mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-29 08:41:22 +00:00 
			
		
		
		
	convert.py : start a new simplified implementation by removing old stuff
This commit is contained in:
		
							
								
								
									
										961
									
								
								convert-new.py
									
									
									
									
									
										Executable file
									
								
							
							
						
						
									
										961
									
								
								convert-new.py
									
									
									
									
									
										Executable file
									
								
							| @@ -0,0 +1,961 @@ | ||||
| #!/usr/bin/env python | ||||
|  | ||||
| import argparse | ||||
| import concurrent.futures | ||||
| import copy | ||||
| import enum | ||||
| import faulthandler | ||||
| import functools | ||||
| import io | ||||
| import itertools | ||||
| import json | ||||
| import math | ||||
| import mmap | ||||
| import pickle | ||||
| import re | ||||
| import signal | ||||
| import struct | ||||
| import sys | ||||
| import zipfile | ||||
| import numpy as np | ||||
|  | ||||
| from abc import ABCMeta, abstractmethod | ||||
| from dataclasses import dataclass | ||||
| from pathlib import Path | ||||
| from typing import (IO, TYPE_CHECKING, Any, Callable, Dict, Iterable, List, Literal, Optional, Sequence, Tuple, TypeVar, Union) | ||||
| from sentencepiece import SentencePieceProcessor  # type: ignore | ||||
|  | ||||
| if TYPE_CHECKING: | ||||
|     from typing_extensions import TypeAlias | ||||
|  | ||||
| if hasattr(faulthandler, 'register') and hasattr(signal, 'SIGUSR1'): | ||||
|     faulthandler.register(signal.SIGUSR1) | ||||
|  | ||||
| NDArray: 'TypeAlias' = 'np.ndarray[Any, Any]' | ||||
|  | ||||
| @dataclass(frozen=True) | ||||
| class UnquantizedDataType: | ||||
|     name: str | ||||
|  | ||||
| DT_F16  = UnquantizedDataType('F16') | ||||
| DT_F32  = UnquantizedDataType('F32') | ||||
| DT_I32  = UnquantizedDataType('I32') | ||||
| DT_BF16 = UnquantizedDataType('BF16') | ||||
|  | ||||
| DataType = Union[UnquantizedDataType] | ||||
|  | ||||
| DATA_TYPE_TO_FTYPE: Dict[DataType, int] = { | ||||
|     DT_F32: 0, | ||||
|     DT_F16: 1, | ||||
| } | ||||
|  | ||||
| FTYPE_TO_DATA_TYPE: Dict[int, DataType] = \ | ||||
|     {ftype: dtype for (dtype, ftype) in DATA_TYPE_TO_FTYPE.items()} | ||||
|  | ||||
| DATA_TYPE_TO_NUMPY: Dict[DataType, 'np.dtype[Any]'] = { | ||||
|     DT_BF16: np.dtype(np.uint16), | ||||
|     DT_F16:  np.dtype(np.float16), | ||||
|     DT_F32:  np.dtype(np.float32), | ||||
|     DT_I32:  np.dtype(np.int32), | ||||
| } | ||||
|  | ||||
| NUMPY_TYPE_TO_DATA_TYPE: Dict['np.dtype[Any]', DataType] = \ | ||||
|     {dtype: data_type for (data_type, dtype) in DATA_TYPE_TO_NUMPY.items()} | ||||
|  | ||||
| class GGMLFileType(enum.Enum): | ||||
|     AllF32    = 0 | ||||
|     MostlyF16 = 1  # except 1d tensors | ||||
|  | ||||
|     def type_for_tensor(self, name: str, tensor: 'LazyTensor') -> DataType: | ||||
|         if len(tensor.shape) == 1: | ||||
|             # 1D tensors are always F32. | ||||
|             return DT_F32 | ||||
|         elif self == GGMLFileType.AllF32: | ||||
|             return DT_F32 | ||||
|         elif self == GGMLFileType.MostlyF16: | ||||
|             return DT_F16 | ||||
|         else: | ||||
|             raise ValueError(self) | ||||
|  | ||||
| # TODO: this is LLaMA specific | ||||
| def make_tensors_list() -> List[str]: | ||||
|     ret = [ | ||||
|         'tok_embeddings.weight', | ||||
|         'norm.weight', | ||||
|         'output.weight', | ||||
|     ] | ||||
|     for i in range(80):  # maximum number of layer | ||||
|         ret += [ | ||||
|             f'layers.{i}.attention.wq.weight', | ||||
|             f'layers.{i}.attention.wk.weight', | ||||
|             f'layers.{i}.attention.wv.weight', | ||||
|             f'layers.{i}.attention.wo.weight', | ||||
|             f'layers.{i}.attention_norm.weight', | ||||
|             f'layers.{i}.feed_forward.w1.weight', | ||||
|             f'layers.{i}.feed_forward.w2.weight', | ||||
|             f'layers.{i}.feed_forward.w3.weight', | ||||
|             f'layers.{i}.ffn_norm.weight', | ||||
|         ] | ||||
|     return ret | ||||
|  | ||||
| # TODO: this should be generalized for non-LLaMA models | ||||
| TENSORS_LIST = make_tensors_list() | ||||
| TENSORS_SET = set(TENSORS_LIST) | ||||
|  | ||||
| def find_n_mult(n_ff: int, n_embd: int) -> int: | ||||
|     # hardcoded magic range | ||||
|     for n_mult in range(256, 1, -1): | ||||
|         calc_ff = (((8*n_embd) // 3 + n_mult - 1) // n_mult)*n_mult | ||||
|         if calc_ff == n_ff: | ||||
|             return n_mult | ||||
|     raise Exception(f"failed to find n_mult for (n_ff={n_ff}, n_embd={n_embd}).") | ||||
|  | ||||
|  | ||||
| @dataclass | ||||
| class Params: | ||||
|     n_vocab: int | ||||
|     n_embd:  int | ||||
|     n_mult:  int | ||||
|     n_head:  int | ||||
|     n_layer: int | ||||
|  | ||||
|     @staticmethod | ||||
|     def guessed(model: 'LazyModel') -> 'Params': | ||||
|         # try transformer naming first | ||||
|         n_vocab, n_embd = model["model.embed_tokens.weight"].shape if "model.embed_tokens.weight" in model else model["tok_embeddings.weight"].shape | ||||
|  | ||||
|         # try transformer naming first | ||||
|         if "model.layers.0.self_attn.q_proj.weight" in model: | ||||
|             n_layer=next(i for i in itertools.count() if f"model.layers.{i}.self_attn.q_proj.weight" not in model) | ||||
|         elif "model.layers.0.self_attn.W_pack.weight" in model:   # next: try baichuan naming | ||||
|             n_layer=next(i for i in itertools.count() if f"model.layers.{i}.self_attn.W_pack.weight" not in model) | ||||
|         else: | ||||
|             n_layer=next(i for i in itertools.count() if f"layers.{i}.attention.wq.weight" not in model) | ||||
|  | ||||
|         if n_layer < 1: | ||||
