Compare commits

...

116 Commits

Author SHA1 Message Date
Jesse Beder
b57efe94e7 Bump version to 0.5.3. 2016-01-10 12:11:40 -06:00
Jesse Beder
36fd93a8d5 Fix formatting when writing " as a character. 2016-01-10 12:08:42 -06:00
Jesse Beder
97d56c3f36 Remove 'const' modifier on return of Node::as.
This enables the return value to be moved, rather than copied.
2015-11-22 11:27:55 -06:00
Michael Welsh Duggan
320b02b14a Allow using a Node as the key in force_insert.
Node::force_insert() uses convert<> to convert its key to a node.
Add a specialization for convert<Node>.
2015-11-22 11:21:08 -06:00
Haydn Trigg
03d6e7d672 Removed boost requirement from memory.h (detail)
Removed the boost requirement from memory.h using the shared_memory type defined in ptr.h
2015-07-25 11:45:10 +09:30
Jonathan Hamilton
b426fafff6 Fix some Node::operator[] regressions from 0.5.1
"const Node Node::operator[](const Key& key) const" changed from
returning new empty node if the key was missing in 0.5.1 to returning
a shared 'zombie' node in 0.5.2 to resolve a memory leak.

(Specifically 1025f76df1 was where this
was introduced)

This caused some regressions where this 'zombie' object threw exceptions
in some functions where the 'empty' object would not.

This change fixes the Node::as(fallback) method (to return the
'fallback' instead of throwing an exception) and the
Node::begin()/Node::end() methods to return default-constructed
iterators (so begin() == end() in such cases) instead of another
exception.
2015-06-08 11:47:10 -07:00
Sébastien Rombauts
b0a4de3dd9 Fix missing/TODO links to 0.3.0 and 0.5.2 releases in README 2015-05-26 18:24:22 +02:00
Jesse Beder
b43db54810 Add CONTRIBUTING file.
Initial description of style, tests, and pull request process.
2015-04-08 14:30:07 -05:00
Jesse Beder
5c390e8d6c Merge pull request #303 from bdutro/patch-1-squashed
Fix compiler error by updating node_data::remove to use new equals() method.
2015-04-08 13:59:56 -05:00
bdutro
aa928b925b Update node_data::remove to use new equals() method
- Update the call to equals() in node_data::remove() to match the new implementation
- Add unit test for node::remove() to catch this type of bug in the future
2015-04-08 13:41:59 -05:00
Jesse Beder
908d38ebef Merge pull request #296 from WrinklyNinja/useful-conversion-errors
Add more error messages that include the location in a parsed file.
2015-04-03 09:41:02 -05:00
Oliver Hamlet
ec8aa4fa62 More useful error messages.
Applied the patch given in jbeder/yaml-cpp#200 with the correct code
style.
2015-04-02 20:50:11 +01:00
Jesse Beder
5de38a76b6 Merge pull request #294 from WrinklyNinja/add-gitignore
Add a .gitignore file.
2015-03-31 08:11:28 -05:00
Oliver Hamlet
25f3935b7c Add a .gitignore file.
Ignore the CMake build directory.
2015-03-31 09:33:49 +01:00
Jesse Beder
4d44602a5d Remove mercurial files 2015-03-30 20:33:45 -05:00
Jesse Beder
897cfd5b2e Rename license file and update copyright date. 2015-03-30 20:32:46 -05:00
Jesse Beder
1a6cb7376a Add README. 2015-03-30 20:31:59 -05:00
Jesse Beder
66acd0d54b Added tag release-0.5.2 for changeset 90238df1f398 2015-03-29 21:32:17 -05:00
Jesse Beder
998d7bf31e Bump version to 0.5.2 2015-03-29 21:31:56 -05:00
Jesse Beder
25c466a152 Run clang-format 2015-03-29 21:27:20 -05:00
Jesse Beder
7092a0b099 Fixed linker error on Visual Studio with a shared lib by moving the static methods node_data::equals to an instance method on node. 2015-03-29 21:11:53 -05:00
Jesse Beder
25b2ed0787 Fix operator bool() exception on zombie node 2015-03-29 14:31:22 -05:00
Jesse Beder
67e37d000a Merge from core 2015-02-21 12:34:19 -06:00
Jesse Beder
b1322770c2 Remove the extraneous gtest library from the test's link args, since gmock covers it 2015-02-21 12:33:36 -06:00
Jesse Beder
39e7b651dc Fix test that depended on the order of map outputs 2015-02-21 12:14:53 -06:00
Jesse Beder
0970a108bd Remove stray field 2015-01-24 17:58:58 -06:00
Jesse Beder
f9ff72dee7 Add test for an empty string not being null 2015-01-24 17:30:12 -06:00
Jesse Beder
1025f76df1 Fix memory leak when accessing a const Node with a key that doesn't exist. 2015-01-24 17:22:45 -06:00
Jesse Beder
a5e86cde59 Merge core 2015-01-24 16:30:27 -06:00
Jesse Beder
77c90a08e8 Refactor plain scalar validation in the emitter to precompute the invalid regexes 2015-01-24 16:29:57 -06:00
Jesse Beder
1006bee48a Default-initialize all sub-iterators in node_iterator_base 2015-01-24 16:23:35 -06:00
Jesse Beder
899b6614c1 Merge from core 2015-01-24 16:07:36 -06:00
Jesse Beder
bc86fd4aec Force null to be quoted if written as a string 2015-01-24 16:07:10 -06:00
Jesse Beder
7d932f0a10 Merge from core 2015-01-24 15:59:24 -06:00
Jesse Beder
087e0673f3 Renamed the None enumeration vaules to NoType to avoid a collision with X11's macro 2015-01-24 15:58:14 -06:00
Jesse Beder
c9729b26a4 Remove stray 'auto' that leaked in without C++11 2015-01-24 15:34:39 -06:00
Jesse Beder
f1a889a0b9 Fix initialize ordering warning 2015-01-24 15:32:04 -06:00
Jesse Beder
fcbec237c9 Add conversion for signed char 2015-01-24 15:19:49 -06:00
Jesse Beder
c324bf8a7d Merge core 2015-01-24 14:47:29 -06:00
Jesse Beder
2b2e607118 Fix gcc warning 2015-01-24 14:47:00 -06:00
Jesse Beder
891c7338bf Add test to CMake config 2015-01-24 14:45:40 -06:00
Jesse Beder
391111c055 Merge core 2015-01-24 14:40:55 -06:00
Jesse Beder
570ab9d3fb Fix unused arg warnings for EmitterStyle 2015-01-24 14:39:17 -06:00
Jesse Beder
0c8a539361 Fix warnings on visual studio, including changing unsigned to std::size_t 2015-01-24 14:38:22 -06:00
Jesse Beder
9eae039c91 Merge 2015-01-24 13:24:08 -06:00
Jesse Beder
0c280724e9 Add flow/block style setting on Nodes 2015-01-24 13:11:43 -06:00
Jesse Beder
9880b608b9 Merge from core 2015-01-24 12:26:16 -06:00
Jesse Beder
ad712c4f2d Add EmitterStyle, which will allow sequence or map style (i.e., flow or block) to be preserved between parsing and emitting 2015-01-24 12:19:20 -06:00
Jesse Beder
a397ad2925 Add yaml-cpp-config.cmake and yaml-cpp-config-version.cmake files for importing yaml-cpp into external projects (through find_package). 2015-01-24 11:21:26 -06:00
Jesse Beder
c7752ca336 Fix build warning from gcc about std::copy 2015-01-24 11:14:53 -06:00
Jesse Beder
2c340f0546 Fixed memory corruption when using a node as a key 2014-08-16 10:52:51 -05:00
Jesse Beder
1aa25e7679 Wrap the #pragma warning for msvc in an ifdef 2014-03-25 22:08:34 -05:00
Jesse Beder
541fef1545 Merge from core 2014-03-25 22:07:21 -05:00
Jesse Beder
a499d2edad Add missing include to scanscalar.cpp 2014-03-25 22:04:53 -05:00
Jesse Beder
47af59f09c Add dll tag to Binary 2014-03-25 22:03:27 -05:00
Jesse Beder
66e5c07b4f Extend format build target to all build tools 2014-03-25 22:01:35 -05:00
Jesse Beder
13130ec20d clang-format 2014-03-25 00:11:17 -05:00
Jesse Beder
dea3428ce0 Merge from core 2014-03-25 00:07:38 -05:00
Jesse Beder
edf8ebe246 Remove stray log message in cmake 2014-03-25 00:04:04 -05:00
Jesse Beder
e0b293e757 Add test and util sources to make format 2014-03-25 00:02:16 -05:00
Jesse Beder
a4a79835c9 Suppress gtest warnings on xcode 2014-03-24 23:47:46 -05:00
Jesse Beder
dc8d91ce45 Add make format target to run clang-format 2014-03-24 23:46:03 -05:00
Jesse Beder
d59586630e Fix clang compiler settings, and properly set up warnings so they don't interfere with gtest and gmock 2014-03-24 23:34:26 -05:00
Jesse Beder
066359802b Merge from core, and update several missing DLL exports. This does not resolve them all (in particular, node_data::equals seems to be still missing, even though it is inlined in a header, which seems strange). 2014-03-24 00:31:43 -05:00
Jesse Beder
fe8ca77a1b Add missing DLL export, and set up gtest/gmock to properly import their symbols. 2014-03-23 23:56:17 -05:00
Jesse Beder
833f2996bc Fix MSVC static/shared library mismatch with gtest. 2014-03-23 23:26:02 -05:00
Jesse Beder
7a68eaafd9 Disable warning:
warning C4800: forcing value to bool 'true' or 'false' (performance warning)

