mirror of
https://github.com/ggml-org/llama.cpp.git
synced 2025-10-27 08:21:30 +00:00
CANN: refactor mask handling and improve performance in FA (#15561)
* CANN(flash-attn): refactor mask handling and improve performance 1. Refactored the mask computation in Flash Attention, unified the logic without separating prefill and decode. 2. Optimized performance in non-alibi scenarios by reducing one repeat operation. 3. Updated operator management to explicitly mark unsupported cases on 310P devices and when dim is not divisible by 16. Signed-off-by: noemotiovon <757486878@qq.com> * [CANN]: fix review Signed-off-by: noemotiovon <757486878@qq.com> * [CANN]: Optimization FA BNSD to BSND Signed-off-by: noemotiovon <757486878@qq.com> --------- Signed-off-by: noemotiovon <757486878@qq.com>
This commit is contained in:
@@ -1427,17 +1427,17 @@ static void aclnn_pow_tensor_tensor(ggml_backend_cann_context& ctx,
|
||||
static void aclnn_get_slope_inner(ggml_backend_cann_context& ctx, void* slope_buffer,
|
||||
float m, int64_t size, float start, float stop, float step){
|
||||
int64_t ne[] = {size};
|
||||
size_t nb[] = {sizeof(float)};
|
||||
size_t nb[] = {sizeof(uint16_t)};
|
||||
|
||||
ggml_cann_pool_alloc arange_allocator(ctx.pool(), size * sizeof(float));
|
||||
ggml_cann_pool_alloc arange_allocator(ctx.pool(), size * sizeof(uint16_t));
|
||||
void* arange_buffer = arange_allocator.get();
|
||||
|
||||
aclTensor* arange_tensor = ggml_cann_create_tensor(
|
||||
arange_buffer, ACL_FLOAT, sizeof(float), ne, nb, 1);
|
||||
arange_buffer, ACL_FLOAT16, sizeof(uint16_t), ne, nb, 1);
|
||||
aclnn_arange(ctx, arange_tensor, start, stop, step, size);
|
||||
|
||||
aclTensor* slope_tensor = ggml_cann_create_tensor(
|
||||
slope_buffer, ACL_FLOAT, sizeof(float), ne, nb, 1);
|
||||
slope_buffer, ACL_FLOAT16, sizeof(uint16_t), ne, nb, 1);
|
||||
|
||||
aclScalar* sc = aclCreateScalar(&m, aclDataType::ACL_FLOAT);
|
||||
|
||||
@@ -3180,11 +3180,38 @@ void ggml_cann_mul_mat_id(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
|
||||
|
||||
void ggml_cann_flash_attn_ext(ggml_backend_cann_context& ctx, ggml_tensor* dst){
|
||||
|
||||
ggml_tensor* src0 = dst->src[0]; // q, fp32
|
||||
ggml_tensor* src1 = dst->src[1]; // k, fp16
|
||||
ggml_tensor* src2 = dst->src[2]; // v, fp16
|
||||
ggml_tensor* src0 = dst->src[0]; // q, fp32 | B, N, S, D (uncont) -> B, S, N, D (cont)
|
||||
ggml_tensor* src1 = dst->src[1]; // k, fp16 | B, N, S, D (uncont) -> B, S, N, D (cont)
|
||||
ggml_tensor* src2 = dst->src[2]; // v, fp16 | B, N, S, D (uncont) -> B, S, N, D (cont)
|
||||
ggml_tensor* src3 = dst->src[3]; // mask, fp16
|
||||
|
||||
// B, N, S, D (uncont) -> B, S, N, D (cont)
|
||||
int64_t src0_bsnd_ne[GGML_MAX_DIMS];
|
||||
memcpy(src0_bsnd_ne, src0->ne, GGML_MAX_DIMS * sizeof(int64_t));
|
||||
size_t src0_bsnd_nb[GGML_MAX_DIMS];
|
||||
memcpy(src0_bsnd_nb, src0->nb, GGML_MAX_DIMS * sizeof(size_t));
|
||||
int64_t src1_bsnd_ne[GGML_MAX_DIMS];
|
||||
memcpy(src1_bsnd_ne, src1->ne, GGML_MAX_DIMS * sizeof(int64_t));
