ggml-hexagon: fix swiglu failure at test-backend-ops (#17344)

* refactor: use hvx_vec_exp_fp32_guard_inf for overflow handling in hvx_exp_f32

* feat: add fast sigmoid function with overflow guard for fp32

* refactor: replace hvx_vec_inverse_fp32 with hvx_vec_inverse_fp32_guard_inf for improved overflow handling

* feat: enhance hvx_add_scalar_f32 with overflow handling using infinity guard

* wip

* add HVX_Vector_Alias

wip

* wip

* fix: improve handling of src1 tensor in glu_swiglu_fp32_per_thread function

* fix nc

* wip

* wip

* handle nan at inverse

* wip

* fix neg

* wip

* rename

* fix hvx_vec_inverse_fp32_guard_inf to handle infinity and NaN cases correctly

* wip

* fix hvx_vec_inverse_fp32_guard_inf to handle NaN cases correctly

* wip

* wip

* wip

* fix output sign
This commit is contained in:
nullname
2025-11-21 07:45:05 +08:00
committed by GitHub
parent dd0f321941
commit 21d31e0810
5 changed files with 99 additions and 45 deletions

View File

@@ -106,33 +106,32 @@ static void glu_swiglu_fp32_per_thread(const struct htp_tensor * src0,
t1 = HAP_perf_get_qtimer_count();
int is_aligned = 1;
int opt_path = 0;
if (!htp_is_aligned((void *) src0->data, VLEN) || !htp_is_aligned((void *) dst->data, VLEN)) {
is_aligned = 0;
FARF(HIGH, "swiglu-f32: unaligned addresses in elementwise op, possibly slower execution\n");
}
if ((1 == is_aligned) && !(nb01 & (VLEN - 1))) {
opt_path = 1;
}
const uint8_t * restrict data_src0 = (const uint8_t *) src0->data;
const uint8_t * restrict data_src1 = (const uint8_t *) src1->data;
uint8_t * restrict data_dst = (uint8_t *) dst->data;
bool src1_valid = src1->ne[0];
const bool src1_valid = src1->ne[0];
const int nc = (src1_valid) ? ne00 : ne00 / 2;
if (!src1_valid) {
data_src1 = data_src0;
src1_row_size = src0_row_size;
const int32_t swapped = op_params[1];
data_src1 = data_src0;
src1_row_size = src0_row_size;
const size_t nc_in_bytes = nc * SIZEOF_FP32;
data_src0 += swapped ? nc_in_bytes : 0;
data_src1 += swapped ? 0 : nc_in_bytes;
}
uint8_t * restrict src0_spad_data = src0_spad->data + (ith * src0_row_size);
uint8_t * restrict src1_spad_data = src1_spad->data + (ith * src1_row_size);
uint8_t * restrict dst_spad_data = dst_spad->data + (ith * dst_row_size);
const int32_t swapped = op_params[1];
const int nc = (src1_valid) ? ne0 : ne0 / 2;
const bool opt_path = ((1 == is_aligned) && !(nb01 & (VLEN - 1)));
for (uint32_t ir = src0_start_row; ir < src0_end_row; ir++) {
const float * restrict src0 = (float *) (data_src0 + (ir * src0_row_size));
const float * restrict src1 = (float *) (data_src1 + (ir * src1_row_size));
@@ -142,12 +141,7 @@ static void glu_swiglu_fp32_per_thread(const struct htp_tensor * src0,
htp_l2fetch(src0 + src0_row_size, 1, src0_row_size, src0_row_size);
}
if (!src1_valid) {
src0 += swapped ? nc : 0;
src1 += swapped ? 0 : nc;
}
if (1 == opt_path) {
if (opt_path) {
hvx_fast_sigmoid_f32((const uint8_t *) src0, (uint8_t *) src0_spad_data, nc);
hvx_mul_mul_f32_opt((const uint8_t *) src0, (const uint8_t *) src0_spad_data, (const uint8_t *) src1,
(uint8_t *) dst, nc);
@@ -218,7 +212,7 @@ static void glu_swiglu_oai_fp32_per_thread(const struct htp_tensor * src0,
const float alpha = ((const float *) (op_params))[2];
const float limit = ((const float *) (op_params))[3];
const int nc = (src1_valid) ? ne0 : ne0 / 2;
const int nc = (src1_valid) ? ne00 : ne00 / 2;
for (uint32_t ir = src0_start_row; ir < src0_end_row; ir++) {
const float * restrict src0 = (float *) (data_src0 + (ir * src0_row_size));

