mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-31 08:51:55 +00:00 
			
		
		
		
	llama : factor out tensor offloading outside the build call (wip)
ggml-ci
This commit is contained in:
		
							
								
								
									
										200
									
								
								llama.cpp
									
									
									
									
									
								
							
							
						
						
									
										200
									
								
								llama.cpp
									
									
									
									
									
								
							| @@ -3008,10 +3008,10 @@ static void llm_load_tensors( | ||||
|  | ||||
| #ifdef GGML_USE_CUBLAS | ||||
|         const int max_backend_supported_layers = hparams.n_layer + 3; | ||||
|         const int max_offloadable_layers = hparams.n_layer + 3; | ||||
|         const int max_offloadable_layers       = hparams.n_layer + 3; | ||||
| #elif defined(GGML_USE_CLBLAST) | ||||
|         const int max_backend_supported_layers = hparams.n_layer + 1; | ||||
|         const int max_offloadable_layers = hparams.n_layer + 1; | ||||
|         const int max_offloadable_layers       = hparams.n_layer + 1; | ||||
| #endif // GGML_USE_CUBLAS | ||||
|  | ||||
|         LLAMA_LOG_INFO("%s: offloaded %d/%d layers to GPU\n", __func__, std::min(n_gpu_layers, max_offloadable_layers), max_backend_supported_layers); | ||||
| @@ -3116,8 +3116,6 @@ static struct ggml_cgraph * llm_build_llama( | ||||
|     const float freq_scale   = cparams.rope_freq_scale; | ||||
|     const float norm_rms_eps = hparams.f_norm_rms_eps; | ||||
|  | ||||
|     const int n_gpu_layers = model.n_gpu_layers; | ||||
|  | ||||
|     const int32_t n_tokens = batch.n_tokens; | ||||
|     const int32_t n_kv     = worst_case ? n_ctx            : kv_self.n; | ||||
|     const int32_t kv_head  = worst_case ? n_ctx - n_tokens : kv_self.head; | ||||
| @@ -3155,45 +3153,21 @@ static struct ggml_cgraph * llm_build_llama( | ||||
|     } | ||||
|     ggml_set_name(inpL, "inp_embd"); | ||||
|  | ||||
|     const int i_gpu_start = n_layer - n_gpu_layers; | ||||
|     (void) i_gpu_start; | ||||
|  | ||||
|     // offload functions set the tensor output backend to GPU | ||||
|     // tensors are GPU-accelerated if any input or the output has been offloaded | ||||
|     offload_func_t offload_func_nr = llama_nop; // nr = non-repeating | ||||
|     offload_func_t offload_func_kq = llama_nop; | ||||
|     offload_func_t offload_func_v  = llama_nop; | ||||
|  | ||||
| #ifdef GGML_USE_CUBLAS | ||||
|     if (n_gpu_layers > n_layer) { | ||||
|         offload_func_nr = ggml_cuda_assign_buffers_no_alloc; | ||||
|     } | ||||
|     if (n_gpu_layers > n_layer + 1) { | ||||
|         offload_func_v  = ggml_cuda_assign_buffers_no_alloc; | ||||
|     } | ||||
|     if (n_gpu_layers > n_layer + 2) { | ||||
|         offload_func_kq = ggml_cuda_assign_buffers_no_alloc; | ||||
|     } | ||||
| #endif // GGML_USE_CUBLAS | ||||
|  | ||||
|     // KQ_scale | ||||
|     struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1); | ||||
|     ggml_set_name(KQ_scale, "KQ_scale"); | ||||
|  | ||||
|     // KQ_mask (mask for 1 head, it will be broadcasted to all heads) | ||||
|     struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1); | ||||
|     offload_func_kq(KQ_mask); | ||||
|     ggml_set_name(KQ_mask, "KQ_mask"); | ||||
|  | ||||
|     // KQ_pos - contains the positions | ||||
|     struct ggml_tensor * KQ_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens); | ||||
|     offload_func_kq(KQ_pos); | ||||
|     ggml_set_name(KQ_pos, "KQ_pos"); | ||||
|  | ||||