for the node test, since it really doesn't make any sense in this context. (It's exactly what we intended with the "unspecified bool type".)
2014-03-23 22:42:06 -05:00
Jesse Beder
98a181c7a7 Merge from core 2014-03-23 22:25:53 -05:00
Jesse Beder
fcfd6635b0 Removed unicode control sequence from test, since it's not guaranteed that the source code is UTF-8 2014-03-23 22:25:25 -05:00
Jesse Beder
bf6482c07e Merge from core 2014-03-23 22:08:31 -05:00
Jesse Beder
a2a096f2f3 Add clang formatting file 2014-03-23 22:07:59 -05:00
Jesse Beder
3bd412ccc3 Merge from core 2014-03-23 20:25:13 -05:00
Jesse Beder
114db22335 Fix UTF16 parsing for multi-byte characters 2014-03-23 20:24:36 -05:00
Jesse Beder
253c80d09e Merge from core 2014-03-23 20:17:34 -05:00
Jesse Beder
06bf012d81 clang-format 2014-03-23 20:08:54 -05:00
Jesse Beder
ad0a3311a7 Convert node tests to gtest 2014-03-23 19:21:13 -05:00
Jesse Beder
33424ecb65 Merge from core 2014-03-23 18:14:51 -05:00
Jesse Beder
d508a7cb0d Import encoding test from old-api 2014-03-23 18:12:23 -05:00
Jesse Beder
2e8841c6fa Merge from core 2014-03-23 16:39:33 -05:00
Jesse Beder
ad2953f660 Converted gen emitter tests to gtest, and removed the old testing framework from core 2014-03-23 16:35:26 -05:00
Jesse Beder
ebf14ec83a Factored out HandlerTest as a base class 2014-03-23 16:26:44 -05:00
Jesse Beder
066b71a755 Factored out mock event handler 2014-03-23 16:17:16 -05:00
Jesse Beder
f946473437 Merge from core 2014-03-23 15:01:08 -05:00
Jesse Beder
90d7562be3 Fixed uninteresting mock 2014-03-23 14:50:58 -05:00
Jesse Beder
1327ce6d73 Convert core parser tests to gtest 2014-03-23 14:47:30 -05:00
Jesse Beder
05834520e5 Merge from core 2014-03-23 14:06:56 -05:00
Jesse Beder
dfa32c7f44 Renamed SpecTest to HandlerSpecTest 2014-03-23 14:06:37 -05:00
Jesse Beder
a4382b1370 Merge from core, plus convert the node spec tests to gtest 2014-03-23 14:02:51 -05:00
Jesse Beder
ace9c49e31 Convert spec tests to gtest with gmock 2014-03-23 12:49:30 -05:00
Jesse Beder
e3f120b99d Add gmock as dependency 2014-03-23 12:04:03 -05:00
Jesse Beder
be85bb3212 Merge from core 2014-03-23 11:55:30 -05:00
Jesse Beder
f6a6f46ba4 Move EmitterTests to gtest 2014-03-23 11:49:32 -05:00
Jesse Beder
da118bbb0d Add test for cloning a null node 2014-03-22 23:29:14 -05:00
Jesse Beder
5a24459ea1 Merge ostream_wrapper fix from core 2014-03-22 23:22:14 -05:00
Jesse Beder
80bdfa6dba Add missing include to otream_wrapper 2014-03-22 23:21:36 -05:00
Jesse Beder
599d050eb2 Merge read fix from core 2014-03-22 23:19:07 -05:00
Jesse Beder
314baa6e13 Add missing include to read.cpp 2014-03-22 23:18:27 -05:00
Jesse Beder
4b40441cee Run IWYU 2014-03-22 23:14:48 -05:00
Jesse Beder
8d7eb02c46 Merge IWYU from core 2014-03-22 23:08:09 -05:00
Jesse Beder
5fd25df859 Run IWYU 2014-03-22 22:46:04 -05:00
Jesse Beder
c7567b7b07 Add missing includes to node_data.h 2014-03-22 19:32:53 -05:00
Jesse Beder
d98ab9f342 Merge ostream_wrapper fix from core 2014-03-22 19:27:54 -05:00
Jesse Beder
0fbeac8f4f Add more ostream_wrapper tests 2014-03-22 19:22:23 -05:00
Jesse Beder
396a97050d Fix SEGV in ostream_wrapper 2014-03-22 19:15:49 -05:00
Jesse Beder
9583d1ab07 Merge gtest from core 2014-03-22 19:09:22 -05:00
Jesse Beder
db82302ed0 Add gtest, as separate set of tests (that just follow the ad-hoc tests that already exist) 2014-03-22 19:06:46 -05:00
Jesse Beder
32125697f2 Rename regex.h and regex.cpp to regex_yaml, so they don't interfere with the posix variant 2014-03-22 19:03:49 -05:00
Jesse Beder
d63ec48c8a Run clang-format 2014-03-22 13:05:03 -05:00
Jesse Beder
3355bbb399 Merge clang-format from core 2014-03-22 13:03:18 -05:00
Jesse Beder
9b4db068bb Run clang-format 2014-03-22 12:49:16 -05:00
Jesse Beder
5b88931143 Fixed bug while reading a single space char 2013-11-10 14:50:35 -06:00
Jesse Beder
25881c4f96 Add ifdef to check if BOOST_FOREACH is defined, and disable tests that use it if it is not available 2013-10-13 11:14:34 -05:00
Jesse Beder
0305ad13e4 Fixed crash when emitting empty node 2013-07-10 08:29:11 -05:00
Jesse Beder
dd0f2577ae Merged make build fix from core 2013-06-18 08:20:51 -05:00
Jesse Beder
e40ed4f94e Restrict make-specific targets to only be added with make 2013-06-18 08:12:23 -05:00
Jesse Beder
4f858a47d6 Added tag release-0.5.1 for changeset 98e9aefe6778 2013-04-13 18:45:50 -05:00
412 changed files with 297286 additions and 26384 deletions

47
.clang-format Normal file
View File

@@ -0,0 +1,47 @@
---
# BasedOnStyle: Google
AccessModifierOffset: -1
ConstructorInitializerIndentWidth: 4
AlignEscapedNewlinesLeft: true
AlignTrailingComments: true
AllowAllParametersOfDeclarationOnNextLine: true
AllowShortIfStatementsOnASingleLine: false
AllowShortLoopsOnASingleLine: false
AlwaysBreakTemplateDeclarations: true
AlwaysBreakBeforeMultilineStrings: true
BreakBeforeBinaryOperators: false
BreakBeforeTernaryOperators: true
BreakConstructorInitializersBeforeComma: false
BinPackParameters: true
ColumnLimit: 80
ConstructorInitializerAllOnOneLineOrOnePerLine: true
DerivePointerBinding: true
ExperimentalAutoDetectBinPacking: false
IndentCaseLabels: true
MaxEmptyLinesToKeep: 1
NamespaceIndentation: None
ObjCSpaceBeforeProtocolList: false
PenaltyBreakBeforeFirstCallParameter: 1
PenaltyBreakComment: 60
PenaltyBreakString: 1000
PenaltyBreakFirstLessLess: 120
PenaltyExcessCharacter: 1000000
PenaltyReturnTypeOnItsOwnLine: 200
PointerBindsToType: true
SpacesBeforeTrailingComments: 2
Cpp11BracedListStyle: true
Standard: Auto
IndentWidth: 2
TabWidth: 8
UseTab: Never
BreakBeforeBraces: Attach
IndentFunctionDeclarationAfterType: true
SpacesInParentheses: false
SpacesInAngles: false
SpaceInEmptyParentheses: false
SpacesInCStyleCastParentheses: false
SpaceAfterControlStatementKeyword: true
SpaceBeforeAssignmentOperators: true
ContinuationIndentWidth: 4
...