|
||||
size_t src1_bsnd_nb[GGML_MAX_DIMS];
|
||||
memcpy(src1_bsnd_nb, src1->nb, GGML_MAX_DIMS * sizeof(size_t));
|
||||
int64_t src2_bsnd_ne[GGML_MAX_DIMS];
|
||||
memcpy(src2_bsnd_ne, src2->ne, GGML_MAX_DIMS * sizeof(int64_t));
|
||||
size_t src2_bsnd_nb[GGML_MAX_DIMS];
|
||||
memcpy(src2_bsnd_nb, src2->nb, GGML_MAX_DIMS * sizeof(size_t));
|
||||
|
||||
auto transpose12 = [](int64_t* ne, size_t* nb) {
|
||||
int64_t ne_tmp = ne[1];
|
||||
size_t nb_tmp = nb[1];
|
||||
ne[1] = ne[2];
|
||||
nb[1] = nb[2];
|
||||
ne[2] = ne_tmp;
|
||||
nb[2] = nb_tmp;
|
||||
};
|
||||
|
||||
transpose12(src0_bsnd_ne, src0_bsnd_nb);
|
||||
transpose12(src1_bsnd_ne, src1_bsnd_nb);
|
||||
transpose12(src2_bsnd_ne, src2_bsnd_nb);
|
||||
|
||||
float maxBias = 0.0f;
|
||||
float scaleValue = 1.0f;
|
||||
float logitSoftcap = 0.0f;
|
||||
@@ -3206,11 +3233,12 @@ void ggml_cann_flash_attn_ext(ggml_backend_cann_context& ctx, ggml_tensor* dst){
|
||||
void* src0_f16_buffer = nullptr;
|
||||
|
||||
if(ggml_cann_type_mapping(src0->type) != faDataType){
|
||||
aclTensor* acl_src0_f32_tensor = ggml_cann_create_tensor(src0);
|
||||
aclTensor* acl_src0_f32_tensor = ggml_cann_create_tensor(src0, src0_bsnd_ne,
|
||||
src0_bsnd_nb, GGML_MAX_DIMS);
|
||||
src0_f16_buffer = src0_f16_allocator.alloc(
|
||||
ggml_nelements(src0) * faElemSize);
|
||||
|
||||
int64_t* src0_f16_ne = src0->ne;
|
||||
int64_t* src0_f16_ne = src0_bsnd_ne;
|
||||
size_t src0_f16_nb[GGML_MAX_DIMS];
|
||||
src0_f16_nb[0] = sizeof(uint16_t);
|
||||
for(int i = 1; i < GGML_MAX_DIMS; ++i){
|
||||
@@ -3224,20 +3252,23 @@ void ggml_cann_flash_attn_ext(ggml_backend_cann_context& ctx, ggml_tensor* dst){
|
||||
aclnn_cast(ctx, acl_src0_f32_tensor, acl_src0_f16_tensor, faDataType);
|
||||
ggml_cann_release_resources(ctx, acl_src0_f32_tensor);
|
||||
}else{
|
||||
acl_src0_f16_tensor = ggml_cann_create_tensor(src0);
|
||||
acl_src0_f16_tensor = ggml_cann_create_tensor(src0, src0_bsnd_ne,
|
||||
src0_bsnd_nb, GGML_MAX_DIMS);
|
||||
}
|
||||
|
||||
// Step 2: create the acl tensors for src1 (Key), src2 (Value),
|
||||
// and the direct output from FusedInferAttention
|
||||
|
||||
acl_src1_f16_tensor = ggml_cann_create_tensor(src1);
|
||||
acl_src2_f16_tensor = ggml_cann_create_tensor(src2);
|
||||
acl_src1_f16_tensor = ggml_cann_create_tensor(src1, src1_bsnd_ne,
|
||||
src1_bsnd_nb, GGML_MAX_DIMS);
|
||||
acl_src2_f16_tensor = ggml_cann_create_tensor(src2, src2_bsnd_ne,
|
||||
src2_bsnd_nb, GGML_MAX_DIMS);
|
||||
|
||||
ggml_cann_pool_alloc out_f16_allocator(ctx.pool());
|
||||
void* out_f16_buffer = out_f16_allocator.alloc(
|
||||
ggml_nelements(dst) * faElemSize);
|
||||
|
||||
int64_t* out_f16_ne = src0->ne;
|
||||
int64_t* out_f16_ne = src0_bsnd_ne;
|
||||
size_t out_f16_nb[GGML_MAX_DIMS];
|
||||
out_f16_nb[0] = faElemSize;
|
||||
for(int i = 1; i < GGML_MAX_DIMS; ++i){
|
||||
@@ -3251,88 +3282,81 @@ void ggml_cann_flash_attn_ext(ggml_backend_cann_context& ctx, ggml_tensor* dst){
|
||||
|