|             raise Exception("failed to guess 'n_layer'. This model is unknown or unsupported.\n" | ||||
|                             "Suggestion: provide 'config.json' of the model in the same directory containing model files.") | ||||
|  | ||||
|         n_head=n_embd // 128 # guessed | ||||
|  | ||||
|         return Params( | ||||
|             n_vocab = n_vocab, | ||||
|             n_embd  = n_embd, | ||||
|             n_mult  = 256, | ||||
|             n_head  = n_head, | ||||
|             n_layer = n_layer, | ||||
|         ) | ||||
|  | ||||
|     @staticmethod | ||||
|     def loadHFTransformerJson(model: 'LazyModel', config_path: 'Path') -> 'Params': | ||||
|         config = json.load(open(config_path)) | ||||
|  | ||||
|         n_vocab = config["vocab_size"]; | ||||
|         n_embd  = config["hidden_size"]; | ||||
|         n_head  = config["num_attention_heads"]; | ||||
|         n_layer = config["num_hidden_layers"]; | ||||
|         n_ff    = config["intermediate_size"]; | ||||
|  | ||||
|         n_mult = find_n_mult(n_ff, n_embd); | ||||
|  | ||||
|         return Params( | ||||
|             n_vocab = n_vocab, | ||||
|             n_embd  = n_embd, | ||||
|             n_mult  = n_mult, | ||||
|             n_head  = n_head, | ||||
|             n_layer = n_layer, | ||||
|         ) | ||||
|  | ||||
|     # LLaMA v2 70B params.json | ||||
|     # {"dim": 8192, "multiple_of": 4096, "ffn_dim_multiplier": 1.3, "n_heads": 64, "n_kv_heads": 8, "n_layers": 80, "norm_eps": 1e-05, "vocab_size": -1 | ||||
|     @staticmethod | ||||
|     def loadOriginalParamsJson(model: 'LazyModel', config_path: 'Path') -> 'Params': | ||||
|         config = json.load(open(config_path)) | ||||
|  | ||||
|         n_vocab = config["vocab_size"]; | ||||
|         n_embd  = config["dim"]; | ||||
|         n_head  = config["n_heads"]; | ||||
|         n_layer = config["n_layers"]; | ||||
|         n_mult  = config["multiple_of"]; | ||||
|  | ||||
|         if n_vocab == -1: | ||||
|             n_vocab = model["tok_embeddings.weight"].shape[0] | ||||
|  | ||||
|         return Params( | ||||
|             n_vocab = n_vocab, | ||||
|             n_embd  = n_embd, | ||||
|             n_mult  = n_mult, | ||||
|             n_head  = n_head, | ||||
|             n_layer = n_layer, | ||||
|         ) | ||||
|  | ||||
|     @staticmethod | ||||
|     def load(model_plus: 'ModelPlus') -> 'Params': | ||||
|         hf_config_path   = model_plus.paths[0].parent / "config.json" | ||||
|         orig_config_path = model_plus.paths[0].parent / "params.json" | ||||
|  | ||||
|         if hf_config_path.exists(): | ||||
|             params = Params.loadHFTransformerJson(model_plus.model, hf_config_path) | ||||
|         elif orig_config_path.exists(): | ||||
|             params = Params.loadOriginalParamsJson(model_plus.model, orig_config_path) | ||||
|         else: | ||||
|             params = Params.guessed(model_plus.model) | ||||
|  | ||||
|         print(f'params: n_vocab:{params.n_vocab} n_embd:{params.n_embd} n_mult:{params.n_mult} n_head:{params.n_head} n_layer:{params.n_layer}') | ||||
|         return params | ||||
|  | ||||
|  | ||||
| class SentencePieceVocab: | ||||
|     def __init__(self, fname_tokenizer: Path, fname_added_tokens: Optional[Path], vocabtype: Optional[str]) -> None: | ||||
|         self.vocabtype = vocabtype | ||||
|         if self.vocabtype == "bpe": | ||||
|             self.sentencepiece_tokenizer = json.loads(open(str(fname_tokenizer)).read()) | ||||
|         else: | ||||
|             self.sentencepiece_tokenizer = SentencePieceProcessor(str(fname_tokenizer)) | ||||
|  | ||||
|         added_tokens: Dict[str, int] | ||||
|         if fname_added_tokens is not None: | ||||
|             added_tokens = json.load(open(fname_added_tokens)) | ||||
|         else: | ||||
|             added_tokens = {} | ||||
|  | ||||
|         if self.vocabtype == "bpe": | ||||
|             vocab_size: int = len(self.sentencepiece_tokenizer) | ||||
|         else: | ||||
|             vocab_size: int = self.sentencepiece_tokenizer.vocab_size() | ||||
|  | ||||
|         expected_ids = list(range(vocab_size, vocab_size + len(added_tokens))) | ||||
|         actual_ids   = sorted(added_tokens.values()) | ||||
|         if expected_ids != actual_ids: | ||||
|             raise Exception(f"Expected added token IDs to be sequential and start at {len(added_tokens)}; got {actual_ids}") | ||||
|  | ||||
|         items = sorted(added_tokens.items(), key=lambda text_idx: text_idx[1]) | ||||
|         self.added_tokens_list = [text for (text, idx) in items] | ||||
|         self.vocab_size_base: int = vocab_size | ||||
|         self.vocab_size: int = self.vocab_size_base + len(self.added_tokens_list) | ||||
|         self.fname_tokenizer = fname_tokenizer | ||||
|         self.fname_added_tokens = fname_added_tokens | ||||
|  | ||||
|     def sentencepiece_tokens(self) -> Iterable[Tuple[bytes, float]]: | ||||
|         tokenizer = self.sentencepiece_tokenizer | ||||
|         if self.vocabtype == "bpe": | ||||
|             from transformers.models.gpt2 import tokenization_gpt2 | ||||
|             byte_encoder = tokenization_gpt2.bytes_to_unicode() | ||||
|             byte_decoder = {v: k for k, v in byte_encoder.items()} | ||||
|             for i, item in enumerate(tokenizer): | ||||
|                 text: bytes | ||||
|                 text = b''.join([x.to_bytes(1, byteorder='big') for x in [byte_decoder[y] for y in item]]) | ||||
|                 score: float = -i | ||||
|                 yield text, score | ||||
|         else: | ||||
|             for i in range(tokenizer.vocab_size()): | ||||
|                 text: bytes | ||||
|                 if tokenizer.is_unknown(i): | ||||
|                     text = " \u2047 ".encode("utf-8") | ||||
|                 elif tokenizer.is_control(i): | ||||
|                     text = b"" | ||||
|                 elif tokenizer.is_byte(i): | ||||