1
.gitignore vendored Normal file
View File

@@ -0,0 +1 @@
build/

4
.hgeol
View File

@@ -1,4 +0,0 @@
**.h = native
**.c = native
**.cpp = native
**.txt = native

View File

@@ -1 +0,0 @@
syntax: glob

View File

@@ -23,7 +23,7 @@ project(YAML_CPP)
set(YAML_CPP_VERSION_MAJOR "0") set(YAML_CPP_VERSION_MAJOR "0")
set(YAML_CPP_VERSION_MINOR "5") set(YAML_CPP_VERSION_MINOR "5")
set(YAML_CPP_VERSION_PATCH "1") set(YAML_CPP_VERSION_PATCH "3")
set(YAML_CPP_VERSION "${YAML_CPP_VERSION_MAJOR}.${YAML_CPP_VERSION_MINOR}.${YAML_CPP_VERSION_PATCH}") set(YAML_CPP_VERSION "${YAML_CPP_VERSION_MAJOR}.${YAML_CPP_VERSION_MINOR}.${YAML_CPP_VERSION_PATCH}")
enable_testing() enable_testing()
@@ -54,6 +54,29 @@ option(MSVC_STHREADED_RT "MSVC: Build with single-threaded static runtime libs (
### ###
### Sources, headers, directories and libs ### Sources, headers, directories and libs
### ###
# From http://www.cmake.org/pipermail/cmake/2010-March/035992.html:
# function to collect all the sources from sub-directories
# into a single list
function(add_sources)
get_property(is_defined GLOBAL PROPERTY SRCS_LIST DEFINED)
if(NOT is_defined)
define_property(GLOBAL PROPERTY SRCS_LIST
BRIEF_DOCS "List of source files"
FULL_DOCS "List of all source files in the entire project")
endif()
# make absolute paths
set(SRCS)
foreach(s IN LISTS ARGN)
if(NOT IS_ABSOLUTE "${s}")
get_filename_component(s "${s}" ABSOLUTE)
endif()
list(APPEND SRCS "${s}")
endforeach()
# append to global list
set_property(GLOBAL APPEND PROPERTY SRCS_LIST "${SRCS}")
endfunction(add_sources)
set(header_directory "include/yaml-cpp/") set(header_directory "include/yaml-cpp/")
file(GLOB sources "src/[a-zA-Z]*.cpp") file(GLOB sources "src/[a-zA-Z]*.cpp")
@@ -68,6 +91,16 @@ else()
add_definitions(-DYAML_CPP_NO_CONTRIB) add_definitions(-DYAML_CPP_NO_CONTRIB)
endif() endif()
set(library_sources
${sources}
${public_headers}
${private_headers}
${contrib_sources}
${contrib_public_headers}
${contrib_private_headers}
)
add_sources(${library_sources})
if(VERBOSE) if(VERBOSE)
message(STATUS "sources: ${sources}") message(STATUS "sources: ${sources}")
message(STATUS "public_headers: ${public_headers}") message(STATUS "public_headers: ${public_headers}")
@@ -87,6 +120,9 @@ include_directories(${Boost_INCLUDE_DIRS})
### ###
### General compilation settings ### General compilation settings
### ###
set(yaml_c_flags ${CMAKE_C_FLAGS})
set(yaml_cxx_flags ${CMAKE_CXX_FLAGS})
if(BUILD_SHARED_LIBS) if(BUILD_SHARED_LIBS)
set(LABEL_SUFFIX "shared") set(LABEL_SUFFIX "shared")
else() else()
@@ -113,8 +149,9 @@ if(WIN32)
endif() endif()
endif() endif()
# GCC specialities # GCC or Clang specialities
if(CMAKE_COMPILER_IS_GNUCXX) if("${CMAKE_CXX_COMPILER_ID}" MATCHES "GNU" OR
"${CMAKE_CXX_COMPILER_ID}" MATCHES "Clang")
### General stuff ### General stuff
if(WIN32) if(WIN32)
set(CMAKE_SHARED_LIBRARY_PREFIX "") # DLLs do not have a "lib" prefix set(CMAKE_SHARED_LIBRARY_PREFIX "") # DLLs do not have a "lib" prefix
@@ -140,16 +177,19 @@ if(CMAKE_COMPILER_IS_GNUCXX)
set(GCC_EXTRA_OPTIONS "${GCC_EXTRA_OPTIONS} ${FLAG_TESTED}") set(GCC_EXTRA_OPTIONS "${GCC_EXTRA_OPTIONS} ${FLAG_TESTED}")
endif() endif()
# #
set(CMAKE_CXX_FLAGS "-Wall ${GCC_EXTRA_OPTIONS} -pedantic -Wno-long-long ${CMAKE_CXX_FLAGS}") set(yaml_cxx_flags "-Wall ${GCC_EXTRA_OPTIONS} -pedantic -Wno-long-long ${yaml_cxx_flags}")
#
add_custom_target(debuggable $(MAKE) clean ### Make specific
COMMAND ${CMAKE_COMMAND} -DCMAKE_BUILD_TYPE=Debug ${CMAKE_SOURCE_DIR} if(${CMAKE_BUILD_TOOL} MATCHES make OR ${CMAKE_BUILD_TOOL} MATCHES gmake)
COMMENT "Adjusting settings for debug compilation" add_custom_target(debuggable $(MAKE) clean
VERBATIM) COMMAND ${CMAKE_COMMAND} -DCMAKE_BUILD_TYPE=Debug ${CMAKE_SOURCE_DIR}
add_custom_target(releasable $(MAKE) clean COMMENT "Adjusting settings for debug compilation"
COMMAND ${CMAKE_COMMAND} -DCMAKE_BUILD_TYPE=Release ${CMAKE_SOURCE_DIR} VERBATIM)
COMMENT "Adjusting settings for release compilation" add_custom_target(releasable $(MAKE) clean
VERBATIM) COMMAND ${CMAKE_COMMAND} -DCMAKE_BUILD_TYPE=Release ${CMAKE_SOURCE_DIR}
COMMENT "Adjusting settings for release compilation"
VERBATIM)
endif()
endif() endif()
# Microsoft VisualC++ specialities # Microsoft VisualC++ specialities
@@ -175,7 +215,7 @@ if(MSVC)
endif() endif()
# correct linker options # correct linker options
foreach(flag_var CMAKE_C_FLAGS CMAKE_CXX_FLAGS) foreach(flag_var yaml_c_flags yaml_cxx_flags)
foreach(config_name "" DEBUG RELEASE MINSIZEREL RELWITHDEBINFO) foreach(config_name "" DEBUG RELEASE MINSIZEREL RELWITHDEBINFO)
set(var_name "${flag_var}") set(var_name "${flag_var}")
if(NOT "${config_name}" STREQUAL "") if(NOT "${config_name}" STREQUAL "")
@@ -201,7 +241,7 @@ if(MSVC)
# /W3 = set warning level; see http://msdn.microsoft.com/en-us/library/thxezb7y.aspx # /W3 = set warning level; see http://msdn.microsoft.com/en-us/library/thxezb7y.aspx
# /wd4127 = disable warning C4127 "conditional expression is constant"; see http://msdn.microsoft.com/en-us/library/6t66728h.aspx # /wd4127 = disable warning C4127 "conditional expression is constant"; see http://msdn.microsoft.com/en-us/library/6t66728h.aspx
# /wd4355 = disable warning C4355 "'this' : used in base member initializer list"; http://msdn.microsoft.com/en-us/library/3c594ae3.aspx # /wd4355 = disable warning C4355 "'this' : used in base member initializer list"; http://msdn.microsoft.com/en-us/library/3c594ae3.aspx
set(CMAKE_CXX_FLAGS "/W3 /wd4127 /wd4355 /D_SCL_SECURE_NO_WARNINGS ${CMAKE_CXX_FLAGS}") set(yaml_cxx_flags "/W3 /wd4127 /wd4355 ${yaml_cxx_flags}")
endif() endif()
@@ -229,13 +269,9 @@ set(_INSTALL_DESTINATIONS
### ###
### Library ### Library
### ###
add_library(yaml-cpp add_library(yaml-cpp ${library_sources})
${sources} set_target_properties(yaml-cpp PROPERTIES
${public_headers} COMPILE_FLAGS "${yaml_c_flags} ${yaml_cxx_flags}"
${private_headers}
${contrib_sources}
${contrib_public_headers}
${contrib_private_headers}
) )
set_target_properties(yaml-cpp PROPERTIES set_target_properties(yaml-cpp PROPERTIES
@@ -269,6 +305,18 @@ install(
FILES_MATCHING PATTERN "*.h" FILES_MATCHING PATTERN "*.h"
) )
export(
TARGETS yaml-cpp
FILE "${PROJECT_BINARY_DIR}/yaml-cpp-targets.cmake")
export(PACKAGE yaml-cpp)
set(EXPORT_TARGETS yaml-cpp CACHE INTERNAL "export targets")
set(CONFIG_INCLUDE_DIRS "${YAML_CPP_SOURCE_DIR}/include")
configure_file(${CMAKE_CURRENT_SOURCE_DIR}/yaml-cpp-config.cmake.in
"${PROJECT_BINARY_DIR}/yaml-cpp-config.cmake" @ONLY)
configure_file(${CMAKE_CURRENT_SOURCE_DIR}/yaml-cpp-config-version.cmake.in
"${PROJECT_BINARY_DIR}/yaml-cpp-config-version.cmake" @ONLY)
if(UNIX) if(UNIX)
set(PC_FILE ${CMAKE_BINARY_DIR}/yaml-cpp.pc) set(PC_FILE ${CMAKE_BINARY_DIR}/yaml-cpp.pc)
configure_file("yaml-cpp.pc.cmake" ${PC_FILE} @ONLY) configure_file("yaml-cpp.pc.cmake" ${PC_FILE} @ONLY)
@@ -283,3 +331,10 @@ if(YAML_CPP_BUILD_TOOLS)
add_subdirectory(test) add_subdirectory(test)
add_subdirectory(util) add_subdirectory(util)
endif() endif()
### Formatting
get_property(all_sources GLOBAL PROPERTY SRCS_LIST)
add_custom_target(format
COMMAND clang-format --style=file -i ${all_sources}
COMMENT "Running clang-format"
VERBATIM)

17
CONTRIBUTING.md Normal file
View File

@@ -0,0 +1,17 @@
# Style
This project is formatted with [clang-format][fmt] using the style file at the root of the repository. Please run clang-format before sending a pull request.
In general, try to follow the style of surrounding code.
[fmt]: http://clang.llvm.org/docs/ClangFormat.html
# Tests
Please verify the tests pass by running the target `tests/run_tests`.
If you are adding functionality, add tests accordingly.
# Pull request process
Every pull request undergoes a code review. Unfortunately, github's code review process isn't great, but we'll manage. During the code review, if you make changes, add new commits to the pull request for each change. Once the code review is complete, rebase against the master branch and squash into a single commit.

View File

@@ -1,4 +1,4 @@
Copyright (c) 2008 Jesse Beder. Copyright (c) 2008-2015 Jesse Beder.
Permission is hereby granted, free of charge, to any person obtaining a copy Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal of this software and associated documentation files (the "Software"), to deal

52
README.md Normal file
View File

@@ -0,0 +1,52 @@
# yaml-cpp
yaml-cpp is a [YAML](http://www.yaml.org/) parser and emitter in C++ matching the [YAML 1.2 spec](http://www.yaml.org/spec/1.2/spec.html).
To get a feel for how it can be used, see the [Tutorial](https://github.com/jbeder/yaml-cpp/wiki/Tutorial) or [How to Emit YAML](https://github.com/jbeder/yaml-cpp/wiki/How-To-Emit-YAML). For the old API (version < 0.5.0), see [How To Parse A Document](https://github.com/jbeder/yaml-cpp/wiki/How-To-Parse-A-Document-(Old-API)).
# Problems? #
If you find a bug, post an [issue](https://github.com/jbeder/yaml-cpp/issues)! If you have questions about how to use yaml-cpp, please post it on http://stackoverflow.com and tag it `yaml-cpp`.
# How to Build #
yaml-cpp uses [CMake](http://www.cmake.org) to support cross-platform building. The basic steps to build are:
1. Download and install [CMake](http://www.cmake.org) (Resources -> Download).
**Note:** If you don't use the provided installer for your platform, make sure that you add CMake's bin folder to your path.
2. Navigate into the source directory, and type:
```
mkdir build
cd build
```
3. Run CMake. The basic syntax is:
```
cmake [-G generator] [-DBUILD_SHARED_LIBS=ON|OFF] ..
```
* The `generator` is whatever type of build system you'd like to use. To see a full list of generators on your platform, just run `cmake` (with no arguments). For example:
* On Windows, you might use "Visual Studio 12 2013" to generate a Visual Studio 2013 solution
* On OS X, you might use "Xcode" to generate an Xcode project
* On a UNIX-y system, simply omit the option to generate a makefile
* yaml-cpp defaults to building a static library, but you may build a shared library by specifying `-DBUILD_SHARED_LIBS=ON`.
* For more options on customizing the build, see the [CMakeLists.txt](https://github.com/jbeder/yaml-cpp/blob/master/CMakeLists.txt) file.
4. Build it!
5. To clean up, just remove the `build` directory.
# Recent Release #
[yaml-cpp 0.5.2](https://github.com/jbeder/yaml-cpp/releases/tag/release-0.5.2) has been released! This is a bug fix release.
[yaml-cpp 0.3.0](https://github.com/jbeder/yaml-cpp/releases/tag/release-0.3.0) is still available if you want the old API.
**The old API will continue to be supported, and will still receive bugfixes!** The 0.3.x and 0.4.x versions will be old API releases, and 0.5.x and above will all be new API releases.