|     // shift the entire K-cache if needed | ||||
|     if (do_rope_shift) { | ||||
|         struct ggml_tensor * K_shift = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_ctx); | ||||
|         offload_func_kq(K_shift); | ||||
|         ggml_set_name(K_shift, "K_shift"); | ||||
|  | ||||
|         for (int il = 0; il < n_layer; ++il) { | ||||
| @@ -3205,33 +3179,21 @@ static struct ggml_cgraph * llm_build_llama( | ||||
|                             ggml_element_size(kv_self.k)*n_embd_gqa, | ||||
|                             ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il), | ||||
|                         K_shift, n_embd_head, 0, 0, freq_base, freq_scale); | ||||
|             offload_func_kq(tmp); | ||||
|             ggml_set_name(tmp, "K_shifted"); | ||||
|             ggml_build_forward_expand(gf, tmp); | ||||
|         } | ||||
|     } | ||||
|  | ||||
|     for (int il = 0; il < n_layer; ++il) { | ||||
|         ggml_format_name(inpL, "layer_inp_%d", il); | ||||
|  | ||||
|         offload_func_t offload_func = llama_nop; | ||||
|  | ||||
| #ifdef GGML_USE_CUBLAS | ||||
|         if (il >= i_gpu_start) { | ||||
|             offload_func = ggml_cuda_assign_buffers_no_alloc; | ||||
|         } | ||||
| #endif // GGML_USE_CUBLAS | ||||
|  | ||||
|         struct ggml_tensor * inpSA = inpL; | ||||
|  | ||||
|         // norm | ||||
|         { | ||||
|             cur = ggml_rms_norm(ctx0, inpL, norm_rms_eps); | ||||
|             offload_func(cur); | ||||
|             ggml_set_name(cur, "rms_norm_0"); | ||||
|  | ||||
|             // cur = cur*attn_norm(broadcasted) | ||||
|             cur = ggml_mul(ctx0, cur, model.layers[il].attn_norm); | ||||
|             offload_func(cur); | ||||
|             ggml_set_name(cur, "attention_norm_0"); | ||||
|         } | ||||
|  | ||||
| @@ -3239,19 +3201,15 @@ static struct ggml_cgraph * llm_build_llama( | ||||
|         { | ||||
|             // compute Q and K and RoPE them | ||||
|             struct ggml_tensor * tmpk = ggml_mul_mat(ctx0, model.layers[il].wk, cur); | ||||
|             offload_func_kq(tmpk); | ||||
|             ggml_set_name(tmpk, "tmpk"); | ||||
|  | ||||
|             struct ggml_tensor * tmpq = ggml_mul_mat(ctx0, model.layers[il].wq, cur); | ||||
|             offload_func_kq(tmpq); | ||||
|             ggml_set_name(tmpq, "tmpq"); | ||||
|  | ||||
|             struct ggml_tensor * Kcur = ggml_rope_custom(ctx0, ggml_reshape_3d(ctx0, tmpk, n_embd_head, n_head_kv, n_tokens), KQ_pos, n_embd_head, 0, 0, freq_base, freq_scale); | ||||
|             offload_func_kq(Kcur); | ||||
|             ggml_set_name(Kcur, "Kcur"); | ||||
|  | ||||
|             struct ggml_tensor * Qcur = ggml_rope_custom(ctx0, ggml_reshape_3d(ctx0, tmpq, n_embd_head, n_head,    n_tokens), KQ_pos, n_embd_head, 0, 0, freq_base, freq_scale); | ||||
|             offload_func_kq(Qcur); | ||||
|             ggml_set_name(Qcur, "Qcur"); | ||||
|  | ||||
|             // store key and value to memory | ||||
| @@ -3259,21 +3217,17 @@ static struct ggml_cgraph * llm_build_llama( | ||||
|                 // compute the transposed [n_tokens, n_embd] V matrix | ||||
|  | ||||
|                 struct ggml_tensor * tmpv = ggml_mul_mat(ctx0, model.layers[il].wv, cur); | ||||
|                 offload_func_v(tmpv); | ||||
|                 ggml_set_name(tmpv, "tmpv"); | ||||
|  | ||||
|                 struct ggml_tensor * Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, tmpv, n_embd_gqa, n_tokens)); | ||||
|                 offload_func_v(Vcur); | ||||
