mirror of
https://github.com/ggml-org/llama.cpp.git
synced 2025-11-06 09:46:50 +00:00
CUDA: Volta tensor core support for MMF (#16843)
* CUDA: Volta tensor core support for MMF * more generic checks for hardware support * Update ggml/src/ggml-cuda/mmf.cuh Co-authored-by: Aman Gupta <amangupta052@gmail.com> --------- Co-authored-by: Aman Gupta <amangupta052@gmail.com>
This commit is contained in:
@@ -224,6 +224,11 @@ static const char * cu_get_error_str(CUresult err) {
|
||||
#define AMD_MFMA_AVAILABLE
|
||||
#endif // defined(GGML_USE_HIP) && defined(CDNA) && !defined(GGML_HIP_NO_MMQ_MFMA)
|
||||
|
||||
// The Volta instructions are in principle available on Turing or newer but they are effectively unusable:
|
||||
#if !defined(GGML_USE_HIP) && __CUDA_ARCH__ == GGML_CUDA_CC_VOLTA
|
||||
#define VOLTA_MMA_AVAILABLE
|
||||
#endif // !defined(GGML_USE_HIP) && __CUDA_ARCH__ == GGML_CUDA_CC_VOLTA
|
||||
|
||||
#if !defined(GGML_USE_HIP) && __CUDA_ARCH__ >= GGML_CUDA_CC_TURING
|
||||
#define TURING_MMA_AVAILABLE
|
||||
#endif // !defined(GGML_USE_HIP) && __CUDA_ARCH__ >= GGML_CUDA_CC_TURING
|
||||
@@ -278,7 +283,10 @@ static bool amd_mfma_available(const int cc) {
|
||||
#endif //!defined(GGML_HIP_NO_MMQ_MFMA)
|
||||
}
|
||||
|
||||
// Volta technically had FP16 tensor cores but they work very differently compared to Turing and later.
|
||||
static bool volta_mma_available(const int cc) {
|
||||
return GGML_CUDA_CC_IS_NVIDIA(cc) && ggml_cuda_highest_compiled_arch(cc) == GGML_CUDA_CC_VOLTA;
|
||||
}
|
||||
|
||||
static bool turing_mma_available(const int cc) {
|
||||
return GGML_CUDA_CC_IS_NVIDIA(cc) && ggml_cuda_highest_compiled_arch(cc) >= GGML_CUDA_CC_TURING;
|
||||
}
|
||||
|
||||
@@ -18,6 +18,10 @@
|
||||
|
||||
#include "common.cuh"
|
||||
|
||||
// On Volta each warp is doing 4 8x8 mma operations in parallel.
|
||||
// The basic memory layout for a 32x8 output tile is to stack 4 input tiles in I direction and to mirror the B tile.
|
||||
// However, the i indices in this file are by default permuted to simplify the index calculations.
|
||||
// #define GGML_CUDA_MMA_NO_VOLTA_PERM
|
||||
|
||||
#if CUDART_VERSION >= 11080
|
||||
|
||||
@@ -73,6 +77,15 @@ namespace ggml_cuda_mma {
|
||||
static constexpr int ne = I * J / 64;
|
||||
T x[ne] = {0};
|
||||
|
||||
static constexpr __device__ bool supported() {
|
||||
if (I == 64 && J == 2) return true;
|
||||
if (I == 16 && J == 8) return true;
|
||||
if (I == 32 && J == 4) return true;
|
||||
if (I == 16 && J == 16) return true;
|
||||
if (I == 32 && J == 32) return true;
|
||||
return false;
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ int get_i(const int l) {
|
||||
if constexpr (I == 64 && J == 2) { // Special tile size to load <16, 4> as <16, 8>
|
||||
return threadIdx.x % 16;
|
||||
@@ -85,7 +98,8 @@ namespace ggml_cuda_mma {
|
||||
} else if constexpr (I == 32 && J == 32) {
|
||||
return 4 * (threadIdx.x / 32) + 8 * (l / 4) + (l % 4);
|
||||
} else {
|
||||
static_assert(I == -1 && J == -1, "template specialization not implemented");
|
||||
NO_DEVICE_CODE;
|
||||
return -1;
|
||||
}
|
||||
}
|
||||
|
||||
@@ -101,22 +115,67 @@ namespace ggml_cuda_mma {