View File

@@ -1,16 +1,17 @@
#ifndef ANCHOR_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #ifndef ANCHOR_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define ANCHOR_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #define ANCHOR_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || (defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || (__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4 #if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once #pragma once
#endif #endif
#include <cstddef> #include <cstddef>
namespace YAML namespace YAML {
{ typedef std::size_t anchor_t;
typedef std::size_t anchor_t; const anchor_t NullAnchor = 0;
const anchor_t NullAnchor = 0;
} }
#endif // ANCHOR_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #endif // ANCHOR_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@@ -1,62 +1,67 @@
#ifndef BASE64_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #ifndef BASE64_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define BASE64_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #define BASE64_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || (defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || (__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4 #if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once #pragma once
#endif #endif
#include <string> #include <string>
#include <vector> #include <vector>
namespace YAML #include "yaml-cpp/dll.h"
{
std::string EncodeBase64(const unsigned char *data, std::size_t size);
std::vector<unsigned char> DecodeBase64(const std::string& input);
class Binary { namespace YAML {
public: YAML_CPP_API std::string EncodeBase64(const unsigned char *data,
Binary(): m_unownedData(0), m_unownedSize(0) {} std::size_t size);
Binary(const unsigned char *data_, std::size_t size_): m_unownedData(data_), m_unownedSize(size_) {} YAML_CPP_API std::vector<unsigned char> DecodeBase64(const std::string &input);
bool owned() const { return !m_unownedData; } class YAML_CPP_API Binary {
std::size_t size() const { return owned() ? m_data.size() : m_unownedSize; } public:
const unsigned char *data() const { return owned() ? &m_data[0] : m_unownedData; } Binary() : m_unownedData(0), m_unownedSize(0) {}
Binary(const unsigned char *data_, std::size_t size_)
: m_unownedData(data_), m_unownedSize(size_) {}
void swap(std::vector<unsigned char>& rhs) { bool owned() const { return !m_unownedData; }
if(m_unownedData) { std::size_t size() const { return owned() ? m_data.size() : m_unownedSize; }
m_data.swap(rhs); const unsigned char *data() const {
rhs.clear(); return owned() ? &m_data[0] : m_unownedData;
rhs.resize(m_unownedSize); }
std::copy(m_unownedData, m_unownedData + m_unownedSize, &rhs[0]);
m_unownedData = 0;
m_unownedSize = 0;
} else {
m_data.swap(rhs);
}
}
bool operator == (const Binary& rhs) const { void swap(std::vector<unsigned char> &rhs) {
const std::size_t s = size(); if (m_unownedData) {
if(s != rhs.size()) m_data.swap(rhs);
return false; rhs.clear();
const unsigned char *d1 = data(); rhs.resize(m_unownedSize);
const unsigned char *d2 = rhs.data(); std::copy(m_unownedData, m_unownedData + m_unownedSize, rhs.begin());
for(std::size_t i=0;i<s;i++) { m_unownedData = 0;
if(*d1++ != *d2++) m_unownedSize = 0;
return false; } else {
} m_data.swap(rhs);
return true; }
} }
bool operator != (const Binary& rhs) const { bool operator==(const Binary &rhs) const {
return !(*this == rhs); const std::size_t s = size();
} if (s != rhs.size())
return false;
const unsigned char *d1 = data();
const unsigned char *d2 = rhs.data();
for (std::size_t i = 0; i < s; i++) {
if (*d1++ != *d2++)
return false;
}
return true;
}
private: bool operator!=(const Binary &rhs) const { return !(*this == rhs); }
std::vector<unsigned char> m_data;
const unsigned char *m_unownedData; private:
std::size_t m_unownedSize; std::vector<unsigned char> m_data;
}; const unsigned char *m_unownedData;
std::size_t m_unownedSize;
};
} }
#endif // BASE64_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #endif // BASE64_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@@ -1,7 +1,9 @@
#ifndef ANCHORDICT_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #ifndef ANCHORDICT_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define ANCHORDICT_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #define ANCHORDICT_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || (defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || (__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4 #if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once #pragma once
#endif #endif
@@ -9,34 +11,27 @@
#include "../anchor.h" #include "../anchor.h"
namespace YAML namespace YAML {
{ /// AnchorDict
/// AnchorDict /// . An object that stores and retrieves values correlating to anchor_t
/// . An object that stores and retrieves values correlating to anchor_t /// values.
/// values. /// . Efficient implementation that can make assumptions about how anchor_t
/// . Efficient implementation that can make assumptions about how anchor_t /// values are assigned by the Parser class.
/// values are assigned by the Parser class. template <class T>
template <class T> class AnchorDict {
class AnchorDict public:
{ void Register(anchor_t anchor, T value) {
public: if (anchor > m_data.size()) {
void Register(anchor_t anchor, T value) m_data.resize(anchor);
{
if (anchor > m_data.size())
{
m_data.resize(anchor);
}
m_data[anchor - 1] = value;
} }
m_data[anchor - 1] = value;
}
T Get(anchor_t anchor) const T Get(anchor_t anchor) const { return m_data[anchor - 1]; }
{
return m_data[anchor - 1];
}
private: private:
std::vector<T> m_data; std::vector<T> m_data;
}; };
} }
#endif // ANCHORDICT_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #endif // ANCHORDICT_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@@ -1,133 +1,147 @@
#ifndef GRAPHBUILDER_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #ifndef GRAPHBUILDER_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define GRAPHBUILDER_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #define GRAPHBUILDER_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || (defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || (__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4 #if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once #pragma once
#endif #endif
#include "yaml-cpp/mark.h" #include "yaml-cpp/mark.h"
#include <string> #include <string>
namespace YAML namespace YAML {
{ class Parser;
class Parser;
// GraphBuilderInterface // GraphBuilderInterface
// . Abstraction of node creation // . Abstraction of node creation
// . pParentNode is always NULL or the return value of one of the NewXXX() // . pParentNode is always NULL or the return value of one of the NewXXX()
// functions. // functions.
class GraphBuilderInterface class GraphBuilderInterface {
{ public:
public: // Create and return a new node with a null value.
// Create and return a new node with a null value. virtual void *NewNull(const Mark &mark, void *pParentNode) = 0;
virtual void *NewNull(const Mark& mark, void *pParentNode) = 0;
// Create and return a new node with the given tag and value. // Create and return a new node with the given tag and value.
virtual void *NewScalar(const Mark& mark, const std::string& tag, void *pParentNode, const std::string& value) = 0; virtual void *NewScalar(const Mark &mark, const std::string &tag,
void *pParentNode, const std::string &value) = 0;
// Create and return a new sequence node // Create and return a new sequence node
virtual void *NewSequence(const Mark& mark, const std::string& tag, void *pParentNode) = 0; virtual void *NewSequence(const Mark &mark, const std::string &tag,
// Add pNode to pSequence. pNode was created with one of the NewXxx() void *pParentNode) = 0;
// functions and pSequence with NewSequence().
virtual void AppendToSequence(void *pSequence, void *pNode) = 0;
// Note that no moew entries will be added to pSequence
virtual void SequenceComplete(void *pSequence) {(void)pSequence;}
// Create and return a new map node // Add pNode to pSequence. pNode was created with one of the NewXxx()
virtual void *NewMap(const Mark& mark, const std::string& tag, void *pParentNode) = 0; // functions and pSequence with NewSequence().
// Add the pKeyNode => pValueNode mapping to pMap. pKeyNode and pValueNode virtual void AppendToSequence(void *pSequence, void *pNode) = 0;
// were created with one of the NewXxx() methods and pMap with NewMap().
virtual void AssignInMap(void *pMap, void *pKeyNode, void *pValueNode) = 0;
// Note that no more assignments will be made in pMap
virtual void MapComplete(void *pMap) {(void)pMap;}
// Return the node that should be used in place of an alias referencing // Note that no moew entries will be added to pSequence
// pNode (pNode by default) virtual void SequenceComplete(void *pSequence) { (void)pSequence; }
virtual void *AnchorReference(const Mark& mark, void *pNode) {(void)mark; return pNode;}
};
// Typesafe wrapper for GraphBuilderInterface. Assumes that Impl defines // Create and return a new map node
// Node, Sequence, and Map types. Sequence and Map must derive from Node virtual void *NewMap(const Mark &mark, const std::string &tag,
// (unless Node is defined as void). Impl must also implement function with void *pParentNode) = 0;
// all of the same names as the virtual functions in GraphBuilderInterface
// -- including the ones with default implementations -- but with the
// prototypes changed to accept an explicit Node*, Sequence*, or Map* where
// appropriate.
template <class Impl>
class GraphBuilder : public GraphBuilderInterface
{
public:
typedef typename Impl::Node Node;
typedef typename Impl::Sequence Sequence;
typedef typename Impl::Map Map;
GraphBuilder(Impl& impl) : m_impl(impl) // Add the pKeyNode => pValueNode mapping to pMap. pKeyNode and pValueNode
{ // were created with one of the NewXxx() methods and pMap with NewMap().
Map* pMap = NULL; virtual void AssignInMap(void *pMap, void *pKeyNode, void *pValueNode) = 0;
Sequence* pSeq = NULL;
Node* pNode = NULL;
// Type consistency checks // Note that no more assignments will be made in pMap
pNode = pMap; virtual void MapComplete(void *pMap) { (void)pMap; }
pNode = pSeq;
}
GraphBuilderInterface& AsBuilderInterface() {return *this;} // Return the node that should be used in place of an alias referencing
// pNode (pNode by default)
virtual void *NewNull(const Mark& mark, void* pParentNode) { virtual void *AnchorReference(const Mark &mark, void *pNode) {
return CheckType<Node>(m_impl.NewNull(mark, AsNode(pParentNode))); (void)mark;
} return pNode;
virtual void *NewScalar(const Mark& mark, const std::string& tag, void *pParentNode, const std::string& value) {