|                     piece = tokenizer.id_to_piece(i) | ||||
|                     if len(piece) != 6: | ||||
|                         raise Exception(f"Invalid token: {piece}") | ||||
|                     byte_value = int(piece[3:-1], 16) | ||||
|                     text = struct.pack("B", byte_value) | ||||
|                 else: | ||||
|                     text = tokenizer.id_to_piece(i).replace("\u2581", " ").encode("utf-8") | ||||
|                 score: float = tokenizer.get_score(i) | ||||
|                 yield text, score | ||||
|  | ||||
|     def added_tokens(self) -> Iterable[Tuple[bytes, float]]: | ||||
|         for text in self.added_tokens_list: | ||||
|             score = -1000.0 | ||||
|             yield text.encode("utf-8"), score | ||||
|  | ||||
|     def all_tokens(self) -> Iterable[Tuple[bytes, float]]: | ||||
|         yield from self.sentencepiece_tokens() | ||||
|         yield from self.added_tokens() | ||||
|  | ||||
|     def __repr__(self) -> str: | ||||
|         return f"<SentencePieceVocab with {self.vocab_size_base} base tokens and {len(self.added_tokens_list)} added tokens>" | ||||
|  | ||||
|  | ||||
| class GGMLVocab: | ||||
|     def __init__(self, tokens: List[Tuple[bytes, float]]): | ||||
|         self.tokens = tokens | ||||
|         self.vocab_size = len(tokens) | ||||
|  | ||||
|     def all_tokens(self) -> Iterable[Tuple[bytes, float]]: | ||||
|         return self.tokens | ||||
|  | ||||
|     def __repr__(self) -> str: | ||||
|         return f"<GGMLVocab with {self.vocab_size} tokens>" | ||||
|  | ||||
|  | ||||
| Vocab = Union[SentencePieceVocab, GGMLVocab] | ||||
|  | ||||
|  | ||||
| def permute(weights: NDArray, n_head: int) -> NDArray: | ||||
|     return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:]) | ||||
|                    .swapaxes(1, 2) | ||||
|                    .reshape(weights.shape)) | ||||
|  | ||||
|  | ||||
| class Tensor(metaclass=ABCMeta): | ||||
|     data_type: DataType | ||||
|  | ||||
|     @abstractmethod | ||||
|     def astype(self, data_type: DataType) -> 'Tensor': ... | ||||
|     @abstractmethod | ||||
|     def permute(self, n_head: int) -> 'Tensor': ... | ||||
|     @abstractmethod | ||||
|     def permute_part(self, n_part: int, n_head: int) -> 'UnquantizedTensor': ... | ||||
|     @abstractmethod | ||||
|     def part(self, n_part: int) -> 'UnquantizedTensor': ... | ||||
|     @abstractmethod | ||||
|     def to_ggml(self) -> 'GGMLCompatibleTensor': ... | ||||
|  | ||||
|  | ||||
| def bf16_to_fp32(bf16_arr: np.ndarray) -> np.ndarray: | ||||
|     assert bf16_arr.dtype == np.uint16, f"Input array should be of dtype uint16, but got {bf16_arr.dtype}" | ||||
|     fp32_arr = bf16_arr.astype(np.uint32) << 16 | ||||
|     return fp32_arr.view(np.float32) | ||||
|  | ||||
|  | ||||
| class UnquantizedTensor(Tensor): | ||||
|     def __init__(self, ndarray: NDArray) -> None: | ||||
|         assert isinstance(ndarray, np.ndarray) | ||||
|         self.ndarray = ndarray | ||||
|         self.data_type = NUMPY_TYPE_TO_DATA_TYPE[ndarray.dtype] | ||||
|  | ||||
|     def astype(self, data_type: DataType) -> Tensor: | ||||
|         dtype = DATA_TYPE_TO_NUMPY[data_type] | ||||
|         if self.data_type == DT_BF16: | ||||
|             self.ndarray = bf16_to_fp32(self.ndarray) | ||||
|         return UnquantizedTensor(self.ndarray.astype(dtype)) | ||||
|  | ||||
|     def to_ggml(self) -> 'UnquantizedTensor': | ||||
|         return self | ||||
|  | ||||
|     def permute_part(self, n_part: int, n_head: int) -> 'UnquantizedTensor': | ||||
|         r = self.ndarray.shape[0] // 3 | ||||
|         return UnquantizedTensor(permute(self.ndarray[r * n_part : r * n_part + r, ...], n_head)) | ||||
|  | ||||
|     def part(self, n_part: int) -> 'UnquantizedTensor': | ||||
|         r = self.ndarray.shape[0] // 3 | ||||
|         return UnquantizedTensor(self.ndarray[r * n_part : r * n_part + r, ...]) | ||||
|  | ||||
|     def permute(self, n_head: int) -> 'UnquantizedTensor': | ||||
|         return UnquantizedTensor(permute(self.ndarray, n_head)) | ||||
|  | ||||
|  | ||||
| def load_unquantized(lazy_tensor: 'LazyTensor', expected_dtype: Any = None, convert: bool = False) -> NDArray: | ||||
|     tensor = lazy_tensor.load() | ||||
|     assert isinstance(tensor, UnquantizedTensor) | ||||
|  | ||||
|     # double-check: | ||||
|     actual_shape = list(tensor.ndarray.shape) | ||||
|     assert actual_shape == lazy_tensor.shape, (actual_shape, lazy_tensor.shape) | ||||
|     if expected_dtype is not None and expected_dtype != tensor.ndarray.dtype: | ||||
|         if convert: | ||||
|             tensor.ndarray = tensor.ndarray.astype(expected_dtype) | ||||
|         else: | ||||
|             raise ValueError(f'expected this tensor to have dtype {expected_dtype}, got {tensor.ndarray.dtype}') | ||||
|  | ||||
|     return tensor.ndarray | ||||
|  | ||||
|  | ||||
| GGMLCompatibleTensor = Union[UnquantizedTensor] | ||||
|  | ||||
|  | ||||
| class DeferredPermutedTensor(Tensor): | ||||
|     def __init__(self, base: Tensor, n_head: int) -> None: | ||||
|         self.base = base | ||||
|         self.n_head = n_head | ||||
|         self.data_type = self.base.data_type | ||||
|  | ||||
|     def astype(self, data_type: DataType) -> Tensor: | ||||
|         return self.base.astype(data_type).permute(self.n_head) | ||||
|  | ||||
|     def to_ggml(self) -> GGMLCompatibleTensor: | ||||
|         return self.base.to_ggml().permute(self.n_head) | ||||
|  | ||||
|     def permute(self, n_head: int) -> Tensor: | ||||
|         raise Exception("shouldn't permute twice") | ||||
|  | ||||
|  | ||||
| @dataclass | ||||
| class LazyTensor: | ||||
|     _load: Callable[[], Tensor] | ||||
|     shape: List[int] | ||||
|     data_type: DataType | ||||
|     description: str | ||||
|  | ||||
|     def load(self) -> Tensor: | ||||
|         ret = self._load() | ||||