|
||||
} else if constexpr (I == 32 && J == 32) {
|
||||
return threadIdx.x % 32;
|
||||
} else {
|
||||
static_assert(I == -1 && J == -1, "template specialization not implemented");
|
||||
NO_DEVICE_CODE;
|
||||
return -1;
|
||||
}
|
||||
}
|
||||
#elif __CUDA_ARCH__ == GGML_CUDA_CC_VOLTA
|
||||
static constexpr int ne = I * J / 32;
|
||||
T x[ne] = {0};
|
||||
|
||||
static constexpr __device__ bool supported() {
|
||||
if (I == 32 && J == 8) return true;
|
||||
return false;
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ int get_i(const int l) {
|
||||
if constexpr (I == 32 && J == 8) {
|
||||
#ifdef GGML_CUDA_MMA_NO_VOLTA_PERM
|
||||
return (((threadIdx.x % 16) / 4) * 8) | ((threadIdx.x / 16) * 4) | (l & 2) | (threadIdx.x % 2);
|
||||
#else
|
||||
return (l & 2) | (threadIdx.x & ~2);
|
||||
#endif // GGML_CUDA_MMA_NO_VOLTA_PERM
|
||||
} else {
|
||||
NO_DEVICE_CODE;
|
||||
return -1;
|
||||
}
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ int get_j(const int l) {
|
||||
if constexpr (I == 32 && J == 8) {
|
||||
return (threadIdx.x & 2) | (l & (4 + 1));
|
||||
} else {
|
||||
NO_DEVICE_CODE;
|
||||
return -1;
|
||||
}
|
||||
}
|
||||
#else
|
||||
static constexpr int ne = I * J / 32;
|
||||
T x[ne] = {0};
|
||||
|
||||
static constexpr __device__ bool supported() {
|
||||
if (I == 8 && J == 4) return true;
|
||||
if (I == 8 && J == 8) return true;
|
||||
if (I == 16 && J == 8) return true;
|
||||
if (I == 16 && J == 16) return true;
|
||||
if (I == 32 && J == 8) return true;
|
||||
return false;
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ int get_i(const int l) {
|
||||
if constexpr (I == 8 && (J == 4 || J == 8)) {
|
||||
if constexpr (I == 8 && J == 4) {
|
||||
return threadIdx.x / 4;
|
||||
} else if constexpr (I == 8 && J == 8) {
|
||||
return threadIdx.x / 4;
|
||||
} else if constexpr (I == 16 && J == 8) {
|
||||
return (l / 2) * 8 + threadIdx.x / 4;
|
||||
return ((l / 2) * 8) | (threadIdx.x / 4);
|
||||
} else if constexpr (I == 16 && J == 16) {
|
||||
return ((l / 2) % 2) * 8 + threadIdx.x / 4;
|
||||
return (((l / 2) % 2) * 8) | (threadIdx.x / 4);
|
||||
} else if constexpr (I == 32 && J == 8) {
|
||||
return tile<16, 8, T>::get_i(l); // Memory layout simply repeated with same pattern in i direction.
|
||||
} else {
|
||||
static_assert(I == -1 && J == -1, "template specialization not implemented");
|
||||
NO_DEVICE_CODE;
|
||||
return -1;
|
||||
}
|
||||
}
|
||||
|
||||
@@ -124,13 +183,16 @@ namespace ggml_cuda_mma {
|
||||
if constexpr (I == 8 && J == 4) {
|
||||
return threadIdx.x % 4;
|
||||
} else if constexpr (I == 8 && J == 8) {
|
||||
return 4 * l + threadIdx.x % 4;
|
||||
return (l * 4) | (threadIdx.x % 4);
|
||||
} else if constexpr (I == 16 && J == 8) {
|
||||
return 2 * (threadIdx.x % 4) + l % 2;
|
||||
return ((threadIdx.x % 4) * 2) | (l % 2);
|
||||
} else if constexpr (I == 16 && J == 16) {
|
||||
return 8 * (l / 4) + 2 * (threadIdx.x % 4) + l % 2;
|
||||
return ((l / 4) * 8) | ((threadIdx.x % 4) * 2) | (l % 2);
|
||||
} else if constexpr (I == 32 && J == 8) {
|
||||
return tile<16, 8, T>::get_j(l); // Memory layout simply repeated with same pattern in i direction.