View File

@@ -16,6 +16,19 @@
#include "hvx-utils.h"
#include "ops-utils.h"
static inline HVX_Vector hvx_vec_exp_fp32_guard(HVX_Vector in_vec) {
static const float kInf = INFINITY;
static const float kMaxExp = 88.02f; // log(INF)
const HVX_Vector max_exp = hvx_vec_splat_fp32(kMaxExp);
const HVX_Vector inf = hvx_vec_splat_fp32(kInf);
const HVX_VectorPred pred0 = Q6_Q_vcmp_gt_VsfVsf(in_vec, max_exp);
HVX_Vector out = hvx_vec_exp_fp32(in_vec);
return Q6_V_vmux_QVV(pred0, inf, out);
}
void hvx_exp_f32(const uint8_t * restrict src, uint8_t * restrict dst, const int num_elems, bool negate) {
int left_over = num_elems & (VLEN_FP32 - 1);
int num_elems_whole = num_elems - left_over;
@@ -42,9 +55,9 @@ void hvx_exp_f32(const uint8_t * restrict src, uint8_t * restrict dst, const int
for (int i = 0; i < num_elems_whole; i += VLEN_FP32) {
if (true == negate) {
HVX_Vector neg_vec_in = hvx_vec_neg_fp32(*p_vec_in1++);
*p_vec_out++ = hvx_vec_exp_fp32(neg_vec_in);
*p_vec_out++ = hvx_vec_exp_fp32_guard(neg_vec_in);
} else {
*p_vec_out++ = hvx_vec_exp_fp32(*p_vec_in1++);
*p_vec_out++ = hvx_vec_exp_fp32_guard(*p_vec_in1++);
}
}
} else {
@@ -54,9 +67,9 @@ void hvx_exp_f32(const uint8_t * restrict src, uint8_t * restrict dst, const int
if (true == negate) {
HVX_Vector neg_vec_in = hvx_vec_neg_fp32(in);
*(HVX_UVector *) (dst + i * SIZEOF_FP32) = hvx_vec_exp_fp32(neg_vec_in);
*(HVX_UVector *) (dst + i * SIZEOF_FP32) = hvx_vec_exp_fp32_guard(neg_vec_in);
} else {
*(HVX_UVector *) (dst + i * SIZEOF_FP32) = hvx_vec_exp_fp32(in);
*(HVX_UVector *) (dst + i * SIZEOF_FP32) = hvx_vec_exp_fp32_guard(in);
}
}
}
@@ -70,9 +83,9 @@ void hvx_exp_f32(const uint8_t * restrict src, uint8_t * restrict dst, const int
if (true == negate) {
HVX_Vector neg_vec_in = hvx_vec_neg_fp32(in);
vec_out = hvx_vec_exp_fp32(neg_vec_in);
vec_out = hvx_vec_exp_fp32_guard(neg_vec_in);
} else {
vec_out = hvx_vec_exp_fp32(in);
vec_out = hvx_vec_exp_fp32_guard(in);
}
hvx_vec_store_u((void *) dstf, left_over * SIZEOF_FP32, vec_out);

View File

@@ -38,13 +38,13 @@ void hvx_inverse_f32(const uint8_t * restrict src, uint8_t * restrict dst, const
#pragma unroll(4)
for (int i = 0; i < num_elems_whole; i += VLEN_FP32) {
*p_vec_out++ = hvx_vec_inverse_fp32(*p_vec_in++);
*p_vec_out++ = hvx_vec_inverse_fp32_guard(*p_vec_in++);
}
} else {
#pragma unroll(4)
for (int i = 0; i < num_elems_whole; i += VLEN_FP32) {
HVX_Vector in = *(HVX_UVector *) (src + i * SIZEOF_FP32);
*(HVX_UVector *) (dst + i * SIZEOF_FP32) = hvx_vec_inverse_fp32(in);
*(HVX_UVector *) (dst + i * SIZEOF_FP32) = hvx_vec_inverse_fp32_guard(in);
}
}
@@ -53,7 +53,7 @@ void hvx_inverse_f32(const uint8_t * restrict src, uint8_t * restrict dst, const
float * dstf = (float *) dst + num_elems_whole;
HVX_Vector in = *(HVX_UVector *) srcf;
HVX_Vector out = hvx_vec_inverse_fp32(in);
HVX_Vector out = hvx_vec_inverse_fp32_guard(in);
hvx_vec_store_u((void *) dstf, left_over * SIZEOF_FP32, out);
}