|         assert ret.data_type == self.data_type, (self.data_type, ret.data_type, self.description) | ||||
|         return ret | ||||
|  | ||||
|     def astype(self, data_type: DataType) -> 'LazyTensor': | ||||
|         self.validate_conversion_to(data_type) | ||||
|  | ||||
|         def load() -> Tensor: | ||||
|             return self.load().astype(data_type) | ||||
|         return LazyTensor(load, self.shape, data_type, f'convert({data_type}) {self.description}') | ||||
|  | ||||
|     def validate_conversion_to(self, data_type: DataType) -> None: | ||||
|         if data_type == self.data_type: | ||||
|             return | ||||
|  | ||||
|  | ||||
| LazyModel = Dict[str, LazyTensor] | ||||
|  | ||||
|  | ||||
| @dataclass | ||||
| class ModelPlus: | ||||
|     model: LazyModel | ||||
|     paths: List[Path]  # Where this was read from. | ||||
|     format: Literal['ggml', 'torch', 'safetensors'] | ||||
|     vocab: Optional[Vocab]  # For GGML models (which have vocab built in), the vocab. | ||||
|  | ||||
|  | ||||
| def merge_sharded(models: List[LazyModel]) -> LazyModel: | ||||
|     # Original LLaMA models have each file contain one part of each tensor. | ||||
|     # Use a dict instead of a set to preserve order. | ||||
|     names = {name: None for model in models for name in model} | ||||
|  | ||||
|     def convert(name: str) -> LazyTensor: | ||||
|         lazy_tensors: List[LazyTensor] = [model[name] for model in models] | ||||
|         if len(lazy_tensors) == 1: | ||||
|             # only one file; don't go through this procedure since there might | ||||
|             # be quantized tensors | ||||
|             return lazy_tensors[0] | ||||
|         if len(lazy_tensors[0].shape) == 1: | ||||
|             # the tensor is just duplicated in every file | ||||
|             return lazy_tensors[0] | ||||
|         if name.startswith('tok_embeddings.') or \ | ||||
|            name.endswith('.attention.wo.weight') or \ | ||||
|            name.endswith('.feed_forward.w2.weight'): | ||||
|             # split by columns | ||||
|             axis = 1 | ||||
|         else: | ||||
|             # split by rows | ||||
|             axis = 0 | ||||
|         concatenated_shape = list(lazy_tensors[0].shape) | ||||
|         concatenated_shape[axis] = sum(tensor.shape[axis] for tensor in lazy_tensors) | ||||
|  | ||||
|         def load() -> UnquantizedTensor: | ||||
|             ndarrays = [load_unquantized(tensor) for tensor in lazy_tensors] | ||||
|             concatenated: NDArray = np.concatenate(ndarrays, axis=axis) | ||||
|             return UnquantizedTensor(concatenated) | ||||
|         description = 'concatenated[[' + '] | ['.join(lt.description for lt in lazy_tensors) + ']]' | ||||
|         return LazyTensor(load, concatenated_shape, lazy_tensors[0].data_type, description) | ||||
|     return {name: convert(name) for name in names} | ||||
|  | ||||
|  | ||||
| def merge_multifile_models(models_plus: List[ModelPlus]) -> ModelPlus: | ||||
|     formats = set(mp.format for mp in models_plus) | ||||
|     assert len(formats) == 1, "different formats?" | ||||
|     format = formats.pop() | ||||
|     paths = [path for mp in models_plus for path in mp.paths] | ||||
|     # Use the first non-None vocab, if any. | ||||
|     try: | ||||
|         vocab = next(mp.vocab for mp in models_plus if mp.vocab is not None) | ||||
|     except StopIteration: | ||||
|         vocab = None | ||||
|  | ||||
|     if any("model.embed_tokens.weight" in mp.model for mp in models_plus): | ||||
|         # Transformers models put different tensors in different files, but | ||||
|         # don't split indivdual tensors between files. | ||||
|         model: LazyModel = {} | ||||
|         for mp in models_plus: | ||||
|             model.update(mp.model) | ||||
|     else: | ||||
|         model = merge_sharded([mp.model for mp in models_plus]) | ||||
|  | ||||
|     return ModelPlus(model, paths, format, vocab) | ||||
|  | ||||
|  | ||||
| def permute_lazy(lazy_tensor: LazyTensor, n_head: int) -> LazyTensor: | ||||
|     def load() -> Tensor: | ||||
|         return lazy_tensor.load().permute(n_head) | ||||
|     return LazyTensor(load, lazy_tensor.shape, lazy_tensor.data_type, f'permute({n_head}) ' + lazy_tensor.description) | ||||
|  | ||||
| def permute_part_lazy(lazy_tensor: LazyTensor, n_part: int, n_head: int) -> LazyTensor: | ||||
|     def load() -> Tensor: | ||||
|         return lazy_tensor.load().permute_part(n_part, n_head) | ||||
|     s = lazy_tensor.shape.copy() | ||||
|     s[0] = s[0] // 3 | ||||
|     return LazyTensor(load, s, lazy_tensor.data_type, f'permute({n_head}) ' + lazy_tensor.description) | ||||
|  | ||||
| def part_lazy(lazy_tensor: LazyTensor, n_part: int) -> LazyTensor: | ||||
|     def load() -> Tensor: | ||||
|         return lazy_tensor.load().part(n_part) | ||||
|     s = lazy_tensor.shape.copy() | ||||
|     s[0] = s[0] // 3 | ||||
|     return LazyTensor(load, s, lazy_tensor.data_type, 'part ' + lazy_tensor.description) | ||||
|  | ||||
| def convert_transformers_to_orig(model: LazyModel, params: Params) -> LazyModel: | ||||
|     out: LazyModel = {} | ||||
|     out["tok_embeddings.weight"] = model["model.embed_tokens.weight"] | ||||
|     out["norm.weight"]           = model["model.norm.weight"] | ||||
|     out["output.weight"]         = model["lm_head.weight"] | ||||
|  | ||||
|     for i in itertools.count(): | ||||
|         if f"model.layers.{i}.self_attn.q_proj.weight" in model: | ||||
|             out[f"layers.{i}.attention.wq.weight"] = permute_lazy(model[f"model.layers.{i}.self_attn.q_proj.weight"], params.n_head) | ||||
|             out[f"layers.{i}.attention.wk.weight"] = permute_lazy(model[f"model.layers.{i}.self_attn.k_proj.weight"], params.n_head) | ||||
|             out[f"layers.{i}.attention.wv.weight"] = model[f"model.layers.{i}.self_attn.v_proj.weight"] | ||||
|         elif f"model.layers.{i}.self_attn.W_pack.weight" in model: | ||||