|
||||
} else {
|
||||
static_assert(I == -1 && J == -1, "template specialization not implemented");
|
||||
NO_DEVICE_CODE;
|
||||
return -1;
|
||||
}
|
||||
}
|
||||
#endif // defined(GGML_USE_HIP)
|
||||
@@ -140,32 +202,83 @@ namespace ggml_cuda_mma {
|
||||
struct tile<I_, J_, half2> {
|
||||
static constexpr int I = I_;
|
||||
static constexpr int J = J_;
|
||||
|
||||
#if __CUDA_ARCH__ == GGML_CUDA_CC_VOLTA
|
||||
static constexpr int ne = I == 8 && J == 8 ? I * J / (WARP_SIZE/4) : I * J / WARP_SIZE;
|
||||
half2 x[ne] = {{0.0f, 0.0f}};
|
||||
|
||||
static constexpr __device__ bool supported() {
|
||||
if (I == 8 && J == 8) return true;
|
||||
if (I == 32 && J == 8) return true;
|
||||
return false;
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ int get_i(const int l) {
|
||||
if constexpr (I == 8 && J == 8) {
|
||||
return ((threadIdx.x / 16) * 4) | (threadIdx.x % 4);
|
||||
} else if constexpr (I == 32 && J == 8) {
|
||||
#ifdef GGML_CUDA_MMA_NO_VOLTA_PERM
|
||||
return (((threadIdx.x % 16) / 4) * 8) | ((threadIdx.x / 16) * 4) | (threadIdx.x % 4);
|
||||
#else
|
||||
return threadIdx.x;
|
||||
#endif // GGML_CUDA_MMA_NO_VOLTA_PERM
|
||||
} else {
|
||||
NO_DEVICE_CODE;
|
||||
return -1;
|
||||
}
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ int get_j(const int l) {
|
||||
if constexpr ((I == 8 || I == 32) && J == 8) {
|
||||
return l;
|
||||
} else {
|
||||
NO_DEVICE_CODE;
|
||||
return -1;
|
||||
}
|
||||
}
|
||||
#else
|
||||
static constexpr int ne = I * J / WARP_SIZE;
|
||||
half2 x[ne] = {{0.0f, 0.0f}};
|
||||
|
||||
static constexpr __device__ bool supported() {
|
||||
if (I == 8 && J == 4) return true;
|
||||
if (I == 8 && J == 8) return true;
|
||||
if (I == 16 && J == 8) return true;
|
||||
if (I == 16 && J == 16) return true;
|
||||
if (I == 32 && J == 8) return true;
|
||||
return false;
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ int get_i(const int l) {
|
||||
if constexpr (I == 8 && J == 8) {
|
||||
return threadIdx.x / 4;
|
||||
} else if constexpr (I == 16 && J == 4) {
|
||||
return l * 8 + threadIdx.x / 4;
|
||||
return (l * 8) | (threadIdx.x / 4);
|
||||
} else if constexpr (I == 16 && J == 8) {
|
||||
return (l % 2) * 8 + threadIdx.x / 4;
|
||||
return ((l % 2) * 8) | (threadIdx.x / 4);
|
||||
} else if constexpr (I == 32 && J == 8) {
|
||||
return ((l / 4) * 16) | ((l % 2) * 8) | (threadIdx.x / 4);
|
||||
} else {
|
||||
static_assert(I == -1 && J == -1, "template specialization not implemented");
|
||||
NO_DEVICE_CODE;
|
||||
return -1;
|
||||
}
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ int get_j(const int l) {
|
||||