return CheckType<Node>(m_impl.NewScalar(mark, tag, AsNode(pParentNode), value));
}
virtual void *NewSequence(const Mark& mark, const std::string& tag, void *pParentNode) {
return CheckType<Sequence>(m_impl.NewSequence(mark, tag, AsNode(pParentNode)));
}
virtual void AppendToSequence(void *pSequence, void *pNode) {
m_impl.AppendToSequence(AsSequence(pSequence), AsNode(pNode));
}
virtual void SequenceComplete(void *pSequence) {
m_impl.SequenceComplete(AsSequence(pSequence));
}
virtual void *NewMap(const Mark& mark, const std::string& tag, void *pParentNode) {
return CheckType<Map>(m_impl.NewMap(mark, tag, AsNode(pParentNode)));
}
virtual void AssignInMap(void *pMap, void *pKeyNode, void *pValueNode) {
m_impl.AssignInMap(AsMap(pMap), AsNode(pKeyNode), AsNode(pValueNode));
}
virtual void MapComplete(void *pMap) {
m_impl.MapComplete(AsMap(pMap));
}
virtual void *AnchorReference(const Mark& mark, void *pNode) {
return CheckType<Node>(m_impl.AnchorReference(mark, AsNode(pNode)));
}
private:
Impl& m_impl;
// Static check for pointer to T
template <class T, class U>
static T* CheckType(U* p) {return p;}
static Node *AsNode(void *pNode) {return static_cast<Node*>(pNode);}
static Sequence *AsSequence(void *pSeq) {return static_cast<Sequence*>(pSeq);}
static Map *AsMap(void *pMap) {return static_cast<Map*>(pMap);}
};
void *BuildGraphOfNextDocument(Parser& parser, GraphBuilderInterface& graphBuilder);
template <class Impl>
typename Impl::Node *BuildGraphOfNextDocument(Parser& parser, Impl& impl)
{
GraphBuilder<Impl> graphBuilder(impl);
return static_cast<typename Impl::Node *>(BuildGraphOfNextDocument(
parser, graphBuilder
));
} }
};
// Typesafe wrapper for GraphBuilderInterface. Assumes that Impl defines
// Node, Sequence, and Map types. Sequence and Map must derive from Node
// (unless Node is defined as void). Impl must also implement function with
// all of the same names as the virtual functions in GraphBuilderInterface
// -- including the ones with default implementations -- but with the
// prototypes changed to accept an explicit Node*, Sequence*, or Map* where
// appropriate.
template <class Impl>
class GraphBuilder : public GraphBuilderInterface {
public:
typedef typename Impl::Node Node;
typedef typename Impl::Sequence Sequence;
typedef typename Impl::Map Map;
GraphBuilder(Impl &impl) : m_impl(impl) {
Map *pMap = NULL;
Sequence *pSeq = NULL;
Node *pNode = NULL;
// Type consistency checks
pNode = pMap;
pNode = pSeq;
}
GraphBuilderInterface &AsBuilderInterface() { return *this; }
virtual void *NewNull(const Mark &mark, void *pParentNode) {
return CheckType<Node>(m_impl.NewNull(mark, AsNode(pParentNode)));
}
virtual void *NewScalar(const Mark &mark, const std::string &tag,
void *pParentNode, const std::string &value) {
return CheckType<Node>(
m_impl.NewScalar(mark, tag, AsNode(pParentNode), value));
}
virtual void *NewSequence(const Mark &mark, const std::string &tag,
void *pParentNode) {
return CheckType<Sequence>(
m_impl.NewSequence(mark, tag, AsNode(pParentNode)));
}
virtual void AppendToSequence(void *pSequence, void *pNode) {
m_impl.AppendToSequence(AsSequence(pSequence), AsNode(pNode));
}
virtual void SequenceComplete(void *pSequence) {
m_impl.SequenceComplete(AsSequence(pSequence));
}
virtual void *NewMap(const Mark &mark, const std::string &tag,
void *pParentNode) {
return CheckType<Map>(m_impl.NewMap(mark, tag, AsNode(pParentNode)));
}
virtual void AssignInMap(void *pMap, void *pKeyNode, void *pValueNode) {
m_impl.AssignInMap(AsMap(pMap), AsNode(pKeyNode), AsNode(pValueNode));
}
virtual void MapComplete(void *pMap) { m_impl.MapComplete(AsMap(pMap)); }
virtual void *AnchorReference(const Mark &mark, void *pNode) {
return CheckType<Node>(m_impl.AnchorReference(mark, AsNode(pNode)));
}
private:
Impl &m_impl;
// Static check for pointer to T
template <class T, class U>
static T *CheckType(U *p) {
return p;
}
static Node *AsNode(void *pNode) { return static_cast<Node *>(pNode); }
static Sequence *AsSequence(void *pSeq) {
return static_cast<Sequence *>(pSeq);
}
static Map *AsMap(void *pMap) { return static_cast<Map *>(pMap); }
};
void *BuildGraphOfNextDocument(Parser &parser,
GraphBuilderInterface &graphBuilder);
template <class Impl>
typename Impl::Node *BuildGraphOfNextDocument(Parser &parser, Impl &impl) {
GraphBuilder<Impl> graphBuilder(impl);
return static_cast<typename Impl::Node *>(
BuildGraphOfNextDocument(parser, graphBuilder));
}
} }
#endif // GRAPHBUILDER_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #endif // GRAPHBUILDER_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@@ -1,28 +1,37 @@
#ifndef DLL_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #ifndef DLL_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define DLL_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #define DLL_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || (defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || (__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4 #if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once #pragma once
#endif #endif
// The following ifdef block is the standard way of creating macros which make exporting // The following ifdef block is the standard way of creating macros which make
// from a DLL simpler. All files within this DLL are compiled with the yaml_cpp_EXPORTS // exporting
// symbol defined on the command line. this symbol should not be defined on any project // from a DLL simpler. All files within this DLL are compiled with the
// that uses this DLL. This way any other project whose source files include this file see // yaml_cpp_EXPORTS
// YAML_CPP_API functions as being imported from a DLL, whereas this DLL sees symbols // symbol defined on the command line. this symbol should not be defined on any
// project
// that uses this DLL. This way any other project whose source files include
// this file see
// YAML_CPP_API functions as being imported from a DLL, whereas this DLL sees
// symbols
// defined with this macro as being exported. // defined with this macro as being exported.
#undef YAML_CPP_API #undef YAML_CPP_API
#ifdef YAML_CPP_DLL // Using or Building YAML-CPP DLL (definition defined manually) #ifdef YAML_CPP_DLL // Using or Building YAML-CPP DLL (definition defined
#ifdef yaml_cpp_EXPORTS // Building YAML-CPP DLL (definition created by CMake or defined manually) // manually)
// #pragma message( "Defining YAML_CPP_API for DLL export" ) #ifdef yaml_cpp_EXPORTS // Building YAML-CPP DLL (definition created by CMake
#define YAML_CPP_API __declspec(dllexport) // or defined manually)
#else // yaml_cpp_EXPORTS // #pragma message( "Defining YAML_CPP_API for DLL export" )
// #pragma message( "Defining YAML_CPP_API for DLL import" ) #define YAML_CPP_API __declspec(dllexport)
#define YAML_CPP_API __declspec(dllimport) #else // yaml_cpp_EXPORTS
#endif // yaml_cpp_EXPORTS // #pragma message( "Defining YAML_CPP_API for DLL import" )
#else //YAML_CPP_DLL #define YAML_CPP_API __declspec(dllimport)
#endif // yaml_cpp_EXPORTS
#else // YAML_CPP_DLL
#define YAML_CPP_API #define YAML_CPP_API
#endif // YAML_CPP_DLL #endif // YAML_CPP_DLL
#endif // DLL_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #endif // DLL_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@@ -1,45 +1,57 @@
#ifndef EMITFROMEVENTS_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #ifndef EMITFROMEVENTS_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define EMITFROMEVENTS_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #define EMITFROMEVENTS_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || (defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || (__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4 #if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once #pragma once
#endif #endif
#include "yaml-cpp/eventhandler.h"
#include <stack> #include <stack>
namespace YAML #include "yaml-cpp/anchor.h"
{ #include "yaml-cpp/emitterstyle.h"
class Emitter; #include "yaml-cpp/eventhandler.h"
class EmitFromEvents: public EventHandler namespace YAML {
{ struct Mark;
public: } // namespace YAML
EmitFromEvents(Emitter& emitter);
virtual void OnDocumentStart(const Mark& mark); namespace YAML {
virtual void OnDocumentEnd(); class Emitter;
virtual void OnNull(const Mark& mark, anchor_t anchor); class EmitFromEvents : public EventHandler {
virtual void OnAlias(const Mark& mark, anchor_t anchor); public:
virtual void OnScalar(const Mark& mark, const std::string& tag, anchor_t anchor, const std::string& value); EmitFromEvents(Emitter& emitter);
virtual void OnSequenceStart(const Mark& mark, const std::string& tag, anchor_t anchor); virtual void OnDocumentStart(const Mark& mark);
virtual void OnSequenceEnd(); virtual void OnDocumentEnd();
virtual void OnMapStart(const Mark& mark, const std::string& tag, anchor_t anchor); virtual void OnNull(const Mark& mark, anchor_t anchor);
virtual void OnMapEnd(); virtual void OnAlias(const Mark& mark, anchor_t anchor);
virtual void OnScalar(const Mark& mark, const std::string& tag,
anchor_t anchor, const std::string& value);
private: virtual void OnSequenceStart(const Mark& mark, const std::string& tag,
void BeginNode(); anchor_t anchor, EmitterStyle::value style);
void EmitProps(const std::string& tag, anchor_t anchor); virtual void OnSequenceEnd();
private: virtual void OnMapStart(const Mark& mark, const std::string& tag,
Emitter& m_emitter; anchor_t anchor, EmitterStyle::value style);
virtual void OnMapEnd();
struct State { enum value { WaitingForSequenceEntry, WaitingForKey, WaitingForValue }; }; private:
std::stack<State::value> m_stateStack; void BeginNode();
}; void EmitProps(const std::string& tag, anchor_t anchor);
private:
Emitter& m_emitter;
struct State {
enum value { WaitingForSequenceEntry, WaitingForKey, WaitingForValue };
};
std::stack<State::value> m_stateStack;
};
} }
#endif // EMITFROMEVENTS_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #endif // EMITFROMEVENTS_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@@ -1,209 +1,254 @@
#ifndef EMITTER_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #ifndef EMITTER_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define EMITTER_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #define EMITTER_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || (defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || (__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4 #if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once #pragma once
#endif #endif
#include <cstddef>
#include <memory>
#include <sstream>
#include <string>
#include "yaml-cpp/dll.h"
#include "yaml-cpp/binary.h" #include "yaml-cpp/binary.h"