|             out[f"layers.{i}.attention.wq.weight"] = permute_part_lazy(model[f"model.layers.{i}.self_attn.W_pack.weight"], 0, params.n_head) | ||||
|             out[f"layers.{i}.attention.wk.weight"] = permute_part_lazy(model[f"model.layers.{i}.self_attn.W_pack.weight"], 1, params.n_head) | ||||
|             out[f"layers.{i}.attention.wv.weight"] = part_lazy(model[f"model.layers.{i}.self_attn.W_pack.weight"], 2) | ||||
|         else: | ||||
|             break | ||||
|  | ||||
|         out[f"layers.{i}.attention.wo.weight"] = model[f"model.layers.{i}.self_attn.o_proj.weight"] | ||||
|  | ||||
|         out[f"layers.{i}.feed_forward.w1.weight"] = model[f"model.layers.{i}.mlp.gate_proj.weight"] | ||||
|         out[f"layers.{i}.feed_forward.w2.weight"] = model[f"model.layers.{i}.mlp.down_proj.weight"] | ||||
|         out[f"layers.{i}.feed_forward.w3.weight"] = model[f"model.layers.{i}.mlp.up_proj.weight"] | ||||
|  | ||||
|         out[f"layers.{i}.attention_norm.weight"] = model[f"model.layers.{i}.input_layernorm.weight"] | ||||
|         out[f"layers.{i}.ffn_norm.weight"]       = model[f"model.layers.{i}.post_attention_layernorm.weight"] | ||||
|     return out | ||||
|  | ||||
|  | ||||
| # Functionality that simulates `torch.load` but where individual tensors are | ||||
| # only loaded into memory on demand, not all at once. | ||||
| # PyTorch can't do this natively as of time of writing: | ||||
| # - https://github.com/pytorch/pytorch/issues/64327 | ||||
| # This allows us to de-shard without multiplying RAM usage, and also | ||||
| # conveniently drops the PyTorch dependency (though we still need numpy). | ||||
|  | ||||
|  | ||||
| @dataclass | ||||
| class LazyStorageKind: | ||||
|     data_type: DataType | ||||
|  | ||||
|  | ||||
| @dataclass | ||||
| class LazyStorage: | ||||
|     load: Callable[[int, int], NDArray] | ||||
|     kind: LazyStorageKind | ||||
|     description: str | ||||
|  | ||||
|  | ||||
| class LazyUnpickler(pickle.Unpickler): | ||||
|     def __init__(self, fp: IO[bytes], data_base_path: str, zip_file: zipfile.ZipFile): | ||||
|         super().__init__(fp) | ||||
|         self.data_base_path = data_base_path | ||||
|         self.zip_file = zip_file | ||||
|  | ||||
|     def persistent_load(self, pid: Any) -> Any: | ||||
|         assert pid[0] == 'storage' | ||||
|         assert isinstance(pid[1], LazyStorageKind) | ||||
|         data_type = pid[1].data_type | ||||
|         filename_stem = pid[2] | ||||
|         filename = self.data_base_path + '/' + filename_stem | ||||
|         info = self.zip_file.getinfo(filename) | ||||
|  | ||||
|         def load(offset: int, elm_count: int) -> NDArray: | ||||
|             dtype = DATA_TYPE_TO_NUMPY.get(data_type) | ||||
|             if dtype is None: | ||||
|                 raise Exception("tensor stored in unsupported format") | ||||
|             fp = self.zip_file.open(info) | ||||
|             fp.seek(offset * dtype.itemsize) | ||||
|             size = elm_count * dtype.itemsize | ||||
|             data = fp.read(size) | ||||
|             assert len(data) == size | ||||
|             return np.frombuffer(data, dtype) | ||||
|         description = f'storage data_type={data_type} path-in-zip={filename} path={self.zip_file.filename}' | ||||
|         return LazyStorage(load=load, kind=pid[1], description=description) | ||||
|  | ||||
|     # @staticmethod | ||||
|     def lazy_rebuild_tensor_v2(storage: Any, storage_offset: Any, size: Any, stride: Any, | ||||
|                                # pyright: ignore[reportSelfClsParameterName] | ||||
|                                requires_grad: Any, backward_hooks: Any, metadata: Any = None) -> LazyTensor: | ||||
|         assert isinstance(storage, LazyStorage) | ||||
|  | ||||
|         def load() -> UnquantizedTensor: | ||||
|             elm_count = stride[0] * size[0] | ||||
|             return UnquantizedTensor(storage.load(storage_offset, elm_count).reshape(size)) | ||||
|         description = f'pickled storage_offset={storage_offset} in {storage.description}' | ||||
|         return LazyTensor(load, list(size), storage.kind.data_type, description) | ||||
|  | ||||
|     # @staticmethod | ||||
|     def rebuild_from_type_v2(func, new_type, args, state): | ||||
|         return func(*args) | ||||
|  | ||||
|     CLASSES: Dict[Any, Any] = { | ||||
|         ('torch._tensor', '_rebuild_from_type_v2'): rebuild_from_type_v2, | ||||
|         ('torch._utils', '_rebuild_tensor_v2'): lazy_rebuild_tensor_v2, | ||||
|         ('torch', 'BFloat16Storage'): LazyStorageKind(DT_BF16), | ||||
|         ('torch', 'HalfStorage'): LazyStorageKind(DT_F16), | ||||
|         ('torch', 'FloatStorage'): LazyStorageKind(DT_F32), | ||||
|         ('torch', 'IntStorage'): LazyStorageKind(DT_I32), | ||||
|         ('torch', 'Tensor'): LazyTensor, | ||||
|     } | ||||
|  | ||||
|     def find_class(self, module: str, name: str) -> Any: | ||||
|         if not module.startswith('torch'): | ||||
|             return super().find_class(module, name) | ||||
|         return self.CLASSES[(module, name)] | ||||
|  | ||||
|  | ||||
| def lazy_load_torch_file(outer_fp: IO[bytes], path: Path) -> ModelPlus: | ||||
|     zf = zipfile.ZipFile(outer_fp) | ||||
|     pickle_paths = [name for name in zf.namelist() if name.endswith('.pkl')] | ||||
|     assert len(pickle_paths) == 1, pickle_paths | ||||
|     pickle_fp = zf.open(pickle_paths[0], 'r') | ||||
|     unpickler = LazyUnpickler(pickle_fp, | ||||
|                               data_base_path=pickle_paths[0][:-4], | ||||
|                               zip_file=zf) | ||||
|     model = unpickler.load() | ||||
|     as_dict = dict(model.items()) | ||||
|     return ModelPlus(model=as_dict, paths=[path], format='torch', vocab=None) | ||||
|  | ||||
|  | ||||
| SAFETENSORS_DATA_TYPES: Dict[str, DataType] = { | ||||
|     'BF16': DT_BF16, | ||||
|     'F16': DT_F16, | ||||
|     'F32': DT_F32, | ||||