|                 ggml_set_name(Vcur, "Vcur"); | ||||
|  | ||||
|                 struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, n_tokens*n_embd_gqa, (ggml_element_size(kv_self.k)*n_embd_gqa)*(il*n_ctx + kv_head)); | ||||
|                 offload_func_kq(k); | ||||
|                 ggml_set_name(k, "k"); | ||||
|  | ||||
|                 struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, n_tokens, n_embd_gqa, | ||||
|                         (   n_ctx)*ggml_element_size(kv_self.v), | ||||
|                         (il*n_ctx)*ggml_element_size(kv_self.v)*n_embd_gqa + kv_head*ggml_element_size(kv_self.v)); | ||||
|                 offload_func_v(v); | ||||
|                 ggml_set_name(v, "v"); | ||||
|  | ||||
|                 // important: storing RoPE-ed version of K in the KV cache! | ||||
| @@ -3282,7 +3236,6 @@ static struct ggml_cgraph * llm_build_llama( | ||||
|             } | ||||
|  | ||||
|             struct ggml_tensor * Q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3); | ||||
|             offload_func_kq(Q); | ||||
|             ggml_set_name(Q, "Q"); | ||||
|  | ||||
|             struct ggml_tensor * K = | ||||
| @@ -3291,28 +3244,23 @@ static struct ggml_cgraph * llm_build_llama( | ||||
|                         ggml_element_size(kv_self.k)*n_embd_gqa, | ||||
|                         ggml_element_size(kv_self.k)*n_embd_head, | ||||
|                         ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il); | ||||
|             offload_func_kq(K); | ||||
|             ggml_set_name(K, "K"); | ||||
|  | ||||
|             // K * Q | ||||
|             struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q); | ||||
|             offload_func_kq(KQ); | ||||
|             ggml_set_name(KQ, "KQ"); | ||||
|  | ||||
|             // KQ_scaled = KQ / sqrt(n_embd_head) | ||||
|             // KQ_scaled shape [n_kv, n_tokens, n_head, 1] | ||||
|             struct ggml_tensor * KQ_scaled = ggml_scale(ctx0, KQ, KQ_scale); | ||||
|             offload_func_kq(KQ_scaled); | ||||
|             ggml_set_name(KQ_scaled, "KQ_scaled"); | ||||
|  | ||||
|             // KQ_masked = mask_past(KQ_scaled) | ||||
|             struct ggml_tensor * KQ_masked = ggml_add(ctx0, KQ_scaled, KQ_mask); | ||||
|             offload_func_kq(KQ_masked); | ||||
|             ggml_set_name(KQ_masked, "KQ_masked"); | ||||
|  | ||||
|             // KQ = soft_max(KQ_masked) | ||||
|             struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked); | ||||
|             offload_func_v(KQ_soft_max); | ||||
|             ggml_set_name(KQ_soft_max, "KQ_soft_max"); | ||||
|  | ||||
|             // split cached V into n_head heads | ||||
| @@ -3322,12 +3270,10 @@ static struct ggml_cgraph * llm_build_llama( | ||||
|                         ggml_element_size(kv_self.v)*n_ctx, | ||||
|                         ggml_element_size(kv_self.v)*n_ctx*n_embd_head, | ||||
|                         ggml_element_size(kv_self.v)*n_ctx*n_embd_gqa*il); | ||||
|             offload_func_v(V); | ||||
|             ggml_set_name(V, "V"); | ||||
|  | ||||
| #if 1 | ||||
|             struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max); | ||||
|             offload_func_v(KQV); | ||||
|             ggml_set_name(KQV, "KQV"); | ||||
| #else | ||||
|             // make V contiguous in memory to speed up the matmul, however we waste time on the copy | ||||
| @@ -3339,24 +3285,20 @@ static struct ggml_cgraph * llm_build_llama( | ||||
|  | ||||