if constexpr (I == 8 && J == 8) {
|
||||
return l * 4 + threadIdx.x % 4;
|
||||
return (l * 4) | (threadIdx.x % 4);
|
||||
} else if constexpr (I == 16 && J == 4) {
|
||||
return threadIdx.x % 4;
|
||||
} else if constexpr (I == 16 && J == 8) {
|
||||
return (l / 2) * 4 + threadIdx.x % 4;
|
||||
return ((l / 2) * 4) | (threadIdx.x % 4);
|
||||
} else if constexpr (I == 32 && J == 8) {
|
||||
return ((l & 2) * 2) | (threadIdx.x % 4);
|
||||
} else {
|
||||
static_assert(I == -1 && J == -1, "template specialization not implemented");
|
||||
NO_DEVICE_CODE;
|
||||
return -1;
|
||||
}
|
||||
}
|
||||
#endif // __CUDA_ARCH__ == GGML_CUDA_CC_VOLTA
|
||||
};
|
||||
|
||||
template <int I_, int J_>
|
||||
@@ -175,27 +288,36 @@ namespace ggml_cuda_mma {
|
||||
static constexpr int ne = I * J / WARP_SIZE;
|
||||
nv_bfloat162 x[ne] = {{0.0f, 0.0f}};
|
||||
|
||||
static constexpr __device__ bool supported() {
|
||||
if (I == 8 && J == 8) return true;
|
||||
if (I == 16 && J == 4) return true;
|
||||
if (I == 16 && J == 8) return true;
|
||||
return false;
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ int get_i(const int l) {
|
||||
if constexpr (I == 8 && J == 8) {
|
||||
return threadIdx.x / 4;
|
||||
} else if constexpr (I == 16 && J == 4) {
|
||||
return l * 8 + threadIdx.x / 4;
|
||||
return (l * 8) | (threadIdx.x / 4);
|
||||
} else if constexpr (I == 16 && J == 8) {
|
||||
return (l % 2) * 8 + threadIdx.x / 4;
|
||||
return ((l % 2) * 8) | (threadIdx.x / 4);
|
||||
} else {
|
||||
static_assert(I == -1 && J == -1, "template specialization not implemented");
|
||||
NO_DEVICE_CODE;
|
||||
return -1;
|
||||
}
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ int get_j(const int l) {
|
||||
if constexpr (I == 8 && J == 8) {
|
||||
return l * 4 + threadIdx.x % 4;
|
||||
return (l * 4) | (threadIdx.x % 4);
|
||||
} else if constexpr (I == 16 && J == 4) {
|
||||
return threadIdx.x % 4;
|
||||
} else if constexpr (I == 16 && J == 8) {
|
||||
return (l / 2) * 4 + threadIdx.x % 4;
|
||||
return ((l / 2) * 4) | (threadIdx.x % 4);
|
||||
} else {
|
||||
static_assert(I == -1 && J == -1, "template specialization not implemented");
|
||||
NO_DEVICE_CODE;
|
||||
return -1;
|
||||
}
|
||||
}
|
||||
};
|
||||
@@ -263,8 +385,12 @@ namespace ggml_cuda_mma {
|
||||
: "=r"(xi[0]), "=r"(xi[1])
|
||||
: "l"(xs));
|
||||
#else
|
||||
load_generic(xs0, stride);
|
||||
GGML_UNUSED(t);
|
||||
#if __CUDA_ARCH__ == GGML_CUDA_CC_VOLTA
|
||||
GGML_UNUSED_VARS(t, xs0, stride);
|
||||
NO_DEVICE_CODE;
|
||||
#else
|
||||
load_generic(t, xs0, stride);
|
||||
#endif // __CUDA_ARCH__ == GGML_CUDA_CC_VOLTA
|
||||