|     'I32': DT_I32, | ||||
| } | ||||
|  | ||||
|  | ||||
| def lazy_load_safetensors_file(fp: IO[bytes], path: Path) -> ModelPlus: | ||||
|     header_size, = struct.unpack('<Q', fp.read(8)) | ||||
|     header: Dict[str, Dict[str, Any]] = json.loads(fp.read(header_size)) | ||||
|     # Use mmap for the actual data to avoid race conditions with the file offset. | ||||
|     mapped = memoryview(mmap.mmap(fp.fileno(), 0, access=mmap.ACCESS_READ)) | ||||
|     byte_buf = mapped[8 + header_size:] | ||||
|  | ||||
|     def convert(info: Dict[str, Any]) -> LazyTensor: | ||||
|         data_type = SAFETENSORS_DATA_TYPES[info['dtype']] | ||||
|         numpy_dtype = DATA_TYPE_TO_NUMPY[data_type] | ||||
|         shape: List[int] = info['shape'] | ||||
|         begin, end = info['data_offsets'] | ||||
|         assert 0 <= begin <= end <= len(byte_buf) | ||||
|         assert end - begin == math.prod(shape) * numpy_dtype.itemsize | ||||
|         buf = byte_buf[begin:end] | ||||
|  | ||||
|         def load() -> UnquantizedTensor: | ||||
|             return UnquantizedTensor(np.frombuffer(buf, dtype=numpy_dtype).reshape(shape)) | ||||
|         description = f'safetensors begin={begin} end={end} type={data_type} path={path}' | ||||
|         return LazyTensor(load, shape, data_type, description) | ||||
|     model = {name: convert(info) for (name, info) in header.items() if name != '__metadata__'} | ||||
|     return ModelPlus(model=model, paths=[path], format='safetensors', vocab=None) | ||||
|  | ||||
|  | ||||
| def must_read(fp: IO[bytes], length: int) -> bytes: | ||||
|     ret = fp.read(length) | ||||
|     if len(ret) < length: | ||||
|         raise Exception("unexpectedly reached end of file") | ||||
|     return ret | ||||
|  | ||||
|  | ||||
| @functools.lru_cache(maxsize=None) | ||||
| def lazy_load_file(path: Path) -> ModelPlus: | ||||
|     fp = open(path, 'rb') | ||||
|     first8 = fp.read(8) | ||||
|     fp.seek(0) | ||||
|     if first8[:2] == b'PK': | ||||
|         # A zip file, i.e. PyTorch format | ||||
|         return lazy_load_torch_file(fp, path) | ||||
|     elif struct.unpack('<Q', first8)[0] < 16 * 1024 * 1024: | ||||
|         # Probably safetensors | ||||
|         return lazy_load_safetensors_file(fp, path) | ||||
|     else: | ||||
|         raise ValueError(f"unknown format: {path}") | ||||
|  | ||||
|  | ||||
| In = TypeVar('In') | ||||
| Out = TypeVar('Out') | ||||
|  | ||||
|  | ||||
| def bounded_parallel_map(func: Callable[[In], Out], iterable: Iterable[In], concurrency: int) -> Iterable[Out]: | ||||
|     '''Parallel map, but with backpressure.  If the caller doesn't call `next` | ||||
|     fast enough, this will stop calling `func` at some point rather than | ||||
|     letting results pile up in memory.  Specifically, there is a max of one | ||||
|     output value buffered per thread.''' | ||||
|     with concurrent.futures.ThreadPoolExecutor() as executor: | ||||
|         futures: List[concurrent.futures.Future[Out]] = [] | ||||
|         items_rev = list(iterable)[::-1] | ||||
|         for i in range(min(concurrency, len(items_rev))): | ||||
|             futures.append(executor.submit(func, items_rev.pop())) | ||||
|         while futures: | ||||
|             result = futures.pop(0).result() | ||||
|             if items_rev: | ||||
|                 futures.append(executor.submit(func, items_rev.pop())) | ||||
|             yield result | ||||
|  | ||||
|  | ||||
| def check_vocab_size(params: Params, vocab: Vocab) -> None: | ||||
|     if params.n_vocab != vocab.vocab_size: | ||||
|         # GGMLVocab comes from the same file as the model so shouldn't mismatch: | ||||
|         assert isinstance(vocab, SentencePieceVocab) | ||||
|         if params.n_vocab == vocab.vocab_size_base: | ||||
|             print("Ignoring added_tokens.json since model matches vocab size without it.") | ||||
|             vocab.added_tokens_list = [] | ||||
|             vocab.vocab_size = vocab.vocab_size_base | ||||
|             return | ||||
|         msg = f"Vocab size mismatch (model has {params.n_vocab}, but {vocab.fname_tokenizer}" | ||||
|         if vocab.fname_added_tokens is not None: | ||||
|             msg += f" combined with {vocab.fname_added_tokens}" | ||||
|         msg += f" has {vocab.vocab_size})." | ||||
|         if vocab.vocab_size < params.n_vocab < vocab.vocab_size + 20 and vocab.fname_added_tokens is None: | ||||
|             msg += f"  Most likely you are missing added_tokens.json (should be in {vocab.fname_tokenizer.parent})." | ||||
|         raise Exception(msg) | ||||
|  | ||||
|  | ||||
| class OutputFile: | ||||
|     def __init__(self, fname_out: Path) -> None: | ||||
|         self.fout = open(fname_out, "wb") | ||||
|  | ||||
|     def write_file_header(self, params: Params, file_type: GGMLFileType) -> None: | ||||
|         self.fout.write(b"ggjt"[::-1])  # magic | ||||
|         values = [ | ||||
|             1,  # file version | ||||
|             params.n_vocab, | ||||
|             params.n_embd, | ||||
|             params.n_mult, | ||||
|             params.n_head, | ||||
|             params.n_layer, | ||||
|             params.n_embd // params.n_head,  # rot (obsolete) | ||||
|             file_type.value, | ||||
|         ] | ||||
|         self.fout.write(struct.pack("i" * len(values), *values)) | ||||
|  | ||||
|     def write_tensor_header(self, name: str, shape: Sequence[int], data_type: DataType) -> None: | ||||
|         sname = name.encode('utf-8') | ||||
|         self.fout.write(struct.pack("iii", len(shape), len(sname), DATA_TYPE_TO_FTYPE[data_type])) | ||||
|         self.fout.write(struct.pack("i" * len(shape), *shape[::-1])) | ||||
|         self.fout.write(sname) | ||||
|         self.fout.seek((self.fout.tell() + 31) & -32) | ||||
|  | ||||
|     def write_vocab(self, vocab: Vocab) -> None: | ||||
|         for text, score in vocab.all_tokens(): | ||||