|             // KQV_merged = KQV.permute(0, 2, 1, 3) | ||||
|             struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3); | ||||
|             offload_func_v(KQV_merged); | ||||
|             ggml_set_name(KQV_merged, "KQV_merged"); | ||||
|  | ||||
|             // cur = KQV_merged.contiguous().view(n_embd, n_tokens) | ||||
|             cur = ggml_cont_2d(ctx0, KQV_merged, n_embd, n_tokens); | ||||
|             offload_func_v(cur); | ||||
|             ggml_set_name(cur, "KQV_merged_contiguous"); | ||||
|  | ||||
|             // projection (no bias) | ||||
|             cur = ggml_mul_mat(ctx0, | ||||
|                     model.layers[il].wo, | ||||
|                     cur); | ||||
|             offload_func(cur); | ||||
|             ggml_set_name(cur, "result_wo"); | ||||
|         } | ||||
|  | ||||
|         struct ggml_tensor * inpFF = ggml_add(ctx0, cur, inpSA); | ||||
|         offload_func(inpFF); | ||||
|         ggml_set_name(inpFF, "inpFF"); | ||||
|  | ||||
|         // feed-forward network | ||||
| @@ -3364,45 +3306,37 @@ static struct ggml_cgraph * llm_build_llama( | ||||
|             // norm | ||||
|             { | ||||
|                 cur = ggml_rms_norm(ctx0, inpFF, norm_rms_eps); | ||||
|                 offload_func(cur); | ||||
|                 ggml_set_name(cur, "rms_norm_1"); | ||||
|  | ||||
|                 // cur = cur*ffn_norm(broadcasted) | ||||
|                 cur = ggml_mul(ctx0, cur, model.layers[il].ffn_norm); | ||||
|                 offload_func(cur); | ||||
|                 ggml_set_name(cur, "ffn_norm"); | ||||
|             } | ||||
|  | ||||
|             struct ggml_tensor * tmp = ggml_mul_mat(ctx0, | ||||
|                     model.layers[il].w3, | ||||
|                     cur); | ||||
|             offload_func(tmp); | ||||
|             ggml_set_name(tmp, "result_w3"); | ||||
|  | ||||
|             cur = ggml_mul_mat(ctx0, | ||||
|                     model.layers[il].w1, | ||||
|                     cur); | ||||
|             offload_func(cur); | ||||
|             ggml_set_name(cur, "result_w1"); | ||||
|  | ||||
|             // SILU activation | ||||
|             cur = ggml_silu(ctx0, cur); | ||||
|             offload_func(cur); | ||||
|             ggml_set_name(cur, "silu"); | ||||
|  | ||||
|             cur = ggml_mul(ctx0, cur, tmp); | ||||
|             offload_func(cur); | ||||
|             ggml_set_name(cur, "silu_x_result_w3"); | ||||
|  | ||||
|             cur = ggml_mul_mat(ctx0, | ||||
|                     model.layers[il].w2, | ||||
|                     cur); | ||||
|             offload_func(cur); | ||||
|             ggml_set_name(cur, "result_w2"); | ||||
|         } | ||||
|  | ||||
|         cur = ggml_add(ctx0, cur, inpFF); | ||||
|         offload_func(cur); | ||||
|         ggml_set_name(cur, "inpFF_+_result_w2"); | ||||
|  | ||||
|         // input for next layer | ||||
| @@ -3414,12 +3348,10 @@ static struct ggml_cgraph * llm_build_llama( | ||||
|     // norm | ||||
|     { | ||||
|         cur = ggml_rms_norm(ctx0, cur, norm_rms_eps); | ||||
|         offload_func_nr(cur); | ||||
|         ggml_set_name(cur, "rms_norm_2"); | ||||
|  | ||||
|         // cur = cur*norm(broadcasted) | ||||
|         cur = ggml_mul(ctx0, cur, model.output_norm); | ||||
|         // offload_func_nr(cur); // TODO CPU + GPU mirrored backend | ||||
|         ggml_set_name(cur, "result_norm"); | ||||
|     } | ||||
|  | ||||
| @@ -3884,7 +3816,6 @@ static struct ggml_cgraph * llm_build_refact( | ||||
|  | ||||
