | ||||
| tensor_map = tmap.get_tensor_namemap(block_count) | ||||
|  | ||||
| # tensor info | ||||
| print("gguf: get tensor metadata") | ||||
|  | ||||
| part_names = ( f"consolidated.{n:02}.pth" for n in range(0, num_parts) ) | ||||
|  | ||||
| for part_name in part_names: | ||||
|     print("gguf: loading model part '"+ part_name + "'") | ||||
|     model_part = torch.load(f"{dir_model}/{part_name}", map_location="cpu") | ||||
|  | ||||
|     for name in model_part.keys(): | ||||
|         data = model_part[name] | ||||
|  | ||||
|         # we don't need these | ||||
|         if name == "rope.freqs": | ||||
|             continue | ||||
|  | ||||
|         # convert any unsupported data types to float32 | ||||
|         if data.dtype != torch.float16 and data.dtype != torch.float32: | ||||
|             data = data.to(torch.float32) | ||||
|  | ||||
|         data = data.squeeze().numpy() | ||||
|  | ||||
|         # map tensor names | ||||
|         if name.endswith(".weight") and name[:-7] in tensor_map: | ||||
|             name = tensor_map[name[:-7]] + ".weight" | ||||
|         elif name.endswith(".bias") and name[:-5] in tensor_map: | ||||
|             name = tensor_map[name[:-5]] + ".bias" | ||||
|         else: | ||||
|             print( "Can not map tensor '" + name + "'" ) | ||||
|             sys.exit() | ||||
|  | ||||
|         n_dims = len(data.shape) | ||||
|         data_dtype = data.dtype  | ||||
|  | ||||
|         # if f32 desired, convert any float16 to float32 | ||||
|         if ftype == 0 and data.dtype == np.float16: | ||||
|             data_dtype = np.float32 | ||||
|  | ||||
|         # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32 | ||||
|         if ftype == 1 and data_dtype == np.float16 and n_dims == 1: | ||||
|             data_dtype = np.float32 | ||||
|  | ||||
|         # if f16 desired, convert any float32 2-dim weight tensors to float16 | ||||
|         if ftype == 1 and data.dtype == np.float32 and name.endswith(".weight") and n_dims == 2: | ||||
|             data_dtype = np.float16 | ||||
|  | ||||
|         data_nbytes = data.size * 2 if data_dtype == np.float16 else data.size * 4 | ||||
|  | ||||
|         gguf_writer.add_tensor_info(name, data.shape, data_dtype, data_nbytes) | ||||
|  | ||||
|  | ||||
| print("gguf: write header") | ||||
| gguf_writer.write_header_to_file() | ||||
| print("gguf: write metadata") | ||||
| gguf_writer.write_kv_data_to_file() | ||||
| print("gguf: write tensor metadata") | ||||
| gguf_writer.write_ti_data_to_file() | ||||
|  | ||||
| # tensor data | ||||
| print("gguf: convert and write tensor data") | ||||
|  | ||||
| part_names = ( f"consolidated.{n:02}.pth" for n in range(0, num_parts) ) | ||||
|  | ||||
| for part_name in part_names: | ||||
|     print("gguf: loading model part '"+ part_name + "'") | ||||
|     model_part = torch.load(f"{dir_model}/{part_name}", map_location="cpu") | ||||
|  | ||||
|     for name in model_part.keys(): | ||||
|         data = model_part[name] | ||||
|  | ||||
|      | ||||
|         old_dtype = data.dtype | ||||
|  | ||||
|         # we don't need these | ||||
|         if name == "rope.freqs": | ||||
|             continue | ||||
|  | ||||
|         # convert any unsupported data types to float32 | ||||
|         if data.dtype != torch.float16 and data.dtype != torch.float32: | ||||
|             data = data.to(torch.float32) | ||||
|  | ||||
|         data = data.squeeze().numpy() | ||||
|  | ||||
|         # map tensor names | ||||
|         if name.endswith(".weight") and name[:-7] in tensor_map: | ||||
|             name = tensor_map[name[:-7]] + ".weight" | ||||
|         elif name.endswith(".bias") and name[:-5] in tensor_map: | ||||
|             name = tensor_map[name[:-5]] + ".bias" | ||||
|         else: | ||||
|             print( "Can not map tensor '" + name + "'" ) | ||||
|             sys.exit() | ||||
|  | ||||
|         n_dims = len(data.shape) | ||||
|         data_dtype = data.dtype  | ||||
|  | ||||
|         # if f32 desired, convert any float16 to float32 | ||||
|         if ftype == 0 and data.dtype == np.float16: | ||||
|             data = data.astype(np.float32) | ||||
|  | ||||
|         # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32 | ||||
|         if ftype == 1 and data_dtype == np.float16 and n_dims == 1: | ||||
|             data = data.astype(np.float32) | ||||
|  | ||||
|         # if f16 desired, convert any float32 2-dim weight tensors to float16 | ||||
|         if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2: | ||||
|             data = data.astype(np.float16) | ||||
|  | ||||
|         print( name + ", shape " + str(len(data.shape)) + ", " + str(old_dtype) + " --> " + str(data.dtype)) | ||||
|  | ||||
|         gguf_writer.write_tensor_to_file(data) | ||||
|  | ||||
| gguf_writer.close() | ||||
|  | ||||
|  | ||||
| print("gguf: model successfully exported to '" + fname_out + "'") | ||||
| print("") | ||||
		Reference in New Issue
	
	Block a user
	 klosax
					klosax