|             self.fout.write(struct.pack("i", len(text))) | ||||
|             self.fout.write(text) | ||||
|             self.fout.write(struct.pack("f", score)) | ||||
|  | ||||
|     @staticmethod | ||||
|     def write_vocab_only(fname_out: Path, vocab: Vocab) -> None: | ||||
|         of = OutputFile(fname_out) | ||||
|         params = Params(n_vocab=vocab.vocab_size, n_embd=0, n_mult=0, n_head=1, n_layer=0) | ||||
|         of = OutputFile(fname_out) | ||||
|         of.write_file_header(params, file_type=GGMLFileType.AllF32) | ||||
|         of.write_vocab(vocab) | ||||
|         of.fout.close() | ||||
|  | ||||
|     @staticmethod | ||||
|     def write_all(fname_out: Path, params: Params, file_type: GGMLFileType, model: LazyModel, vocab: Vocab) -> None: | ||||
|         check_vocab_size(params, vocab) | ||||
|         of = OutputFile(fname_out) | ||||
|         of.write_file_header(params, file_type) | ||||
|         print("Writing vocab...") | ||||
|         of.write_vocab(vocab) | ||||
|  | ||||
|         def do_item(item: Tuple[str, LazyTensor]) -> NDArray: | ||||
|             name, lazy_tensor = item | ||||
|             return lazy_tensor.load().to_ggml().ndarray | ||||
|  | ||||
|         ndarrays = bounded_parallel_map(do_item, model.items(), concurrency=8) | ||||
|         for i, ((name, lazy_tensor), ndarray) in enumerate(zip(model.items(), ndarrays)): | ||||
|             size = ' x '.join(f"{dim:6d}" for dim in lazy_tensor.shape) | ||||
|             padi = len(str(len(model))) | ||||
|             print(f"[{i+1:{padi}d}/{len(model)}] Writing tensor {name:38s} | size {size:16} | type {lazy_tensor.data_type}") | ||||
|             of.write_tensor_header(name, lazy_tensor.shape, lazy_tensor.data_type) | ||||
|             ndarray.tofile(of.fout) | ||||
|         of.fout.close() | ||||
|  | ||||
|  | ||||
| def pick_output_type(model: LazyModel, output_type_str: Optional[str]) -> GGMLFileType: | ||||
|     wq_type = model["layers.0.attention.wq.weight"].data_type | ||||
|     if output_type_str == "f32" or (output_type_str is None and wq_type in (DT_F32, DT_BF16)): | ||||
|         return GGMLFileType.AllF32 | ||||
|     if output_type_str == "f16" or (output_type_str is None and wq_type == DT_F16): | ||||
|         return GGMLFileType.MostlyF16 | ||||
|     name_to_type = {name: lazy_tensor.data_type for (name, lazy_tensor) in model.items()} | ||||
|     raise Exception(f"Unexpected combination of types: {name_to_type}") | ||||
|  | ||||
|  | ||||
| def do_necessary_conversions(model: LazyModel, params: Params) -> LazyModel: | ||||
|     if "lm_head.weight" in model: | ||||
|         model = convert_transformers_to_orig(model, params) | ||||
|     model = filter_and_sort_tensors(model) | ||||
|  | ||||
|     return model | ||||
|  | ||||
|  | ||||
| def convert_to_output_type(model: LazyModel, output_type: GGMLFileType) -> LazyModel: | ||||
|     return {name: tensor.astype(output_type.type_for_tensor(name, tensor)) | ||||
|             for (name, tensor) in model.items()} | ||||
|  | ||||
|  | ||||
| def nth_multifile_path(path: Path, n: int) -> Optional[Path]: | ||||
|     '''Given any path belonging to a multi-file model (e.g. foo.bin.1), return | ||||
|     the nth path in the model. | ||||
|     ''' | ||||
|     # Support the following patterns: | ||||
|     patterns: List[Tuple[str, str]] = [ | ||||
|         # - x.00.pth, x.01.pth, etc. | ||||
|         (r'\.[0-9]{2}\.pth$', f'.{n:02}.pth'), | ||||
|         # - x-00001-of-00002.bin, x-00002-of-00002.bin, etc. | ||||
|         (r'-[0-9]{5}-of-(.*)$', fr'-{n:05}-of-\1'), | ||||
|         # x.bin, x.bin.1, etc. | ||||
|         (r'(\.[0-9]+)?$', r'\1' if n == 0 else fr'\1.{n}') | ||||
|     ] | ||||
|     for regex, replacement in patterns: | ||||
|         if re.search(regex, path.name): | ||||
|             new_path = path.with_name(re.sub(regex, replacement, path.name)) | ||||
|             if new_path.exists(): | ||||
|                 return new_path | ||||
|     return None | ||||
|  | ||||
|  | ||||
| def find_multifile_paths(path: Path) -> List[Path]: | ||||
|     '''Given any path belonging to a multi-file model (e.g. foo.bin.1), return | ||||
|     the whole list of paths in the model. | ||||
|     ''' | ||||
|     ret: List[Path] = [] | ||||
|     for i in itertools.count(): | ||||
|         nth_path = nth_multifile_path(path, i) | ||||
|         if nth_path is None: | ||||
|             break | ||||
|         ret.append(nth_path) | ||||
|     if not ret: | ||||
|         # No matches.  This should only happen if the file was named, e.g., | ||||
|         # foo.0, and there was no file named foo.  Oh well, try to process it | ||||
|         # as a single file. | ||||
|         return [path] | ||||
|     return ret | ||||
|  | ||||
|  | ||||
| def load_some_model(path: Path) -> ModelPlus: | ||||
|     '''Load a model of any supported format.''' | ||||
|     # Be extra-friendly and accept either a file or a directory: | ||||
|     if path.is_dir(): | ||||
|         # Check if it's a set of safetensors files first | ||||
|         files = list(path.glob("model-00001-of-*.safetensors")) | ||||
|         if not files: | ||||
|             # Try the PyTorch patterns too, with lower priority | ||||
|             globs = ["consolidated.00.pth", "pytorch_model-00001-of-*.bin", "*.pt", "pytorch_model.bin"] | ||||
|             files = [file for glob in globs for file in path.glob(glob)] | ||||
|         if not files: | ||||
|             # Try GGML too, but with lower priority, since if both a non-GGML | ||||
|             # model and a GGML model exist in the same directory, we assume the | ||||
|             # latter was converted from the former. | ||||
|             files = list(path.glob("ggml-model*.bin*")) | ||||
|         if not files: | ||||
|             raise Exception(f"Can't find model in directory {path}") | ||||
|         if len(files) > 1: | ||||