#endif // TURING_MMA_AVAILABLE
|
||||
}
|
||||
|
||||
@@ -277,11 +403,35 @@ namespace ggml_cuda_mma {
|
||||
asm volatile("ldmatrix.sync.aligned.m8n8.x4.b16 {%0, %1, %2, %3}, [%4];"
|
||||
: "=r"(xi[0]), "=r"(xi[1]), "=r"(xi[2]), "=r"(xi[3])
|
||||
: "l"(xs));
|
||||
#else
|
||||
#if __CUDA_ARCH__ == GGML_CUDA_CC_VOLTA
|
||||
GGML_UNUSED_VARS(t, xs0, stride);
|
||||
NO_DEVICE_CODE;
|
||||
#else
|
||||
load_generic(t, xs0, stride);
|
||||
#endif // __CUDA_ARCH__ == GGML_CUDA_CC_VOLTA
|
||||
#endif // TURING_MMA_AVAILABLE
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
static __device__ __forceinline__ void load_ldmatrix(
|
||||
tile<32, 8, T> & t, const T * __restrict__ xs0, const int stride) {
|
||||
#if __CUDA_ARCH__ == GGML_CUDA_CC_VOLTA
|
||||
#if 1
|
||||
// TODO: more generic handling
|
||||
static_assert(sizeof(T) == 4, "bad type size");
|
||||
ggml_cuda_memcpy_1<4*sizeof(T)>(t.x + 0, xs0 + t.get_i(0)*stride + 0);
|
||||
ggml_cuda_memcpy_1<4*sizeof(T)>(t.x + 4, xs0 + t.get_i(4)*stride + 4);
|
||||
#else
|
||||
load_generic(t, xs0, stride);
|
||||
#endif // 1
|
||||
#else
|
||||
tile<16, 8, T> * t16 = (tile<16, 8, T> *) &t;
|
||||
load_ldmatrix(t16[0], xs0 + 0*stride, stride);
|
||||
load_ldmatrix(t16[1], xs0 + 16*stride, stride);
|
||||
#endif // __CUDA_ARCH__ == GGML_CUDA_CC_VOLTA
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
static __device__ __forceinline__ void load_ldmatrix_trans(
|
||||
tile<16, 8, T> & t, const T * __restrict__ xs0, const int stride) {
|
||||
@@ -546,4 +696,43 @@ namespace ggml_cuda_mma {
|
||||
NO_DEVICE_CODE;
|
||||
#endif // AMD_MFMA_AVAILABLE
|
||||
}
|
||||
|
||||
template <typename T1, typename T2, int J, int K>
|
||||
static __device__ __forceinline__ void mma(
|
||||
tile<32, J, T1> & D, const tile<32, K, T2> & A, const tile<J, K, T2> & B) {
|
||||
tile<16, J, T1> * D16 = (tile<16, J, T1> *) &D;
|
||||
tile<16, K, T2> * A16 = (tile<16, K, T2> *) &A;
|
||||
mma(D16[0], A16[0], B);
|
||||
mma(D16[1], A16[1], B);
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ void mma(
|
||||
tile<32, 8, float> & D, const tile<32, 8, half2> & A, const tile<8, 8, half2> & B) {
|
||||
#if __CUDA_ARCH__ == GGML_CUDA_CC_VOLTA
|
||||
const int * Axi = (const int *) A.x;
|
||||
const int * Bxi = (const int *) B.x;
|
||||
int * Dxi = (int *) D.x;
|
||||
asm("mma.sync.aligned.m8n8k4.row.col.f32.f16.f16.f32 "
|
||||
"{%0, %1, %2, %3, %4, %5, %6, %7}, {%8, %9}, {%10, %11}, {%0, %1, %2, %3, %4, %5, %6, %7};"
|
||||
: "+r"(Dxi[0]), "+r"(Dxi[1]), "+r"(Dxi[2]), "+r"(Dxi[3]), "+r"(Dxi[4]), "+r"(Dxi[5]), "+r"(Dxi[6]), "+r"(Dxi[7])
|
||||