|     for (int il = 0; il < n_layer; ++il) { | ||||
|         ggml_format_name(inpL, "layer_inp_%d", il); | ||||
|  | ||||
|         offload_func_t offload_func = llama_nop; | ||||
|  | ||||
| #ifdef GGML_USE_CUBLAS | ||||
| @@ -5641,7 +5572,7 @@ static struct ggml_cgraph * llama_build_graph( | ||||
|             GGML_ASSERT(false); | ||||
|     } | ||||
|  | ||||
|     // set input data to the graph | ||||
|     // allocate memory and set the values for the input tensors of the graph | ||||
|  | ||||
|     // inp_tokens | ||||
|     if (batch.token) { | ||||
| @@ -5655,7 +5586,10 @@ static struct ggml_cgraph * llama_build_graph( | ||||
|  | ||||
|             memcpy(cur->data, batch.token, n_tokens*ggml_element_size(cur)); | ||||
|         } | ||||
|     } else { // inp_embd | ||||
|     } | ||||
|  | ||||
|     // inp_embd | ||||
|     if (batch.embd) { | ||||
|         struct ggml_tensor * cur = ggml_graph_get_tensor(result, "inp_embd"); | ||||
|         GGML_ASSERT(cur != nullptr); | ||||
|  | ||||
| @@ -5775,6 +5709,124 @@ static struct ggml_cgraph * llama_build_graph( | ||||
|         } | ||||
|     } while (0); | ||||
|  | ||||
|     // offload layers | ||||
|  | ||||
|     { | ||||
|         const int n_layer = model.hparams.n_layer; | ||||
|  | ||||
|         const int n_gpu_layers = model.n_gpu_layers; | ||||
|         const int i_gpu_start  = n_layer - n_gpu_layers; | ||||
|  | ||||
|         GGML_UNUSED(i_gpu_start); | ||||
|  | ||||
|         // offload functions set the tensor output backend to GPU | ||||
|         // tensors are GPU-accelerated if any input or the output has been offloaded | ||||
|         offload_func_t offload_func_nr = llama_nop; // nr = non-repeating | ||||
|         offload_func_t offload_func_kq = llama_nop; | ||||
|         offload_func_t offload_func_v  = llama_nop; | ||||
|         offload_func_t offload_func    = llama_nop; | ||||
|  | ||||
| #ifdef GGML_USE_CUBLAS | ||||
|         if (n_gpu_layers > n_layer) { | ||||
|             offload_func_nr = ggml_cuda_assign_buffers_no_alloc; | ||||
|         } | ||||
|         if (n_gpu_layers > n_layer + 1) { | ||||
|             offload_func_v  = ggml_cuda_assign_buffers_no_alloc; | ||||
|         } | ||||
|         if (n_gpu_layers > n_layer + 2) { | ||||
|             offload_func_kq = ggml_cuda_assign_buffers_no_alloc; | ||||
|         } | ||||
|  | ||||
|         offload_func = ggml_cuda_assign_buffers_no_alloc; | ||||
| #endif // GGML_USE_CUBLAS | ||||
|  | ||||
|         static const std::unordered_map<std::string, offload_func_t> k_offload_func = { | ||||
|             { "KQ_mask",                 offload_func_kq }, | ||||
|             { "KQ_pos",                  offload_func_kq }, | ||||
|             { "K_shift",                 offload_func_kq }, | ||||
|             { "K_shifted",               offload_func_kq }, | ||||
|  | ||||
|             { "rms_norm_0",              offload_func    }, | ||||
|             { "attention_norm_0",        offload_func    }, | ||||
|  | ||||
|             { "tmpk",                    offload_func_kq }, | ||||
|             { "tmpq",                    offload_func_kq }, | ||||
|             { "tmpv",                    offload_func_v  }, | ||||
|             { "Kcur",                    offload_func_kq }, | ||||
|             { "Qcur",                    offload_func_kq }, | ||||
|             { "Vcur",                    offload_func_v  }, | ||||
|  | ||||
|             { "k",                       offload_func_kq }, | ||||
|             { "v",                       offload_func_v  }, | ||||