||||
// Step 3: create the PSEShift tensor if needed
|
||||
// this tensor is considered as mask (f16) in the llama.cpp
|
||||
|
||||
aclTensor* bcast_pse_tensor = nullptr;
|
||||
int64_t bcast_pse_ne[GGML_MAX_DIMS];
|
||||
size_t bcast_pse_nb[GGML_MAX_DIMS];
|
||||
ggml_cann_pool_alloc bcast_pse_allocator(ctx.pool());
|
||||
void* bcast_pse_buffer = nullptr;
|
||||
|
||||
if(src3 != nullptr){
|
||||
bcast_pse_buffer = bcast_pse_allocator.alloc(
|
||||
ggml_nelements(src3) * src0->ne[2] * sizeof(uint16_t));
|
||||
// Construct the truncated pse tensor (common for prefill/decode)
|
||||
int64_t trunc_pse_ne[GGML_MAX_DIMS] = {
|
||||
src3->ne[0], // D
|
||||
src0->ne[1], // S (number of Q tokens)
|
||||
src3->ne[2], // mask N
|
||||
src3->ne[3] // B
|
||||
};
|
||||
size_t* trunc_pse_nb = src3->nb;
|
||||
|
||||
if(src0->ne[1] > 1){
|
||||
// Case 1: broadcast pse for prefill stage with multiple head
|
||||
aclTensor* acl_mask_f16_tensor = ggml_cann_create_tensor(src3);
|
||||
bcast_pse_ne[0] = src3->ne[0];
|
||||
bcast_pse_ne[1] = src3->ne[1];
|
||||
bcast_pse_ne[2] = src0->ne[2];
|
||||
bcast_pse_ne[3] = src3->ne[3];
|
||||
aclTensor* acl_mask_f16_trunc_tensor = ggml_cann_create_tensor(
|
||||
src3->data, ACL_FLOAT16, sizeof(uint16_t),
|
||||
trunc_pse_ne, trunc_pse_nb, GGML_MAX_DIMS
|
||||
);
|
||||
|
||||
int64_t bcast_pse_ne[GGML_MAX_DIMS];
|
||||
size_t bcast_pse_nb[GGML_MAX_DIMS];
|
||||
bcast_pse_ne[0] = src3->ne[0]; // D
|
||||
bcast_pse_ne[1] = src0->ne[1]; // S
|
||||
bcast_pse_ne[2] = src0->ne[2]; // N (num_heads)
|
||||
bcast_pse_ne[3] = src3->ne[3]; // B
|
||||
if (maxBias == 0.0f) {
|
||||
// When maxBias == 0.0f, use nb = 0 reduce once repeat (Qwen2)
|
||||
// Construct the bcast tensor (simulate repeat on the head dimension using stride=0)
|
||||
bcast_pse_nb[0] = sizeof(uint16_t);
|
||||
for(int i = 1; i < GGML_MAX_DIMS; ++i){
|
||||
bcast_pse_nb[i] = bcast_pse_nb[i - 1] * bcast_pse_ne[i - 1];
|
||||
}
|
||||
bcast_pse_nb[1] = bcast_pse_nb[0] * bcast_pse_ne[0];
|
||||
bcast_pse_nb[2] = 0; // <---- the head dimension shares the same data
|
||||
bcast_pse_nb[3] = src3->nb[3];
|
||||
|
||||
bcast_pse_tensor = ggml_cann_create_tensor(
|
||||
bcast_pse_buffer, ACL_FLOAT16, sizeof(uint16_t),
|
||||
bcast_pse_ne, bcast_pse_nb, GGML_MAX_DIMS);
|
||||
|
||||
int64_t repeats[] = {1, src0->ne[2], 1, 1};
|
||||
aclnn_repeat(ctx, acl_mask_f16_tensor, bcast_pse_tensor, repeats);
|
||||
|
||||
ggml_cann_release_resources(ctx, acl_mask_f16_tensor);
|
||||
}else{
|
||||
// Case 2: trunc the first row and broadcast pse for decode stage with multiple head
|
||||
int64_t trunc_pse_ne[GGML_MAX_DIMS] = {src3->ne[0], src0->ne[1], src3->ne[2], src3->ne[3]};
|
||||
size_t* trunc_pse_nb = src3->nb;
|
||||
|
||||
aclTensor* acl_mask_f16_trunc_tensor = ggml_cann_create_tensor(
|
||||
src3->data, ACL_FLOAT16, sizeof(uint16_t),
|
||||
trunc_pse_ne, trunc_pse_nb, GGML_MAX_DIMS);
|
||||
|
||||
bcast_pse_ne[0] = src3->ne[0];
|
||||
bcast_pse_ne[1] = src0->ne[1];
|
||||
