mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-31 08:51:55 +00:00 
			
		
		
		
	convert-llama-h5-to-gguf.py : load model in parts to save memory
This commit is contained in:
		| @@ -1,4 +1,4 @@ | ||||
| # Quick and dirty HF llama --> gguf conversion, GQA/70b wont work | ||||
| # HF llama --> gguf conversion, GQA/70b not supported | ||||
|  | ||||
| import gguf | ||||
| import gguf_tensor_map as tmap | ||||
| @@ -9,7 +9,7 @@ import json | ||||
| import numpy as np | ||||
| from typing import Any, List | ||||
| from pathlib import Path | ||||
| from transformers import AutoModelForCausalLM | ||||
| import torch | ||||
| from sentencepiece import SentencePieceProcessor | ||||
|  | ||||
|  | ||||
| @@ -22,6 +22,15 @@ def permute(weights: NDArray, n_head: int) -> NDArray: | ||||
|                    .swapaxes(1, 2) | ||||
|                    .reshape(weights.shape)) | ||||
|  | ||||
| def count_model_parts(dir_model: str) -> int: | ||||
|     num_parts = 0 | ||||
|     for filename in os.listdir(dir_model): | ||||
|         if filename.startswith("pytorch_model-"): | ||||
|             num_parts += 1 | ||||
|  | ||||
|     if num_parts > 0: | ||||
|         print("gguf: found " + str(num_parts) + " model parts") | ||||
|     return num_parts | ||||
|  | ||||
| if len(sys.argv) < 3: | ||||
|     print("Usage: convert-h5-to-ggml.py dir-model ftype\n") | ||||
| @@ -60,8 +69,8 @@ if hparams["architectures"][0] != "LlamaForCausalLM": | ||||
|     print("Model architecture not supported: " + hparams["architectures"][0] ) | ||||
|     sys.exit() | ||||
|  | ||||
| model = AutoModelForCausalLM.from_pretrained(dir_model, low_cpu_mem_usage=True, trust_remote_code=True) | ||||
| list_vars = model.state_dict() | ||||
| # get number of model parts | ||||
| num_parts = count_model_parts(dir_model) | ||||
|  | ||||
| gguf_writer = gguf.GGUFWriter.open(fname_out) | ||||
|  | ||||
| @@ -164,41 +173,62 @@ tensor_map = tmap.get_tensor_map(block_count) | ||||
| # tensor info | ||||
| print("gguf: get tensor metadata") | ||||
|  | ||||
| for name in list_vars.keys(): | ||||
|     data = list_vars[name].squeeze().numpy() | ||||
|  | ||||
|     # we don't need these | ||||
|     if name.endswith(".rotary_emb.inv_freq"): | ||||
|         continue | ||||
| if num_parts == 0: | ||||
|     part_names = ("pytorch_model.bin",) | ||||
| else: | ||||
|     part_names = ( | ||||
|         f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1) | ||||
|     ) | ||||
|  | ||||
|     # permute these | ||||
|     if name.endswith(".q_proj.weight") or name.endswith(".k_proj.weight"): | ||||
|         data = permute(data,head_count) | ||||
| for part_name in part_names: | ||||
|     print("gguf: loading model part '"+ part_name + "'") | ||||
|     model_part = torch.load(f"{dir_model}/{part_name}", map_location="cpu") | ||||
|  | ||||
|     # map tensor names | ||||
|     if name.endswith(".weight") and name[:-7] in tensor_map: | ||||
|         name = tensor_map[name[:-7]] + ".weight" | ||||
|     elif name.endswith(".bias") and name[:-5] in tensor_map: | ||||
|         name = tensor_map[name[:-5]] + ".bias" | ||||
|     else: | ||||
|         print( "Can not map tensor '" + name + "'" ) | ||||
|         sys.exit() | ||||
|     for name in model_part.keys(): | ||||
|         data = model_part[name] | ||||
|  | ||||
|     n_dims = len(data.shape) | ||||
|     data_dtype = data.dtype  | ||||
|         # we don't need these | ||||
|         if name.endswith(".rotary_emb.inv_freq"): | ||||
|             continue | ||||
|  | ||||
| #    print( name + " dims " + str(n_dims) + " dtype " + str(data.dtype) ) | ||||
|  | ||||
|     if data.dtype != np.float16 and data.dtype != np.float32: | ||||
|         # convert any unsupported data types to float32 | ||||
|         data_dtype = np.float32 | ||||
|     elif ftype == 1 and data.dtype == np.float32 and name.endswith(".weight") and n_dims == 2: | ||||
|         if data.dtype != torch.float16 and data.dtype != torch.float32: | ||||
|             data = data.to(torch.float32) | ||||
|  | ||||
|         data = data.squeeze().numpy() | ||||
|  | ||||
|         # permute these | ||||
|         if name.endswith(".q_proj.weight") or name.endswith(".k_proj.weight"): | ||||
|             data = permute(data,head_count) | ||||
|  | ||||
|         # map tensor names | ||||
|         if name.endswith(".weight") and name[:-7] in tensor_map: | ||||
|             name = tensor_map[name[:-7]] + ".weight" | ||||
|         elif name.endswith(".bias") and name[:-5] in tensor_map: | ||||
|             name = tensor_map[name[:-5]] + ".bias" | ||||
|         else: | ||||
|             print( "Can not map tensor '" + name + "'" ) | ||||
|             sys.exit() | ||||
|  | ||||