|  | ||||
|             { "Q",                       offload_func_kq }, | ||||
|             { "K",                       offload_func_kq }, | ||||
|             { "KQ",                      offload_func_kq }, | ||||
|             { "KQ_scaled",               offload_func_kq }, | ||||
|             { "KQ_scaled_alibi",         offload_func_kq }, | ||||
|             { "KQ_masked",               offload_func_kq }, | ||||
|             { "KQ_soft_max",             offload_func_v  }, | ||||
|             { "V",                       offload_func_v  }, | ||||
|             { "KQV",                     offload_func_v  }, | ||||
|             { "KQV_merged",              offload_func_v  }, | ||||
|             { "KQV_merged_contiguous",   offload_func_v  }, | ||||
|  | ||||
|             { "result_wo",               offload_func    }, | ||||
|  | ||||
|             { "inpFF",                   offload_func    }, | ||||
|  | ||||
|             { "rms_norm_1",              offload_func    }, | ||||
|             { "ffn_norm",                offload_func    }, | ||||
|  | ||||
|             { "result_w3",               offload_func    }, | ||||
|             { "result_w2",               offload_func    }, | ||||
|             { "result_w1",               offload_func    }, | ||||
|             { "silu",                    offload_func    }, | ||||
|             { "silu_x_result_w3",        offload_func    }, | ||||
|             { "inpFF_+_result_w2",       offload_func    }, | ||||
|  | ||||
|             { "rms_norm_2",              offload_func_nr }, | ||||
|           //{ "result_norm",             offload_func_nr }, // TODO CPU + GPU mirrored backend | ||||
|           //{ "result_output",           offload_func    }, | ||||
|         }; | ||||
|  | ||||
|         static const std::unordered_map<offload_func_t, std::string> k_offload_func_name = { | ||||
|             { llama_nop,                         "CPU" }, | ||||
| #ifdef GGML_USE_CUBLAS | ||||
|             { ggml_cuda_assign_buffers_no_alloc, "GPU (CUDA)" }, | ||||
| #endif | ||||
|         }; | ||||
|  | ||||
|         std::unordered_map<std::string, int> ofn; | ||||
|  | ||||
|         for (int i = 0; i < result->n_nodes; ++i) { | ||||
|             struct ggml_tensor * cur = result->nodes[i]; | ||||
|  | ||||
|             const std::string name = cur->name; | ||||
|  | ||||
|             if (k_offload_func.find(name) == k_offload_func.end()) { | ||||
|                 if (worst_case && cur->view_src == nullptr) { | ||||
|                     LLAMA_LOG_WARN("%s: %32s: not offloaded (ref: %s)\n", __func__, | ||||
|                             name.c_str(), "https://github.com/ggerganov/llama.cpp/pull/3837"); | ||||
|                 } | ||||
|                 continue; | ||||
|             } | ||||
|  | ||||
|             offload_func_t f = k_offload_func.at(name); | ||||
|             if (f == offload_func) { | ||||
|                 if (ofn[name]++ < i_gpu_start) { | ||||
|                     f = llama_nop; | ||||
|                 } | ||||
|             } | ||||
|  | ||||
|             f(cur); | ||||
|  | ||||
|             if (worst_case && cur->view_src == nullptr) { | ||||
|                 LLAMA_LOG_INFO("%s: %32s: %s\n", __func__, name.c_str(), k_offload_func_name.at(f).c_str()); | ||||
|             } | ||||
|         } | ||||
|     } | ||||
|  | ||||
|     return result; | ||||
| } | ||||
|  | ||||
|   | ||||
		Reference in New Issue
	
	Block a user
	 Georgi Gerganov
					Georgi Gerganov