#include "yaml-cpp/dll.h"
#include "yaml-cpp/emitterdef.h" #include "yaml-cpp/emitterdef.h"
#include "yaml-cpp/emittermanip.h" #include "yaml-cpp/emittermanip.h"
#include "yaml-cpp/noncopyable.h" #include "yaml-cpp/noncopyable.h"
#include "yaml-cpp/null.h" #include "yaml-cpp/null.h"
#include "yaml-cpp/ostream_wrapper.h" #include "yaml-cpp/ostream_wrapper.h"
#include <memory>
#include <string>
#include <sstream>
namespace YAML namespace YAML {
{ class Binary;
class EmitterState; struct _Null;
} // namespace YAML
class YAML_CPP_API Emitter: private noncopyable namespace YAML {
{ class EmitterState;
public:
Emitter();
explicit Emitter(std::ostream& stream);
~Emitter();
// output class YAML_CPP_API Emitter : private noncopyable {
const char *c_str() const; public:
std::size_t size() const; Emitter();
explicit Emitter(std::ostream& stream);
~Emitter();
// state checking // output
bool good() const; const char* c_str() const;
const std::string GetLastError() const; std::size_t size() const;
// global setters // state checking
bool SetOutputCharset(EMITTER_MANIP value); bool good() const;
bool SetStringFormat(EMITTER_MANIP value); const std::string GetLastError() const;
bool SetBoolFormat(EMITTER_MANIP value);
bool SetIntBase(EMITTER_MANIP value);
bool SetSeqFormat(EMITTER_MANIP value);
bool SetMapFormat(EMITTER_MANIP value);
bool SetIndent(unsigned n);
bool SetPreCommentIndent(unsigned n);
bool SetPostCommentIndent(unsigned n);
bool SetFloatPrecision(unsigned n);
bool SetDoublePrecision(unsigned n);
// local setters // global setters
Emitter& SetLocalValue(EMITTER_MANIP value); bool SetOutputCharset(EMITTER_MANIP value);
Emitter& SetLocalIndent(const _Indent& indent); bool SetStringFormat(EMITTER_MANIP value);
Emitter& SetLocalPrecision(const _Precision& precision); bool SetBoolFormat(EMITTER_MANIP value);
bool SetIntBase(EMITTER_MANIP value);
bool SetSeqFormat(EMITTER_MANIP value);
bool SetMapFormat(EMITTER_MANIP value);
bool SetIndent(std::size_t n);
bool SetPreCommentIndent(std::size_t n);
bool SetPostCommentIndent(std::size_t n);
bool SetFloatPrecision(std::size_t n);
bool SetDoublePrecision(std::size_t n);
// overloads of write // local setters
Emitter& Write(const std::string& str); Emitter& SetLocalValue(EMITTER_MANIP value);
Emitter& Write(bool b); Emitter& SetLocalIndent(const _Indent& indent);
Emitter& Write(char ch); Emitter& SetLocalPrecision(const _Precision& precision);
Emitter& Write(const _Alias& alias);
Emitter& Write(const _Anchor& anchor);
Emitter& Write(const _Tag& tag);
Emitter& Write(const _Comment& comment);
Emitter& Write(const _Null& n);
Emitter& Write(const Binary& binary);
template <typename T> // overloads of write
Emitter& WriteIntegralType(T value); Emitter& Write(const std::string& str);
Emitter& Write(bool b);
Emitter& Write(char ch);
Emitter& Write(const _Alias& alias);
Emitter& Write(const _Anchor& anchor);
Emitter& Write(const _Tag& tag);
Emitter& Write(const _Comment& comment);
Emitter& Write(const _Null& n);
Emitter& Write(const Binary& binary);
template <typename T> template <typename T>
Emitter& WriteStreamable(T value); Emitter& WriteIntegralType(T value);
private: template <typename T>
template<typename T> void SetStreamablePrecision(std::stringstream&) {} Emitter& WriteStreamable(T value);
unsigned GetFloatPrecision() const;
unsigned GetDoublePrecision() const;
void PrepareIntegralStream(std::stringstream& stream) const; private:
void StartedScalar(); template <typename T>
void SetStreamablePrecision(std::stringstream&) {}
std::size_t GetFloatPrecision() const;
std::size_t GetDoublePrecision() const;
private: void PrepareIntegralStream(std::stringstream& stream) const;
void EmitBeginDoc(); void StartedScalar();
void EmitEndDoc();
void EmitBeginSeq();
void EmitEndSeq();
void EmitBeginMap();
void EmitEndMap();
void EmitNewline();
void EmitKindTag();
void EmitTag(bool verbatim, const _Tag& tag);
void PrepareNode(EmitterNodeType::value child); private:
void PrepareTopNode(EmitterNodeType::value child); void EmitBeginDoc();
void FlowSeqPrepareNode(EmitterNodeType::value child); void EmitEndDoc();
void BlockSeqPrepareNode(EmitterNodeType::value child); void EmitBeginSeq();
void EmitEndSeq();
void EmitBeginMap();
void EmitEndMap();
void EmitNewline();
void EmitKindTag();
void EmitTag(bool verbatim, const _Tag& tag);
void FlowMapPrepareNode(EmitterNodeType::value child); void PrepareNode(EmitterNodeType::value child);
void PrepareTopNode(EmitterNodeType::value child);
void FlowSeqPrepareNode(EmitterNodeType::value child);
void BlockSeqPrepareNode(EmitterNodeType::value child);
void FlowMapPrepareLongKey(EmitterNodeType::value child); void FlowMapPrepareNode(EmitterNodeType::value child);
void FlowMapPrepareLongKeyValue(EmitterNodeType::value child);
void FlowMapPrepareSimpleKey(EmitterNodeType::value child);
void FlowMapPrepareSimpleKeyValue(EmitterNodeType::value child);
void BlockMapPrepareNode(EmitterNodeType::value child); void FlowMapPrepareLongKey(EmitterNodeType::value child);
void FlowMapPrepareLongKeyValue(EmitterNodeType::value child);
void FlowMapPrepareSimpleKey(EmitterNodeType::value child);
void FlowMapPrepareSimpleKeyValue(EmitterNodeType::value child);
void BlockMapPrepareLongKey(EmitterNodeType::value child); void BlockMapPrepareNode(EmitterNodeType::value child);
void BlockMapPrepareLongKeyValue(EmitterNodeType::value child);
void BlockMapPrepareSimpleKey(EmitterNodeType::value child);
void BlockMapPrepareSimpleKeyValue(EmitterNodeType::value child);
void SpaceOrIndentTo(bool requireSpace, unsigned indent); void BlockMapPrepareLongKey(EmitterNodeType::value child);
void BlockMapPrepareLongKeyValue(EmitterNodeType::value child);
void BlockMapPrepareSimpleKey(EmitterNodeType::value child);
void BlockMapPrepareSimpleKeyValue(EmitterNodeType::value child);
const char *ComputeFullBoolName(bool b) const; void SpaceOrIndentTo(bool requireSpace, std::size_t indent);
bool CanEmitNewline() const;
private: const char* ComputeFullBoolName(bool b) const;
std::auto_ptr<EmitterState> m_pState; bool CanEmitNewline() const;
ostream_wrapper m_stream;
};
template <typename T> private:
inline Emitter& Emitter::WriteIntegralType(T value) std::auto_ptr<EmitterState> m_pState;
{ ostream_wrapper m_stream;
if(!good()) };
return *this;
PrepareNode(EmitterNodeType::Scalar); template <typename T>
inline Emitter& Emitter::WriteIntegralType(T value) {
if (!good())
return *this;
std::stringstream stream; PrepareNode(EmitterNodeType::Scalar);
PrepareIntegralStream(stream);
stream << value;
m_stream << stream.str();
StartedScalar(); std::stringstream stream;
PrepareIntegralStream(stream);
stream << value;
m_stream << stream.str();
return *this; StartedScalar();
}
template <typename T> return *this;
inline Emitter& Emitter::WriteStreamable(T value)
{
if(!good())
return *this;
PrepareNode(EmitterNodeType::Scalar);
std::stringstream stream;
SetStreamablePrecision<T>(stream);
stream << value;
m_stream << stream.str();
StartedScalar();
return *this;
}
template<>
inline void Emitter::SetStreamablePrecision<float>(std::stringstream& stream)
{
stream.precision(GetFloatPrecision());
}
template<>
inline void Emitter::SetStreamablePrecision<double>(std::stringstream& stream)
{
stream.precision(GetDoublePrecision());
}
// overloads of insertion
inline Emitter& operator << (Emitter& emitter, const std::string& v) { return emitter.Write(v); }
inline Emitter& operator << (Emitter& emitter, bool v) { return emitter.Write(v); }
inline Emitter& operator << (Emitter& emitter, char v) { return emitter.Write(v); }
inline Emitter& operator << (Emitter& emitter, unsigned char v) { return emitter.Write(static_cast<char>(v)); }
inline Emitter& operator << (Emitter& emitter, const _Alias& v) { return emitter.Write(v); }
inline Emitter& operator << (Emitter& emitter, const _Anchor& v) { return emitter.Write(v); }
inline Emitter& operator << (Emitter& emitter, const _Tag& v) { return emitter.Write(v); }
inline Emitter& operator << (Emitter& emitter, const _Comment& v) { return emitter.Write(v); }
inline Emitter& operator << (Emitter& emitter, const _Null& v) { return emitter.Write(v); }
inline Emitter& operator << (Emitter& emitter, const Binary& b) { return emitter.Write(b); }
inline Emitter& operator << (Emitter& emitter, const char *v) { return emitter.Write(std::string(v)); }
inline Emitter& operator << (Emitter& emitter, int v) { return emitter.WriteIntegralType(v); }
inline Emitter& operator << (Emitter& emitter, unsigned int v) { return emitter.WriteIntegralType(v); }
inline Emitter& operator << (Emitter& emitter, short v) { return emitter.WriteIntegralType(v); }
inline Emitter& operator << (Emitter& emitter, unsigned short v) { return emitter.WriteIntegralType(v); }
inline Emitter& operator << (Emitter& emitter, long v) { return emitter.WriteIntegralType(v); }
inline Emitter& operator << (Emitter& emitter, unsigned long v) { return emitter.WriteIntegralType(v); }
inline Emitter& operator << (Emitter& emitter, long long v) { return emitter.WriteIntegralType(v); }
inline Emitter& operator << (Emitter& emitter, unsigned long long v) { return emitter.WriteIntegralType(v); }
inline Emitter& operator << (Emitter& emitter, float v) { return emitter.WriteStreamable(v); }
inline Emitter& operator << (Emitter& emitter, double v) { return emitter.WriteStreamable(v); }
inline Emitter& operator << (Emitter& emitter, EMITTER_MANIP value) {
return emitter.SetLocalValue(value);
}
inline Emitter& operator << (Emitter& emitter, _Indent indent) {
return emitter.SetLocalIndent(indent);
}
inline Emitter& operator << (Emitter& emitter, _Precision precision) {
return emitter.SetLocalPrecision(precision);
}
} }
#endif // EMITTER_H_62B23520_7C8E_11DE_8A39_0800200C9A66 template <typename T>
inline Emitter& Emitter::WriteStreamable(T value) {
if (!good())
return *this;
PrepareNode(EmitterNodeType::Scalar);
std::stringstream stream;
SetStreamablePrecision<T>(stream);
stream << value;
m_stream << stream.str();
StartedScalar();
return *this;
}
template <>
inline void Emitter::SetStreamablePrecision<float>(std::stringstream& stream) {
stream.precision(GetFloatPrecision());
}
template <>
inline void Emitter::SetStreamablePrecision<double>(std::stringstream& stream) {
stream.precision(GetDoublePrecision());
}
// overloads of insertion
inline Emitter& operator<<(Emitter& emitter, const std::string& v) {
return emitter.Write(v);
}
inline Emitter& operator<<(Emitter& emitter, bool v) {
return emitter.Write(v);
}
inline Emitter& operator<<(Emitter& emitter, char v) {
return emitter.Write(v);
}
inline Emitter& operator<<(Emitter& emitter, unsigned char v) {
return emitter.Write(static_cast<char>(v));
}