bcast_pse_ne[2] = src0->ne[2];
|
||||
bcast_pse_ne[3] = src3->ne[3];
|
||||
bcast_pse_ne, bcast_pse_nb, GGML_MAX_DIMS
|
||||
);
|
||||
|
||||
ggml_cann_release_resources(ctx, acl_mask_f16_trunc_tensor);
|
||||
} else {
|
||||
bcast_pse_nb[0] = sizeof(uint16_t);
|
||||
for(int i = 1; i < GGML_MAX_DIMS; ++i){
|
||||
for (int i = 1; i < GGML_MAX_DIMS; i++) {
|
||||
bcast_pse_nb[i] = bcast_pse_nb[i - 1] * bcast_pse_ne[i - 1];
|
||||
}
|
||||
|
||||
void* bcast_pse_buffer = bcast_pse_allocator.alloc(
|
||||
ggml_nelements(src3) * src0->ne[2] * sizeof(uint16_t)
|
||||
);
|
||||
|
||||
bcast_pse_tensor = ggml_cann_create_tensor(
|
||||
bcast_pse_buffer, ACL_FLOAT16, sizeof(uint16_t),
|
||||
bcast_pse_ne, bcast_pse_nb, GGML_MAX_DIMS);
|
||||
bcast_pse_ne, bcast_pse_nb, GGML_MAX_DIMS
|
||||
);
|
||||
|
||||
int64_t repeats[] = {1, src0->ne[2], 1, 1};
|
||||
aclnn_repeat(ctx, acl_mask_f16_trunc_tensor, bcast_pse_tensor, repeats);
|
||||
|
||||
ggml_cann_release_resources(ctx, acl_mask_f16_trunc_tensor);
|
||||
}
|
||||
|
||||
// Compute the slope if needed. Derived from ggml_cann_softmax().
|
||||
if(maxBias != 0.0f){
|
||||
// alibi
|
||||
// Compute the slope if needed. Derived from ggml_cann_softmax().
|
||||
const int64_t n_heads = src0->ne[2];
|
||||
ggml_cann_pool_alloc slope_allocator(ctx.pool(), n_heads * sizeof(float));
|
||||
ggml_cann_pool_alloc slope_allocator(ctx.pool(), n_heads * sizeof(uint16_t));
|
||||
void* slope_buffer = slope_allocator.get();
|
||||
aclnn_get_slope(ctx, n_heads, slope_buffer, maxBias);
|
||||
|
||||
int64_t slope_ne[] = {1, 1, n_heads, 1};
|
||||
size_t slope_nb[GGML_MAX_DIMS];
|
||||
slope_nb[0] = sizeof(float);
|
||||
slope_nb[0] = sizeof(uint16_t);
|
||||
for(int i = 1;i<GGML_MAX_DIMS;i++) {
|
||||
slope_nb[i] = slope_nb[i-1] * slope_ne[0];
|
||||
}
|
||||
|
||||
aclTensor* slope_tensor = ggml_cann_create_tensor(
|
||||
slope_buffer, ACL_FLOAT, sizeof(float),
|
||||
slope_buffer, ACL_FLOAT16, sizeof(uint16_t),
|
||||
slope_ne, slope_nb, GGML_MAX_DIMS);
|
||||
GGML_CANN_CALL_ACLNN_OP(ctx, InplaceMul, bcast_pse_tensor, slope_tensor);
|
||||
|
||||
ggml_cann_release_resources(ctx, slope_tensor);
|
||||
ggml_cann_release_resources(ctx, slope_tensor, acl_mask_f16_trunc_tensor);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -3349,7 +3373,7 @@ void ggml_cann_flash_attn_ext(ggml_backend_cann_context& ctx, ggml_tensor* dst){
|
||||
// double scaleValue = 1 / sqrt(src0->ne[0]); // 1/sqrt(d)
|
||||
int64_t preTokens = 65535;
|
||||
int64_t nextTokens = 65535;
|
||||
char layout[5] = {'B', 'N', 'S', 'D', 0};
|
||||
char layout[5] = {'B', 'S', 'N', 'D', 0};
|
||||
int64_t sparseMode = 0;
|
||||
int64_t innerPrecise = (src0->ne[1] == 1) ? 0 : 2;
|
||||
int64_t blockSize = 0;
|
||||
@@ -3386,32 +3410,9 @@ void ggml_cann_flash_attn_ext(ggml_backend_cann_context& ctx, ggml_tensor* dst){
|
||||
);
|
||||
|
||||
// Step 6: post-processing, permute and cast to f32
|
||||
|
||||
int64_t new_dim[] = {0, 2, 1, 3};
|
||||