View File

@@ -401,7 +401,9 @@ void hvx_add_scalar_f32(const uint8_t * restrict src, const float val, uint8_t *
FARF(HIGH, "hvx_add_scalar_f32: unaligned loop in hvx op, possibly slower execution\n");
}
HVX_Vector val_vec = hvx_vec_splat_fp32(val);
static const float kInf = INFINITY;
const HVX_Vector inf = hvx_vec_splat_fp32(kInf);
HVX_Vector val_vec = hvx_vec_splat_fp32(val);
if (0 == unaligned_loop) {
HVX_Vector * restrict vec_in1 = (HVX_Vector *) src;
@@ -409,17 +411,24 @@ void hvx_add_scalar_f32(const uint8_t * restrict src, const float val, uint8_t *
#pragma unroll(4)
for (int i = 0; i < num_elems_whole; i += VLEN_FP32) {
HVX_Vector v = Q6_Vqf32_vadd_VsfVsf(*vec_in1++, val_vec);
*vec_out++ = Q6_Vsf_equals_Vqf32(v);
HVX_Vector in = *vec_in1++;
const HVX_VectorPred pred_inf = Q6_Q_vcmp_eq_VwVw(inf, in);
HVX_Vector v = Q6_Vqf32_vadd_VsfVsf(in, val_vec);
v = Q6_Vsf_equals_Vqf32(v);
v = Q6_V_vmux_QVV(pred_inf, inf, v);
*vec_out++ = v;
}
} else {
#pragma unroll(4)
for (int i = 0; i < num_elems_whole; i += VLEN_FP32) {
HVX_Vector in = *(HVX_UVector *) (src + i * SIZEOF_FP32);
HVX_Vector out = Q6_Vqf32_vadd_VsfVsf(in, val_vec);
const HVX_VectorPred pred_inf = Q6_Q_vcmp_eq_VwVw(inf, in);
HVX_Vector out = Q6_Vqf32_vadd_VsfVsf(in, val_vec);
out = Q6_Vsf_equals_Vqf32(out);
out = Q6_V_vmux_QVV(pred_inf, inf, out);
*(HVX_UVector *) (dst + i * SIZEOF_FP32) = Q6_Vsf_equals_Vqf32(out);
*(HVX_UVector *) (dst + i * SIZEOF_FP32) = out;
}
}
@@ -429,8 +438,12 @@ void hvx_add_scalar_f32(const uint8_t * restrict src, const float val, uint8_t *
HVX_Vector in = *(HVX_UVector *) srcf;
HVX_Vector out = Q6_Vqf32_vadd_VsfVsf(in, val_vec);
hvx_vec_store_u((void *) dstf, left_over * SIZEOF_FP32, Q6_Vsf_equals_Vqf32(out));
const HVX_VectorPred pred_inf = Q6_Q_vcmp_eq_VwVw(inf, in);
HVX_Vector out = Q6_Vqf32_vadd_VsfVsf(in, val_vec);
out = Q6_Vsf_equals_Vqf32(out);
out = Q6_V_vmux_QVV(pred_inf, inf, out);
hvx_vec_store_u((void *) dstf, left_over * SIZEOF_FP32, out);
}
}