|         n_dims = len(data.shape) | ||||
|         data_dtype = data.dtype  | ||||
|  | ||||
|         # if f32 desired, convert any float16 to float32 | ||||
|         if ftype == 0 and data.dtype == np.float16: | ||||
|             data_dtype = np.float32 | ||||
|  | ||||
|         # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32 | ||||
|         if ftype == 1 and data_dtype == np.float16 and n_dims == 1: | ||||
|             data_dtype = np.float32 | ||||
|  | ||||
|         # if f16 desired, convert any float32 2-dim weight tensors to float16 | ||||
|         data_dtype = np.float16 | ||||
|         if ftype == 1 and data.dtype == np.float32 and name.endswith(".weight") and n_dims == 2: | ||||
|             data_dtype = np.float16 | ||||
|  | ||||
|     data_nbytes = data.size * 2 if data_dtype == np.float16 else data.size * 4 | ||||
|         data_nbytes = data.size * 2 if data_dtype == np.float16 else data.size * 4 | ||||
|  | ||||
|     gguf_writer.add_tensor_info(name, data.shape, data_dtype, data_nbytes) | ||||
|         gguf_writer.add_tensor_info(name, data.shape, data_dtype, data_nbytes) | ||||
|  | ||||
|  | ||||
| print("gguf: write header") | ||||
| @@ -211,28 +241,63 @@ gguf_writer.write_ti_data_to_file() | ||||
| # tensor data | ||||
| print("gguf: convert and write tensor data") | ||||
|  | ||||
| for name in list_vars.keys(): | ||||
|     data = list_vars[name].squeeze().numpy() | ||||
| if num_parts == 0: | ||||
|     part_names = ("pytorch_model.bin",) | ||||
| else: | ||||
|     part_names = ( | ||||
|         f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1) | ||||
|     ) | ||||
|  | ||||
|     # we don't need these | ||||
|     if name.endswith(".rotary_emb.inv_freq"): | ||||
|         continue | ||||
| for part_name in part_names: | ||||
|     print("gguf: loading model part '"+ part_name + "'") | ||||
|     model_part = torch.load(f"{dir_model}/{part_name}", map_location="cpu") | ||||
|  | ||||
|     # permute these | ||||
|     if name.endswith(".q_proj.weight") or name.endswith(".k_proj.weight"): | ||||
|         data = permute(data, head_count) | ||||
|     for name in model_part.keys(): | ||||
|         data = model_part[name] | ||||
|  | ||||
|     n_dims = len(data.shape) | ||||
|     data_dtype = data.dtype  | ||||
|         old_dtype = data.dtype | ||||
|  | ||||
|         # we don't need these | ||||
|         if name.endswith(".rotary_emb.inv_freq"): | ||||
|             continue | ||||
|  | ||||
|     if data_dtype != np.float16 and data_dtype != np.float32: | ||||
|         # convert any unsupported data types to float32 | ||||
|         data = data.astype(np.float32) | ||||
|     elif ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2: | ||||
|         # if f16 desired, convert any float32 2-dim weight tensors to float16 | ||||
|         data = data.astype(np.float16) | ||||
|         if data.dtype != torch.float16 and data.dtype != torch.float32: | ||||
|             data = data.to(torch.float32) | ||||
|  | ||||
|     gguf_writer.write_tensor_to_file(data) | ||||
|         data = data.squeeze().numpy() | ||||
|  | ||||
|         # permute these | ||||
|         if name.endswith(".q_proj.weight") or name.endswith(".k_proj.weight"): | ||||
|             data = permute(data, head_count) | ||||
|  | ||||
|         # map tensor names | ||||
|         if name.endswith(".weight") and name[:-7] in tensor_map: | ||||
|             name = tensor_map[name[:-7]] + ".weight" | ||||
|         elif name.endswith(".bias") and name[:-5] in tensor_map: | ||||
|             name = tensor_map[name[:-5]] + ".bias" | ||||
|         else: | ||||
|             print( "Can not map tensor '" + name + "'" ) | ||||
|             sys.exit() | ||||
|  | ||||
|         n_dims = len(data.shape) | ||||
|         data_dtype = data.dtype  | ||||
|  | ||||
|         # if f32 desired, convert any float16 to float32 | ||||
|         if ftype == 0 and data.dtype == np.float16: | ||||
|             data = data.astype(np.float32) | ||||
|  | ||||
|         # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32 | ||||
|         if ftype == 1 and data_dtype == np.float16 and n_dims == 1: | ||||
|             data = data.astype(np.float32) | ||||
|  | ||||
|         # if f16 desired, convert any float32 2-dim weight tensors to float16 | ||||
|         if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2: | ||||
|             data = data.astype(np.float16) | ||||
|  | ||||
|         print( name + ", shape " + str(len(data.shape)) + ", " + str(old_dtype) + " --> " + str(data.dtype)) | ||||
|  | ||||
|         gguf_writer.write_tensor_to_file(data) | ||||
|  | ||||
| gguf_writer.close() | ||||
|  | ||||
|   | ||||
		Reference in New Issue
	
	Block a user
	 klosax
					klosax