aclTensor* acl_dst_tensor = ggml_cann_create_tensor(dst);
|
||||
|
||||
if(ggml_cann_type_mapping(dst->type) != faDataType){
|
||||
ggml_cann_pool_alloc perm_out_f16_allocator(ctx.pool());
|
||||
perm_out_f16_allocator.alloc(ggml_nelements(dst) * faElemSize);
|
||||
void* perm_out_f16_buffer = perm_out_f16_allocator.get();
|
||||
|
||||
int64_t* perm_out_f16_ne = dst->ne;
|
||||
size_t perm_out_f16_nb[GGML_MAX_DIMS];
|
||||
perm_out_f16_nb[0] = faElemSize;
|
||||
for(int i = 1; i < GGML_MAX_DIMS; ++i){
|
||||
perm_out_f16_nb[i] = perm_out_f16_nb[i - 1] * perm_out_f16_ne[i - 1];
|
||||
}
|
||||
aclTensor* acl_perm_out_f16_tensor = ggml_cann_create_tensor(
|
||||
perm_out_f16_buffer, faDataType, faElemSize,
|
||||
perm_out_f16_ne, perm_out_f16_nb, GGML_MAX_DIMS);
|
||||
aclnn_permute(ctx, acl_dst_f16_tensor, acl_perm_out_f16_tensor, new_dim, GGML_MAX_DIMS);
|
||||
aclnn_cast(ctx,
|
||||
acl_perm_out_f16_tensor, acl_dst_tensor, ggml_cann_type_mapping(dst->type));
|
||||
ggml_cann_release_resources(ctx, acl_perm_out_f16_tensor);
|
||||
}else{
|
||||
// only need to permute
|
||||
aclnn_permute(ctx, acl_dst_f16_tensor, acl_dst_tensor, new_dim, GGML_MAX_DIMS);
|
||||
}
|
||||
// TODO: when dst is fp16, don't need cast
|
||||
aclnn_cast(ctx, acl_dst_f16_tensor, acl_dst_tensor, ggml_cann_type_mapping(dst->type));
|
||||
ggml_cann_release_resources(ctx, acl_src0_f16_tensor,
|
||||
acl_src1_f16_tensor,
|
||||
acl_src2_f16_tensor,
|
||||
|
||||
@@ -2336,7 +2336,7 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev,
|
||||
case GGML_TYPE_Q8_0:
|
||||
case GGML_TYPE_Q4_0:
|
||||
#ifdef ASCEND_310P
|
||||
// Q4 && Q8 per group is not suppor on 310p device
|
||||
// Q4 && Q8 per group is not support on 310p device
|
||||
return false;
|
||||
#endif
|
||||
// only support contiguous for quantized types.
|
||||
@@ -2354,7 +2354,7 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev,
|
||||
case GGML_TYPE_Q8_0:
|
||||
case GGML_TYPE_Q4_0:
|
||||
#ifdef ASCEND_310P
|
||||
// Q4 && Q8 per group is not suppor on 310p device
|
||||
// Q4 && Q8 per group is not support on 310p device
|
||||
return false;
|
||||
#endif
|
||||
// only support contiguous for quantized types.
|
||||
@@ -2505,6 +2505,10 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev,
|
||||
}
|
||||
return true;
|
||||
case GGML_OP_FLASH_ATTN_EXT:{
|
||||
#ifdef ASCEND_310P
|
||||
// FA not support on 310p device
|
||||
return false;
|
||||
#endif
|
||||
// derived from [ggml-cuda.cu]
|
||||
if(op->src[1]->type != GGML_TYPE_F16 || op->src[2]->type != GGML_TYPE_F16){
|
||||
return false;
|
||||
@@ -2530,6 +2534,10 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev,
|
||||
// DeepSeek MLA
|
||||
return false;
|
||||
}
|
||||
if (op->src[0]->ne[0] % 16 != 0) {
|
||||
// TODO: padding to support
|
||||
return false;
|
||||
}
|
||||
float logitSoftcap = 0.0f;
|
||||
memcpy(&logitSoftcap, (float*)op->op_params + 2, sizeof(float));
|
||||
if(logitSoftcap != 0.0f) {
|
||||
|
||||
Reference in New Issue
Block a user