View File

@@ -12,6 +12,15 @@
#define VLEN_FP32 (VLEN / SIZEOF_FP32)
#define VLEN_FP16 (VLEN / SIZEOF_FP16)
typedef union {
HVX_Vector v;
uint8_t b[VLEN];
uint16_t h[VLEN_FP16];
uint32_t w[VLEN_FP32];
__fp16 fp16[VLEN_FP16];
float fp32[VLEN_FP32];
} __attribute__((aligned(VLEN), packed)) HVX_VectorAlias;
static inline HVX_Vector hvx_vec_splat_fp32(float i) {
union {
float f;
@@ -243,19 +252,16 @@ static __attribute__((always_inline)) int32_t is_in_one_chunk(void * addr, uint3
}
static void hvx_vec_dump_fp16_n(char * pref, HVX_Vector v, uint32_t n) {
union {
HVX_Vector v;
__fp16 d[64];
} u = { .v = v };
HVX_VectorAlias u = { .v = v };
const uint32_t n0 = n / 16;
const uint32_t n1 = n % 16;
int i = 0;
for (; i < n0; i++) {
htp_dump_fp16_line(pref, u.d + (16 * i), 16);
htp_dump_fp16_line(pref, u.fp16 + (16 * i), 16);
}
if (n1) {
htp_dump_fp16_line(pref, u.d + (16 * i), n1);
htp_dump_fp16_line(pref, u.fp16 + (16 * i), n1);
}
}
@@ -411,8 +417,8 @@ static inline HVX_Vector hvx_vec_fp32_reduce_sum_n(HVX_Vector in, unsigned int n
HVX_Vector sum = in, sum_t;
while (width < total) {
sum_t = Q6_V_vror_VR(sum, width); // rotate right
sum = Q6_Vsf_equals_Vqf32(Q6_Vqf32_vadd_VsfVsf(sum, sum_t)); // elementwise sum
sum_t = Q6_V_vror_VR(sum, width); // rotate right
sum = Q6_Vsf_equals_Vqf32(Q6_Vqf32_vadd_VsfVsf(sum, sum_t)); // elementwise sum
width = width << 1;
}
return sum;
@@ -491,7 +497,7 @@ static inline HVX_Vector hvx_vec_abs_fp16(HVX_Vector v) {
static inline HVX_Vector hvx_vec_neg_fp16(HVX_Vector v) {
// neg by setting the fp16 sign bit
HVX_Vector mask = Q6_Vh_vsplat_R(0x8000);
return Q6_V_vor_VV(v, mask);
return Q6_V_vxor_VV(v, mask);
}
static inline HVX_Vector hvx_vec_abs_fp32(HVX_Vector v) {
@@ -506,7 +512,7 @@ static inline HVX_Vector hvx_vec_neg_fp32(HVX_Vector v) {
#else
// neg by setting the fp32 sign bit
HVX_Vector mask = Q6_V_vsplat_R(0x80000000);
return Q6_V_vor_VV(v, mask);
return Q6_V_vxor_VV(v, mask);
#endif // __HTP_ARCH__ > 75
}
@@ -720,6 +726,24 @@ static inline HVX_Vector hvx_vec_inverse_fp32(HVX_Vector v_sf) {
return Q6_Vsf_equals_Vqf32(r_qf);
}
static inline HVX_Vector hvx_vec_inverse_fp32_guard(HVX_Vector v_sf) {
static const float kInf = INFINITY;
static const uint32_t kNanMask = 0x7fffffff;
static const uint32_t kNanMin = 0x7f800000;
const HVX_Vector inf = hvx_vec_splat_fp32(kInf);
const HVX_VectorPred pred_inf = Q6_Q_vcmp_gt_VsfVsf(inf, v_sf);
HVX_Vector out = hvx_vec_inverse_fp32(v_sf);
const HVX_Vector nan_mask = Q6_V_vsplat_R(kNanMask);
const HVX_Vector nan_min = Q6_V_vsplat_R(kNanMin);
HVX_Vector masked_out = Q6_V_vand_VV(out, nan_mask);
const HVX_VectorPred pred = Q6_Q_vcmp_gtand_QVuwVuw(pred_inf, nan_min, masked_out);
return Q6_V_vmux_QVV(pred, out, Q6_V_vzero());
}
#define FAST_SIGMOID_LOG2F (0x3fb8aa3b) // 1.442695022
#define FAST_SIGMOID_C1 (0x3d009076) // 0.03138777
#define FAST_SIGMOID_C2 (0x3e8d74bd) // 0.276281267
@@ -934,6 +958,16 @@ static inline HVX_Vector hvx_vec_rsqrt_fp32(HVX_Vector in_vec) {
return Q6_Vsf_equals_Vqf32(temp);
}
static inline HVX_Vector hvx_vec_fast_sigmoid_fp32_guard(HVX_Vector v) {
static const float kMaxExp = -88.02f; // log(INF)
const HVX_Vector max_exp = Q6_V_vsplat_R(*((uint32_t *) &kMaxExp));
const HVX_VectorPred pred_inf = Q6_Q_vcmp_gt_VsfVsf(v, max_exp);
HVX_Vector out = hvx_vec_fast_sigmoid_fp32(v);
return Q6_V_vmux_QVV(pred_inf, out, Q6_V_vzero());
}
static inline void hvx_fast_sigmoid_f32(const uint8_t * restrict src, uint8_t * restrict dst, const int num_elems) {
int step_of_1 = num_elems >> 5;
int remaining = num_elems - step_of_1 * VLEN_FP32;
@@ -945,7 +979,7 @@ static inline void hvx_fast_sigmoid_f32(const uint8_t * restrict src, uint8_t *
#pragma unroll(4)
for (int i = 0; i < step_of_1; i++) {
v_dst[i] = hvx_vec_fast_sigmoid_fp32(v_src[i]);
v_dst[i] = hvx_vec_fast_sigmoid_fp32_guard(v_src[i]);
}
}