: "r"(Axi[0]), "r"(Axi[1]), "r"(Bxi[0]), "r"(Bxi[1]));
|
||||
asm("mma.sync.aligned.m8n8k4.row.col.f32.f16.f16.f32 "
|
||||
"{%0, %1, %2, %3, %4, %5, %6, %7}, {%8, %9}, {%10, %11}, {%0, %1, %2, %3, %4, %5, %6, %7};"
|
||||
: "+r"(Dxi[0]), "+r"(Dxi[1]), "+r"(Dxi[2]), "+r"(Dxi[3]), "+r"(Dxi[4]), "+r"(Dxi[5]), "+r"(Dxi[6]), "+r"(Dxi[7])
|
||||
: "r"(Axi[2]), "r"(Axi[3]), "r"(Bxi[2]), "r"(Bxi[3]));
|
||||
asm("mma.sync.aligned.m8n8k4.row.col.f32.f16.f16.f32 "
|
||||
"{%0, %1, %2, %3, %4, %5, %6, %7}, {%8, %9}, {%10, %11}, {%0, %1, %2, %3, %4, %5, %6, %7};"
|
||||
: "+r"(Dxi[0]), "+r"(Dxi[1]), "+r"(Dxi[2]), "+r"(Dxi[3]), "+r"(Dxi[4]), "+r"(Dxi[5]), "+r"(Dxi[6]), "+r"(Dxi[7])
|
||||
: "r"(Axi[4]), "r"(Axi[5]), "r"(Bxi[4]), "r"(Bxi[5]));
|
||||
asm("mma.sync.aligned.m8n8k4.row.col.f32.f16.f16.f32 "
|
||||
"{%0, %1, %2, %3, %4, %5, %6, %7}, {%8, %9}, {%10, %11}, {%0, %1, %2, %3, %4, %5, %6, %7};"
|
||||
: "+r"(Dxi[0]), "+r"(Dxi[1]), "+r"(Dxi[2]), "+r"(Dxi[3]), "+r"(Dxi[4]), "+r"(Dxi[5]), "+r"(Dxi[6]), "+r"(Dxi[7])
|
||||
: "r"(Axi[6]), "r"(Axi[7]), "r"(Bxi[6]), "r"(Bxi[7]));
|
||||
#else
|
||||
tile<16, 8, float> * D16 = (tile<16, 8, float> *) &D;
|
||||
tile<16, 8, half2> * A16 = (tile<16, 8, half2> *) &A;
|
||||
mma(D16[0], A16[0], B);
|
||||
mma(D16[1], A16[1], B);
|
||||
#endif // __CUDA_ARCH__ >= GGML_CUDA_CC_AMPERE
|
||||
}
|
||||
}
|
||||
|
||||
@@ -148,7 +148,7 @@ bool ggml_cuda_should_use_mmf(enum ggml_type type, int cc, int warp_size, const
|
||||
case GGML_TYPE_F32:
|
||||
return ampere_mma_available(cc);
|
||||
case GGML_TYPE_F16:
|
||||
return turing_mma_available(cc);
|
||||
return volta_mma_available(cc) || turing_mma_available(cc);
|
||||
case GGML_TYPE_BF16:
|
||||
return ampere_mma_available(cc);
|
||||
default:
|
||||
|
||||
@@ -28,9 +28,19 @@ static __global__ void mul_mat_f(
|
||||
const int channel_ratio, const int stride_channel_x, const int stride_channel_y, const int stride_channel_dst,
|
||||
const int sample_ratio, const int stride_sample_x, const int stride_sample_y, const int stride_sample_dst) {
|
||||
#if !defined(GGML_USE_HIP) && !defined(GGML_USE_MUSA)
|
||||
typedef tile<16, 8, T> tile_A;
|
||||
typedef tile< 8, 8, T> tile_B;
|
||||
typedef tile<16, 8, float> tile_C;
|
||||
constexpr bool I_16_supported = tile<16, 8, T>::supported() && tile<16, 8, float>::supported();
|
||||
constexpr bool I_32_supported = tile<32, 8, T>::supported() && tile<32, 8, float>::supported();
|
||||
|
||||
if (!I_16_supported && !I_32_supported) {
|
||||
NO_DEVICE_CODE;
|
||||
return;
|
||||
}
|
||||
|
||||
constexpr int I_preferred = I_16_supported ? 16 : 32; // For Turing MMA both work but 16 is ~1% faster.