inline Emitter& operator<<(Emitter& emitter, const _Alias& v) {
return emitter.Write(v);
}
inline Emitter& operator<<(Emitter& emitter, const _Anchor& v) {
return emitter.Write(v);
}
inline Emitter& operator<<(Emitter& emitter, const _Tag& v) {
return emitter.Write(v);
}
inline Emitter& operator<<(Emitter& emitter, const _Comment& v) {
return emitter.Write(v);
}
inline Emitter& operator<<(Emitter& emitter, const _Null& v) {
return emitter.Write(v);
}
inline Emitter& operator<<(Emitter& emitter, const Binary& b) {
return emitter.Write(b);
}
inline Emitter& operator<<(Emitter& emitter, const char* v) {
return emitter.Write(std::string(v));
}
inline Emitter& operator<<(Emitter& emitter, int v) {
return emitter.WriteIntegralType(v);
}
inline Emitter& operator<<(Emitter& emitter, unsigned int v) {
return emitter.WriteIntegralType(v);
}
inline Emitter& operator<<(Emitter& emitter, short v) {
return emitter.WriteIntegralType(v);
}
inline Emitter& operator<<(Emitter& emitter, unsigned short v) {
return emitter.WriteIntegralType(v);
}
inline Emitter& operator<<(Emitter& emitter, long v) {
return emitter.WriteIntegralType(v);
}
inline Emitter& operator<<(Emitter& emitter, unsigned long v) {
return emitter.WriteIntegralType(v);
}
inline Emitter& operator<<(Emitter& emitter, long long v) {
return emitter.WriteIntegralType(v);
}
inline Emitter& operator<<(Emitter& emitter, unsigned long long v) {
return emitter.WriteIntegralType(v);
}
inline Emitter& operator<<(Emitter& emitter, float v) {
return emitter.WriteStreamable(v);
}
inline Emitter& operator<<(Emitter& emitter, double v) {
return emitter.WriteStreamable(v);
}
inline Emitter& operator<<(Emitter& emitter, EMITTER_MANIP value) {
return emitter.SetLocalValue(value);
}
inline Emitter& operator<<(Emitter& emitter, _Indent indent) {
return emitter.SetLocalIndent(indent);
}
inline Emitter& operator<<(Emitter& emitter, _Precision precision) {
return emitter.SetLocalPrecision(precision);
}
}
#endif // EMITTER_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@@ -1,13 +1,16 @@
#ifndef EMITTERDEF_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #ifndef EMITTERDEF_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define EMITTERDEF_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #define EMITTERDEF_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || (defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || (__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4 #if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once #pragma once
#endif #endif
namespace YAML namespace YAML {
{ struct EmitterNodeType {
struct EmitterNodeType { enum value { None, Property, Scalar, FlowSeq, BlockSeq, FlowMap, BlockMap }; }; enum value { NoType, Property, Scalar, FlowSeq, BlockSeq, FlowMap, BlockMap };
};
} }
#endif // EMITTERDEF_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #endif // EMITTERDEF_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@@ -1,149 +1,137 @@
#ifndef EMITTERMANIP_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #ifndef EMITTERMANIP_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define EMITTERMANIP_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #define EMITTERMANIP_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || (defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || (__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4 #if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once #pragma once
#endif #endif
#include <string> #include <string>
namespace YAML namespace YAML {
{ enum EMITTER_MANIP {
enum EMITTER_MANIP { // general manipulators
// general manipulators Auto,
Auto, TagByKind,
TagByKind, Newline,
Newline,
// output character set // output character set
EmitNonAscii, EmitNonAscii,
EscapeNonAscii, EscapeNonAscii,
// string manipulators // string manipulators
// Auto, // duplicate // Auto, // duplicate
SingleQuoted, SingleQuoted,
DoubleQuoted, DoubleQuoted,
Literal, Literal,
// bool manipulators // bool manipulators
YesNoBool, // yes, no YesNoBool, // yes, no
TrueFalseBool, // true, false TrueFalseBool, // true, false
OnOffBool, // on, off OnOffBool, // on, off
UpperCase, // TRUE, N UpperCase, // TRUE, N
LowerCase, // f, yes LowerCase, // f, yes
CamelCase, // No, Off CamelCase, // No, Off
LongBool, // yes, On LongBool, // yes, On
ShortBool, // y, t ShortBool, // y, t
// int manipulators // int manipulators
Dec, Dec,
Hex, Hex,
Oct, Oct,
// document manipulators // document manipulators
BeginDoc, BeginDoc,
EndDoc, EndDoc,
// sequence manipulators // sequence manipulators
BeginSeq, BeginSeq,
EndSeq, EndSeq,
Flow, Flow,
Block, Block,
// map manipulators // map manipulators
BeginMap, BeginMap,
EndMap, EndMap,
Key, Key,
Value, Value,
// Flow, // duplicate // Flow, // duplicate
// Block, // duplicate // Block, // duplicate
// Auto, // duplicate // Auto, // duplicate
LongKey LongKey
}; };
struct _Indent { struct _Indent {
_Indent(int value_): value(value_) {} _Indent(int value_) : value(value_) {}
int value; int value;
}; };
inline _Indent Indent(int value) { inline _Indent Indent(int value) { return _Indent(value); }
return _Indent(value);
}
struct _Alias { struct _Alias {
_Alias(const std::string& content_): content(content_) {} _Alias(const std::string& content_) : content(content_) {}
std::string content; std::string content;
}; };
inline _Alias Alias(const std::string content) { inline _Alias Alias(const std::string content) { return _Alias(content); }
return _Alias(content);
}
struct _Anchor { struct _Anchor {
_Anchor(const std::string& content_): content(content_) {} _Anchor(const std::string& content_) : content(content_) {}
std::string content; std::string content;
}; };
inline _Anchor Anchor(const std::string content) { inline _Anchor Anchor(const std::string content) { return _Anchor(content); }
return _Anchor(content);
}
struct _Tag { struct _Tag {
struct Type { enum value { Verbatim, PrimaryHandle, NamedHandle }; }; struct Type {
enum value { Verbatim, PrimaryHandle, NamedHandle };
};
explicit _Tag(const std::string& prefix_, const std::string& content_, Type::value type_) explicit _Tag(const std::string& prefix_, const std::string& content_,
: prefix(prefix_), content(content_), type(type_) Type::value type_)
{ : prefix(prefix_), content(content_), type(type_) {}
} std::string prefix;
std::string prefix; std::string content;
std::string content; Type::value type;
Type::value type; };
};
inline _Tag VerbatimTag(const std::string content) { inline _Tag VerbatimTag(const std::string content) {
return _Tag("", content, _Tag::Type::Verbatim); return _Tag("", content, _Tag::Type::Verbatim);
}
inline _Tag LocalTag(const std::string content) {
return _Tag("", content, _Tag::Type::PrimaryHandle);
}
inline _Tag LocalTag(const std::string& prefix, const std::string content) {
return _Tag(prefix, content, _Tag::Type::NamedHandle);
}
inline _Tag SecondaryTag(const std::string content) {
return _Tag("", content, _Tag::Type::NamedHandle);
}
struct _Comment {
_Comment(const std::string& content_): content(content_) {}
std::string content;
};
inline _Comment Comment(const std::string content) {
return _Comment(content);
}
struct _Precision {
_Precision(int floatPrecision_, int doublePrecision_): floatPrecision(floatPrecision_), doublePrecision(doublePrecision_) {}
int floatPrecision;
int doublePrecision;
};
inline _Precision FloatPrecision(int n) {
return _Precision(n, -1);
}
inline _Precision DoublePrecision(int n) {
return _Precision(-1, n);
}
inline _Precision Precision(int n) {
return _Precision(n, n);
}
} }
#endif // EMITTERMANIP_H_62B23520_7C8E_11DE_8A39_0800200C9A66 inline _Tag LocalTag(const std::string content) {
return _Tag("", content, _Tag::Type::PrimaryHandle);
}
inline _Tag LocalTag(const std::string& prefix, const std::string content) {
return _Tag(prefix, content, _Tag::Type::NamedHandle);
}
inline _Tag SecondaryTag(const std::string content) {
return _Tag("", content, _Tag::Type::NamedHandle);
}
struct _Comment {
_Comment(const std::string& content_) : content(content_) {}
std::string content;
};
inline _Comment Comment(const std::string content) { return _Comment(content); }
struct _Precision {
_Precision(int floatPrecision_, int doublePrecision_)
: floatPrecision(floatPrecision_), doublePrecision(doublePrecision_) {}
int floatPrecision;
int doublePrecision;
};
inline _Precision FloatPrecision(int n) { return _Precision(n, -1); }
inline _Precision DoublePrecision(int n) { return _Precision(-1, n); }
inline _Precision Precision(int n) { return _Precision(n, n); }
}
#endif // EMITTERMANIP_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@@ -0,0 +1,16 @@
#ifndef EMITTERSTYLE_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define EMITTERSTYLE_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once
#endif
namespace YAML {
struct EmitterStyle {
enum value { Default, Block, Flow };
};
}
#endif // EMITTERSTYLE_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@@ -1,36 +1,40 @@
#ifndef EVENTHANDLER_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #ifndef EVENTHANDLER_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define EVENTHANDLER_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #define EVENTHANDLER_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || (defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || (__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4 #if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once #pragma once
#endif #endif
#include "yaml-cpp/anchor.h"
#include <string> #include <string>
namespace YAML #include "yaml-cpp/anchor.h"
{ #include "yaml-cpp/emitterstyle.h"
struct Mark;
class EventHandler namespace YAML {
{ struct Mark;
public:
virtual ~EventHandler() {}
virtual void OnDocumentStart(const Mark& mark) = 0; class EventHandler {
virtual void OnDocumentEnd() = 0; public:
virtual ~EventHandler() {}
virtual void OnNull(const Mark& mark, anchor_t anchor) = 0; virtual void OnDocumentStart(const Mark& mark) = 0;
virtual void OnAlias(const Mark& mark, anchor_t anchor) = 0; virtual void OnDocumentEnd() = 0;
virtual void OnScalar(const Mark& mark, const std::string& tag, anchor_t anchor, const std::string& value) = 0;
virtual void OnSequenceStart(const Mark& mark, const std::string& tag, anchor_t anchor) = 0; virtual void OnNull(const Mark& mark, anchor_t anchor) = 0;
virtual void OnSequenceEnd() = 0; virtual void OnAlias(const Mark& mark, anchor_t anchor) = 0;
virtual void OnScalar(const Mark& mark, const std::string& tag,
anchor_t anchor, const std::string& value) = 0;
virtual void OnMapStart(const Mark& mark, const std::string& tag, anchor_t anchor) = 0; virtual void OnSequenceStart(const Mark& mark, const std::string& tag,
