CUDA: Optimize PAD_REFLECT_1D (#15957)

* CUDA: Optimize PAD_REFLECT_1D
feat: add more test cases for PAD_REFLECT_1D

* use fast_div to improve performance

* Apply suggestion from JohannesGaessler

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

* Apply suggestion from JohannesGaessler

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

* optimize

* use a concise expression to further speedup the cuda kernel

---------

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
This commit is contained in:
Bowen Han
2025-09-18 11:26:03 -07:00
committed by GitHub
parent 368560a1e3
commit 38dbdf4c05
3 changed files with 76 additions and 54 deletions

View File

@@ -652,6 +652,14 @@ static __device__ __forceinline__ uint32_t fastmodulo(uint32_t n, const uint3 fa
return n - fastdiv(n, fastdiv_values) * fastdiv_values.z;
}
// Calculate both division and modulo at once, returns <n/divisor, n%divisor>
static __device__ __forceinline__ uint2 fast_div_modulo(uint32_t n, const uint3 fastdiv_values) {
// expects fastdiv_values to contain <mp, L, divisor> in <x, y, z> (see init_fastdiv_values)
const uint32_t div_val = fastdiv(n, fastdiv_values);
const uint32_t mod_val = n - div_val * fastdiv_values.z;
return make_uint2(div_val, mod_val);
}
typedef void (*dequantize_kernel_t)(const void * vx, const int64_t ib, const int iqs, float2 & v);
static __device__ __forceinline__ float get_alibi_slope(

View File

@@ -1,82 +1,89 @@
#include "pad_reflect_1d.cuh"
static __global__ void pad_reflect_1d_kernel_f32(
const void * __restrict__ src0,
void * __restrict__ dst,
const int64_t ne0,
const int64_t ne00,
const int64_t ne01,
const int64_t ne02,
const int64_t ne03,
const int64_t nb00,
const int64_t nb01,
const int64_t nb02,
const int64_t nb03,
const int64_t nb0,
const int64_t nb1,
const int64_t nb2,
const int64_t nb3,
const int p0,
const int p1) {
static __global__ __launch_bounds__(CUDA_PAD_REFLECT_1D_BLOCK_SIZE, 1) void
pad_reflect_1d_kernel_f32(
const void * __restrict__ src0,
void * __restrict__ dst,
const int64_t ne0,
const int64_t ne00,
const uint3 ne01,
const int64_t ne02,
const int64_t ne03,
const int64_t nb00,
const int64_t nb01,
const int64_t nb02,
const int64_t nb03,
const int64_t nb0,
const int64_t nb1,
const int64_t nb2,
const int64_t nb3,
const int p0,
const int p1) {
const int64_t i3 = blockIdx.z;
const int64_t i2 = blockIdx.y;
const int64_t i1 = blockIdx.x;
if (i1 >= ne01 || i2 >= ne02 || i3 >= ne03) {
const uint2 div_mod_packed = fast_div_modulo(blockIdx.x, ne01);
const int64_t tile1 = div_mod_packed.y; // i1
const int64_t tile0 = div_mod_packed.x; // nth i0 tile
const int64_t i1 = tile1;
const int64_t i0 = threadIdx.x + tile0 * blockDim.x;
// ne01.z is original value of unpacked ne01 (see init_fastdiv_values in common.cuh)
if (i0 >= ne0 || i1 >= ne01.z || i2 >= ne02 || i3 >= ne03) {
return;
}
const char * src0_ptr = (const char *)src0 + i3*nb03 + i2*nb02 + i1*nb01;
char * dst_ptr = (char *)dst + i3*nb3 + i2*nb2 + i1*nb1;
const char * src0_ptr = (const char *) src0 + i3 * nb03 + i2 * nb02 + i1 * nb01;
char * dst_ptr = (char *) dst + i3 * nb3 + i2 * nb2 + i1 * nb1;
for (int64_t i0 = threadIdx.x; i0 < ne0; i0 += blockDim.x) {
float value;
const int64_t rel_i0 = i0 - p0; // relative i0 in src0
int64_t src_idx;
if (i0 < p0) {
// Left padding - reflect
value = *(const float *)(src0_ptr + (p0 - i0) * nb00);
} else if (i0 < ne0 - p1) {
// Middle - copy
value = *(const float *)(src0_ptr + (i0 - p0) * nb00);
} else {
// Right padding - reflect
int64_t src_idx = (ne0 - p1 - p0) - (p1 + 1 - (ne0 - i0)) - 1;
value = *(const float *)(src0_ptr + src_idx * nb00);
}
*(float *)(dst_ptr + i0 * nb0) = value;
if (rel_i0 < 0) {
// Left padding - reflect
src_idx = -rel_i0;
} else if (rel_i0 < ne00) {
// Middle - copy
src_idx = rel_i0;
} else {
// Right padding - reflect
src_idx = 2 * ne00 - 2 - rel_i0;
}
const float value = *(const float *) (src0_ptr + src_idx * nb00);
*(float *) (dst_ptr + i0 * nb0) = value;
}
void ggml_cuda_op_pad_reflect_1d(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
cudaStream_t stream = ctx.stream();
const ggml_tensor * src0 = dst->src[0];
cudaStream_t stream = ctx.stream();
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_F32);
const int32_t * opts = (const int32_t *) dst->op_params;
const int p0 = opts[0];
const int p1 = opts[1];
const int p0 = opts[0];
const int p1 = opts[1];
const int64_t ne00 = src0->ne[0];
const int64_t ne01 = src0->ne[1];
const int64_t ne02 = src0->ne[2];
const int64_t ne03 = src0->ne[3];
const int64_t ne00 = src0->ne[0];
const int64_t ne01 = src0->ne[1];
const uint3 ne01_packed = init_fastdiv_values(ne01);
const int64_t ne02 = src0->ne[2];
const int64_t ne03 = src0->ne[3];
const int64_t ne0 = dst->ne[0];
// sanity: padded length matches
GGML_ASSERT(ne0 == ne00 + p0 + p1);
const dim3 block_dims(CUDA_PAD_REFLECT_1D_BLOCK_SIZE, 1, 1);
const dim3 grid_dims(ne01, ne02, ne03);
constexpr int64_t bx = CUDA_PAD_REFLECT_1D_BLOCK_SIZE; // threads per block (x)
const int64_t tiles0 = (ne0 + bx - 1) / bx; // number of tiles along i0
// grid.x covers i1 and all tiles of i0: [ne01 * tiles0]
// grid.y covers i2: [ne02]
// grid.z covers i3: [ne03]
const dim3 grid_dims((unsigned) (ne01 * tiles0), (unsigned) ne02, (unsigned) ne03);
const dim3 block_dims((unsigned) bx, 1, 1);
pad_reflect_1d_kernel_f32<<<grid_dims, block_dims, 0, stream>>>(
src0->data, dst->data,
ne0, ne00, ne01, ne02, ne03,
src0->nb[0], src0->nb[1], src0->nb[2], src0->nb[3],
dst->nb[0], dst->nb[1], dst->nb[2], dst->nb[3],
p0, p1
);
src0->data, dst->data, ne0, ne00, ne01_packed, ne02, ne03, src0->nb[0], src0->nb[1], src0->nb[2], src0->nb[3],
dst->nb[0], dst->nb[1], dst->nb[2], dst->nb[3], p0, p1);
}

