mirror of
https://github.com/ggml-org/llama.cpp.git
synced 2025-10-27 08:21:30 +00:00
wip
This commit is contained in:
@@ -1338,10 +1338,6 @@ ggml_cgraph * llama_context::graph_reserve(uint32_t n_tokens, uint32_t n_seqs, u
|
||||
// when the scheduler is reset, we cannnot reuse the old graph, so we reset the previous graph result to prevent that
|
||||
gf_res_prev->reset();
|
||||
|
||||
// store the n_outputs as it is, and restore it afterwards
|
||||
// TODO: not sure if needed, might simplify in the future by removing this
|
||||
const auto save_n_outputs = this->n_outputs;
|
||||
|
||||
this->n_outputs = n_outputs;
|
||||
|
||||
llama_batch_allocr balloc(model.hparams.n_pos_per_embd());
|
||||
@@ -1355,8 +1351,6 @@ ggml_cgraph * llama_context::graph_reserve(uint32_t n_tokens, uint32_t n_seqs, u
|
||||
|
||||
auto * gf = model.build_graph(gparams);
|
||||
|
||||
this->n_outputs = save_n_outputs;
|
||||
|
||||
// initialize scheduler with the specified graph
|
||||
if (!ggml_backend_sched_reserve(sched.get(), gf)) {
|
||||
LLAMA_LOG_ERROR("%s: failed to allocate compute buffers\n", __func__);
|
||||
|
||||
@@ -1339,8 +1339,11 @@ ggml_tensor * llm_graph_context::build_attn_mha(
|
||||
llm_graph_input_attn_no_cache * llm_graph_context::build_attn_inp_no_cache() const {
|
||||
auto inp = std::make_unique<llm_graph_input_attn_no_cache>(hparams, cparams);
|
||||
|
||||
// note: there is no KV cache, so the number of KV values is equal to the number of tokens in the batch
|
||||
inp->kq_mask = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, n_tokens, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD), 1, 1);
|
||||
const auto n_tokens = ubatch.n_tokens;
|
||||
const auto n_stream = ubatch.n_seqs_unq;
|
||||
|
||||
// note: there is no KV cache, so the mask is square with size n_tokens/n_stream
|
||||
inp->kq_mask = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, n_tokens/n_stream, GGML_PAD(n_tokens/n_stream, GGML_KQ_MASK_PAD), 1, n_stream);
|
||||
ggml_set_input(inp->kq_mask);
|
||||
|
||||
inp->kq_mask_cnv = cparams.flash_attn ? ggml_cast(ctx0, inp->kq_mask, GGML_TYPE_F16) : inp->kq_mask;
|
||||
@@ -1370,14 +1373,18 @@ ggml_tensor * llm_graph_context::build_attn(
|
||||
|
||||
const auto & kq_mask = inp->get_kq_mask();
|
||||
|
||||
// [TAG_NO_CACHE_PAD]
|
||||
// TODO: if ubatch.equal_seqs() == true, we can split the three tensors below into ubatch.n_seqs_unq streams
|
||||
assert(!ubatch.equal_seqs() || (k_cur->ne[3] == 1 && k_cur->ne[3] == ubatch.n_seqs_unq));
|
||||
|
||||
ggml_tensor * q = q_cur;
|
||||
ggml_tensor * k = k_cur;
|
||||
ggml_tensor * v = v_cur;
|
||||
|
||||
if (ubatch.equal_seqs()) {
|
||||
GGML_ASSERT(k_cur->ne[2] % ubatch.n_seqs_unq == 0);
|
||||
GGML_ASSERT(k_cur->ne[3] == 1);
|
||||
|
||||
k = ggml_reshape_4d(ctx0, k, k->ne[0], k->ne[1], k->ne[2]/ubatch.n_seqs_unq, ubatch.n_seqs_unq);
|
||||
v = ggml_reshape_4d(ctx0, v, v->ne[0], v->ne[1], v->ne[2]/ubatch.n_seqs_unq, ubatch.n_seqs_unq);
|
||||
}
|
||||
|
||||
ggml_tensor * cur = build_attn_mha(q, k, v, kq_b, kq_mask, sinks, v_mla, kq_scale);
|
||||
cb(cur, "kqv_out", il);
|
||||
|
||||
|
||||
Reference in New Issue
Block a user