|             raise Exception(f"Found multiple models in {path}, not sure which to pick: {files}") | ||||
|         path = files[0] | ||||
|  | ||||
|     paths = find_multifile_paths(path) | ||||
|     models_plus: List[ModelPlus] = [] | ||||
|     for path in paths: | ||||
|         print(f"Loading model file {path}") | ||||
|         models_plus.append(lazy_load_file(path)) | ||||
|  | ||||
|     model_plus = merge_multifile_models(models_plus) | ||||
|     return model_plus | ||||
|  | ||||
|  | ||||
| def filter_and_sort_tensors(model: LazyModel) -> LazyModel: | ||||
|     return {name: model[name] for name in TENSORS_LIST if name in model} | ||||
|  | ||||
|  | ||||
| def load_vocab(path: Path, vocabtype: Optional[str]) -> SentencePieceVocab: | ||||
|     print(f"vocabtype: {vocabtype}") | ||||
|     # Be extra-friendly and accept either a file or a directory.  Also, if it's | ||||
|     # a directory, it might be the model directory, and tokenizer.model might | ||||
|     # be in the parent of that. | ||||
|     if path.is_dir(): | ||||
|         vocab_file = "tokenizer.model" | ||||
|         if vocabtype == 'bpe': | ||||
|           vocab_file = "vocab.json" | ||||
|         path2 = path / vocab_file | ||||
|         # Use `.parent` instead of /.. to handle the symlink case better. | ||||
|         path3 = path.parent / vocab_file | ||||
|         if path2.exists(): | ||||
|             path = path2 | ||||
|         elif path3.exists(): | ||||
|             path = path3 | ||||
|         else: | ||||
|             raise FileNotFoundError( | ||||
|                 f"Could not find tokenizer.model in {path} or its parent; " | ||||
|                 "if it's in another directory, pass the directory as --vocab-dir") | ||||
|     added_tokens_path = path.parent / "added_tokens.json" | ||||
|     print(f"Loading vocab file {path}") | ||||
|     return SentencePieceVocab(path, added_tokens_path if added_tokens_path.exists() else None, | ||||
|                               vocabtype) | ||||
|  | ||||
|  | ||||
| def default_outfile(model_paths: List[Path], file_type: GGMLFileType) -> Path: | ||||
|     namestr = { | ||||
|         GGMLFileType.AllF32:    "f32", | ||||
|         GGMLFileType.MostlyF16: "f16", | ||||
|     }[file_type] | ||||
|     ret = model_paths[0].parent / f"ggml-model-{namestr}.bin" | ||||
|     if ret in model_paths: | ||||
|         sys.stderr.write( | ||||
|             f"Error: Default output path ({ret}) would overwrite the input. " | ||||
|             "Please explicitly specify a path using --outfile.\n") | ||||
|         sys.exit(1) | ||||
|     return ret | ||||
|  | ||||
|  | ||||
| def do_dump_model(model_plus: ModelPlus) -> None: | ||||
|     print(f"model_plus.paths = {model_plus.paths!r}") | ||||
|     print(f"model_plus.format = {model_plus.format!r}") | ||||
|     print(f"model_plus.vocab = {model_plus.vocab!r}") | ||||
|     for name, lazy_tensor in model_plus.model.items(): | ||||
|         print(f"{name}: shape={lazy_tensor.shape} type={lazy_tensor.data_type}; {lazy_tensor.description}") | ||||
|  | ||||
|  | ||||
| def main(args_in: Optional[List[str]] = None) -> None: | ||||
|     parser = argparse.ArgumentParser(description="Convert a LLaMa model to a GGML compatible file") | ||||
|     parser.add_argument("--dump", action="store_true", help="don't convert, just show what's in the model") | ||||
|     parser.add_argument("--dump-single", action="store_true", help="don't convert, just show what's in a single model file") | ||||
|     parser.add_argument("--vocab-only", action="store_true", help="extract only the vocab") | ||||
|     parser.add_argument("--outtype", choices=["f32", "f16", "q4_1", "q4_0"], help="output format (default: based on input)") | ||||
|     parser.add_argument("--vocab-dir", type=Path, help="directory containing tokenizer.model, if separate from model file") | ||||
|     parser.add_argument("--outfile", type=Path, help="path to write to; default: based on input") | ||||
|     parser.add_argument("model", type=Path, | ||||
|                         help="directory containing model file, or model file itself (*.pth, *.pt, *.bin)") | ||||
|     parser.add_argument("--vocabtype", default='spm', choices=["spm", "bpe"], help="vocab format (default: spm)") | ||||
|     args = parser.parse_args(args_in) | ||||
|  | ||||
|     vocab: Vocab | ||||
|     if args.dump_single: | ||||
|         model_plus = lazy_load_file(args.model) | ||||
|         do_dump_model(model_plus) | ||||
|     elif args.vocab_only: | ||||
|         vocab = load_vocab(args.vocab_dir or args.model, args.vocabtype) | ||||
|         assert args.outfile, "need --outfile if using --vocab-only" | ||||
|         outfile = args.outfile | ||||
|         OutputFile.write_vocab_only(outfile, vocab) | ||||
|         print(f"Wrote {outfile}") | ||||
|     else: | ||||
|         model_plus = load_some_model(args.model) | ||||
|         if args.dump: | ||||
|             do_dump_model(model_plus) | ||||
|             return | ||||
|         if model_plus.vocab is not None and args.vocab_dir is None: | ||||
|             vocab = model_plus.vocab | ||||
|         else: | ||||
|             vocab_dir = args.vocab_dir if args.vocab_dir else model_plus.paths[0].parent | ||||
|             vocab = load_vocab(vocab_dir, args.vocabtype) | ||||
|         params = Params.load(model_plus) | ||||
|         model = model_plus.model | ||||
|         model = do_necessary_conversions(model, params) | ||||
|         output_type = pick_output_type(model, args.outtype) | ||||
|         model = convert_to_output_type(model, output_type) | ||||
|         outfile = args.outfile or default_outfile(model_plus.paths, output_type) | ||||
|         OutputFile.write_all(outfile, params, output_type, model, vocab) | ||||
|         print(f"Wrote {outfile}") | ||||
|  | ||||
|  | ||||
| if __name__ == '__main__': | ||||
|     main() | ||||
		Reference in New Issue
	
	Block a user
	 Georgi Gerganov
					Georgi Gerganov