View File

@@ -6507,6 +6507,7 @@ static std::vector<std::unique_ptr<test_case>> make_test_cases_eval() {
test_cases.emplace_back(new test_pad());
test_cases.emplace_back(new test_pad_ext());
test_cases.emplace_back(new test_pad_reflect_1d());
test_cases.emplace_back(new test_pad_reflect_1d(GGML_TYPE_F32, {3000, 384, 4, 1}));
test_cases.emplace_back(new test_roll());
test_cases.emplace_back(new test_arange());
test_cases.emplace_back(new test_timestep_embedding());
@@ -6645,6 +6646,12 @@ static std::vector<std::unique_ptr<test_case>> make_test_cases_perf() {
test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {1024, 10, 1, 1}));
test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {32000, 512, 1, 1}));
test_cases.emplace_back(new test_pad_reflect_1d(GGML_TYPE_F32, {512, 34, 2, 1}));
test_cases.emplace_back(new test_pad_reflect_1d(GGML_TYPE_F32, {3000, 80, 1, 1}));
test_cases.emplace_back(new test_pad_reflect_1d(GGML_TYPE_F32, {3000, 80, 4, 1}));
test_cases.emplace_back(new test_pad_reflect_1d(GGML_TYPE_F32, {3000, 384, 1, 1}));
test_cases.emplace_back(new test_pad_reflect_1d(GGML_TYPE_F32, {3000, 384, 4, 1}));
test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 16416, 1, 128, {8, 1}, {4, 1}, {0, 2, 1, 3}));
test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 128, 1, 16416, {8, 1}, {4, 1}, {0, 1, 2, 3}, true));