|
||||
|
||||
typedef tile<I_preferred, 8, T> tile_A;
|
||||
typedef tile<8, 8, T> tile_B;
|
||||
typedef tile<I_preferred, 8, float> tile_C;
|
||||
|
||||
constexpr int warp_size = ggml_cuda_get_physical_warp_size();
|
||||
constexpr int tile_k_padded = warp_size + 4;
|
||||
@@ -232,7 +242,6 @@ static __global__ void mul_mat_f(
|
||||
#endif // !defined(GGML_USE_HIP) && !defined(GGML_USE_MUSA)
|
||||
}
|
||||
|
||||
|
||||
//This kernel is for larger batch sizes of mul_mat_id
|
||||
template <typename T, int rows_per_block, int cols_per_block, int nwarps>
|
||||
__launch_bounds__(ggml_cuda_get_physical_warp_size()*nwarps, 1)
|
||||
@@ -245,9 +254,19 @@ static __global__ void mul_mat_f_ids(
|
||||
const int sample_ratio, const int stride_sample_x, const int stride_sample_y, const int stride_sample_dst,
|
||||
const uint3 sis1_fd, const uint3 nch_fd) {
|
||||
#if !defined(GGML_USE_HIP) && !defined(GGML_USE_MUSA)
|
||||
typedef tile<16, 8, T> tile_A;
|
||||
typedef tile< 8, 8, T> tile_B;
|
||||
typedef tile<16, 8, float> tile_C;
|
||||
constexpr bool I_16_supported = tile<16, 8, T>::supported() && tile<16, 8, float>::supported();
|
||||
constexpr bool I_32_supported = tile<32, 8, T>::supported() && tile<32, 8, float>::supported();
|
||||
|
||||
if (!I_16_supported && !I_32_supported) {
|
||||
NO_DEVICE_CODE;
|
||||
return;
|
||||
}
|
||||
|
||||
constexpr int I_preferred = I_16_supported ? 16 : 32; // For Turing MMA both work butr 16 is ~1% faster.
|
||||
|
||||
typedef tile<I_preferred, 8, T> tile_A;
|
||||
typedef tile<8, 8, T> tile_B;
|
||||
typedef tile<I_preferred, 8, float> tile_C;
|
||||
|
||||
constexpr int warp_size = ggml_cuda_get_physical_warp_size();
|
||||
constexpr int tile_k_padded = warp_size + 4;
|
||||
@@ -533,7 +552,8 @@ void mul_mat_f_cuda(
|
||||
const int64_t stride_channel_x, const int64_t stride_channel_y, const int64_t stride_channel_dst, const int64_t nsamples_x,
|
||||
const int64_t nsamples_dst, const int64_t stride_sample_x, const int64_t stride_sample_y, const int64_t stride_sample_dst,
|
||||
cudaStream_t stream, const mmf_ids_data * ids_data) {
|
||||
typedef tile<16, 8, T> tile_A;
|
||||
typedef tile<16, 8, T> tile_A_16;
|
||||
typedef tile<32, 8, T> tile_A_32;
|
||||
typedef tile< 8, 8, T> tile_B;
|
||||
|
||||
GGML_ASSERT(ncols_x % 2 == 0);
|
||||
@@ -544,7 +564,8 @@ void mul_mat_f_cuda(
|
||||
const int64_t channel_ratio = nchannels_dst / nchannels_x;
|
||||
const int64_t sample_ratio = nsamples_dst / nsamples_x;
|
||||
|
||||
const int device = ggml_cuda_get_device();
|
||||
const int device = ggml_cuda_get_device();
|
||||
const int cc = ggml_cuda_info().devices[device].cc;
|
||||
const int warp_size = ggml_cuda_info().devices[device].warp_size;
|
||||
|
||||
int64_t nwarps_best = 1;
|
||||
@@ -559,7 +580,7 @@ void mul_mat_f_cuda(
|
||||
}
|
||||
|
||||
constexpr int rows_per_block = MMF_ROWS_PER_BLOCK;
|
||||
const int nbytes_shared_iter = nwarps_best * tile_A::I * (warp_size + 4) * 4;
|
||||
const int nbytes_shared_iter = nwarps_best * (volta_mma_available(cc) ? tile_A_32::I : tile_A_16::I) * (warp_size + 4) * 4;
|
||||
const int nbytes_shared_combine = GGML_PAD(cols_per_block, tile_B::I) * (nwarps_best*rows_per_block + 4) * 4;
|
||||
const int nbytes_shared = std::max(nbytes_shared_iter, nbytes_shared_combine);
|
||||
const int nbytes_slotmap = ids ? GGML_PAD(cols_per_block, 16) * sizeof(int) : 0;
|
||||
|
||||
Reference in New Issue
Block a user