virtual void OnMapEnd() = 0; anchor_t anchor, EmitterStyle::value style) = 0;
}; virtual void OnSequenceEnd() = 0;
virtual void OnMapStart(const Mark& mark, const std::string& tag,
anchor_t anchor, EmitterStyle::value style) = 0;
virtual void OnMapEnd() = 0;
};
} }
#endif // EVENTHANDLER_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #endif // EVENTHANDLER_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@@ -1,208 +1,231 @@
#ifndef EXCEPTIONS_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #ifndef EXCEPTIONS_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define EXCEPTIONS_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #define EXCEPTIONS_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || (defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || (__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4 #if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once #pragma once
#endif #endif
#include "yaml-cpp/mark.h" #include "yaml-cpp/mark.h"
#include "yaml-cpp/traits.h" #include "yaml-cpp/traits.h"
#include <stdexcept> #include <stdexcept>
#include <string> #include <string>
#include <sstream> #include <sstream>
namespace YAML namespace YAML {
{ // error messages
// error messages namespace ErrorMsg {
namespace ErrorMsg const char* const YAML_DIRECTIVE_ARGS =
{ "YAML directives must have exactly one argument";
const char * const YAML_DIRECTIVE_ARGS = "YAML directives must have exactly one argument"; const char* const YAML_VERSION = "bad YAML version: ";
const char * const YAML_VERSION = "bad YAML version: "; const char* const YAML_MAJOR_VERSION = "YAML major version too large";
const char * const YAML_MAJOR_VERSION = "YAML major version too large"; const char* const REPEATED_YAML_DIRECTIVE = "repeated YAML directive";
const char * const REPEATED_YAML_DIRECTIVE= "repeated YAML directive"; const char* const TAG_DIRECTIVE_ARGS =
const char * const TAG_DIRECTIVE_ARGS = "TAG directives must have exactly two arguments"; "TAG directives must have exactly two arguments";
const char * const REPEATED_TAG_DIRECTIVE = "repeated TAG directive"; const char* const REPEATED_TAG_DIRECTIVE = "repeated TAG directive";
const char * const CHAR_IN_TAG_HANDLE = "illegal character found while scanning tag handle"; const char* const CHAR_IN_TAG_HANDLE =
const char * const TAG_WITH_NO_SUFFIX = "tag handle with no suffix"; "illegal character found while scanning tag handle";
const char * const END_OF_VERBATIM_TAG = "end of verbatim tag not found"; const char* const TAG_WITH_NO_SUFFIX = "tag handle with no suffix";
const char * const END_OF_MAP = "end of map not found"; const char* const END_OF_VERBATIM_TAG = "end of verbatim tag not found";
const char * const END_OF_MAP_FLOW = "end of map flow not found"; const char* const END_OF_MAP = "end of map not found";
const char * const END_OF_SEQ = "end of sequence not found"; const char* const END_OF_MAP_FLOW = "end of map flow not found";
const char * const END_OF_SEQ_FLOW = "end of sequence flow not found"; const char* const END_OF_SEQ = "end of sequence not found";
const char * const MULTIPLE_TAGS = "cannot assign multiple tags to the same node"; const char* const END_OF_SEQ_FLOW = "end of sequence flow not found";
const char * const MULTIPLE_ANCHORS = "cannot assign multiple anchors to the same node"; const char* const MULTIPLE_TAGS =
const char * const MULTIPLE_ALIASES = "cannot assign multiple aliases to the same node"; "cannot assign multiple tags to the same node";
const char * const ALIAS_CONTENT = "aliases can't have any content, *including* tags"; const char* const MULTIPLE_ANCHORS =
const char * const INVALID_HEX = "bad character found while scanning hex number"; "cannot assign multiple anchors to the same node";
const char * const INVALID_UNICODE = "invalid unicode: "; const char* const MULTIPLE_ALIASES =
const char * const INVALID_ESCAPE = "unknown escape character: "; "cannot assign multiple aliases to the same node";
const char * const UNKNOWN_TOKEN = "unknown token"; const char* const ALIAS_CONTENT =
const char * const DOC_IN_SCALAR = "illegal document indicator in scalar"; "aliases can't have any content, *including* tags";
const char * const EOF_IN_SCALAR = "illegal EOF in scalar"; const char* const INVALID_HEX = "bad character found while scanning hex number";
const char * const CHAR_IN_SCALAR = "illegal character in scalar"; const char* const INVALID_UNICODE = "invalid unicode: ";
const char * const TAB_IN_INDENTATION = "illegal tab when looking for indentation"; const char* const INVALID_ESCAPE = "unknown escape character: ";
const char * const FLOW_END = "illegal flow end"; const char* const UNKNOWN_TOKEN = "unknown token";
const char * const BLOCK_ENTRY = "illegal block entry"; const char* const DOC_IN_SCALAR = "illegal document indicator in scalar";
const char * const MAP_KEY = "illegal map key"; const char* const EOF_IN_SCALAR = "illegal EOF in scalar";
const char * const MAP_VALUE = "illegal map value"; const char* const CHAR_IN_SCALAR = "illegal character in scalar";
const char * const ALIAS_NOT_FOUND = "alias not found after *"; const char* const TAB_IN_INDENTATION =
const char * const ANCHOR_NOT_FOUND = "anchor not found after &"; "illegal tab when looking for indentation";
const char * const CHAR_IN_ALIAS = "illegal character found while scanning alias"; const char* const FLOW_END = "illegal flow end";
const char * const CHAR_IN_ANCHOR = "illegal character found while scanning anchor"; const char* const BLOCK_ENTRY = "illegal block entry";
const char * const ZERO_INDENT_IN_BLOCK = "cannot set zero indentation for a block scalar"; const char* const MAP_KEY = "illegal map key";
const char * const CHAR_IN_BLOCK = "unexpected character in block scalar"; const char* const MAP_VALUE = "illegal map value";
const char * const AMBIGUOUS_ANCHOR = "cannot assign the same alias to multiple nodes"; const char* const ALIAS_NOT_FOUND = "alias not found after *";
const char * const UNKNOWN_ANCHOR = "the referenced anchor is not defined"; const char* const ANCHOR_NOT_FOUND = "anchor not found after &";
const char* const CHAR_IN_ALIAS =
"illegal character found while scanning alias";
const char* const CHAR_IN_ANCHOR =
"illegal character found while scanning anchor";
const char* const ZERO_INDENT_IN_BLOCK =
"cannot set zero indentation for a block scalar";
const char* const CHAR_IN_BLOCK = "unexpected character in block scalar";
const char* const AMBIGUOUS_ANCHOR =
"cannot assign the same alias to multiple nodes";
const char* const UNKNOWN_ANCHOR = "the referenced anchor is not defined";
const char * const INVALID_NODE = "invalid node; this may result from using a map iterator as a sequence iterator, or vice-versa"; const char* const INVALID_NODE =
const char * const INVALID_SCALAR = "invalid scalar"; "invalid node; this may result from using a map iterator as a sequence "
const char * const KEY_NOT_FOUND = "key not found"; "iterator, or vice-versa";
const char * const BAD_CONVERSION = "bad conversion"; const char* const INVALID_SCALAR = "invalid scalar";
const char * const BAD_DEREFERENCE = "bad dereference"; const char* const KEY_NOT_FOUND = "key not found";
const char * const BAD_SUBSCRIPT = "operator[] call on a scalar"; const char* const BAD_CONVERSION = "bad conversion";
const char * const BAD_PUSHBACK = "appending to a non-sequence"; const char* const BAD_DEREFERENCE = "bad dereference";
const char * const BAD_INSERT = "inserting in a non-convertible-to-map"; const char* const BAD_SUBSCRIPT = "operator[] call on a scalar";
const char* const BAD_PUSHBACK = "appending to a non-sequence";
const char* const BAD_INSERT = "inserting in a non-convertible-to-map";
const char * const UNMATCHED_GROUP_TAG = "unmatched group tag"; const char* const UNMATCHED_GROUP_TAG = "unmatched group tag";
const char * const UNEXPECTED_END_SEQ = "unexpected end sequence token"; const char* const UNEXPECTED_END_SEQ = "unexpected end sequence token";
const char * const UNEXPECTED_END_MAP = "unexpected end map token"; const char* const UNEXPECTED_END_MAP = "unexpected end map token";
const char * const SINGLE_QUOTED_CHAR = "invalid character in single-quoted string"; const char* const SINGLE_QUOTED_CHAR =
const char * const INVALID_ANCHOR = "invalid anchor"; "invalid character in single-quoted string";
const char * const INVALID_ALIAS = "invalid alias"; const char* const INVALID_ANCHOR = "invalid anchor";
const char * const INVALID_TAG = "invalid tag"; const char* const INVALID_ALIAS = "invalid alias";
const char * const BAD_FILE = "bad file"; const char* const INVALID_TAG = "invalid tag";
const char* const BAD_FILE = "bad file";
template <typename T> template <typename T>
inline const std::string KEY_NOT_FOUND_WITH_KEY(const T&, typename disable_if<is_numeric<T> >::type * = 0) { inline const std::string KEY_NOT_FOUND_WITH_KEY(
return KEY_NOT_FOUND; const T&, typename disable_if<is_numeric<T> >::type* = 0) {
} return KEY_NOT_FOUND;
inline const std::string KEY_NOT_FOUND_WITH_KEY(const std::string& key) {
std::stringstream stream;
stream << KEY_NOT_FOUND << ": " << key;
return stream.str();
}
template <typename T>
inline const std::string KEY_NOT_FOUND_WITH_KEY(const T& key, typename enable_if<is_numeric<T> >::type * = 0) {
std::stringstream stream;
stream << KEY_NOT_FOUND << ": " << key;
return stream.str();
}
}
class Exception: public std::runtime_error {
public:
Exception(const Mark& mark_, const std::string& msg_)
: std::runtime_error(build_what(mark_, msg_)), mark(mark_), msg(msg_) {}
virtual ~Exception() throw() {}
Mark mark;
std::string msg;
private:
static const std::string build_what(const Mark& mark, const std::string& msg) {
std::stringstream output;
output << "yaml-cpp: error at line " << mark.line+1 << ", column " << mark.column+1 << ": " << msg;
return output.str();
}
};
class ParserException: public Exception {
public:
ParserException(const Mark& mark_, const std::string& msg_)
: Exception(mark_, msg_) {}
};
class RepresentationException: public Exception {
public:
RepresentationException(const Mark& mark_, const std::string& msg_)
: Exception(mark_, msg_) {}
};
// representation exceptions
class InvalidScalar: public RepresentationException {
public:
InvalidScalar(const Mark& mark_)
: RepresentationException(mark_, ErrorMsg::INVALID_SCALAR) {}
};
class KeyNotFound: public RepresentationException {
public:
template <typename T>
KeyNotFound(const Mark& mark_, const T& key_)
: RepresentationException(mark_, ErrorMsg::KEY_NOT_FOUND_WITH_KEY(key_)) {}
};
template <typename T>
class TypedKeyNotFound: public KeyNotFound {
public:
TypedKeyNotFound(const Mark& mark_, const T& key_)
: KeyNotFound(mark_, key_), key(key_) {}
virtual ~TypedKeyNotFound() throw() {}
T key;
};
template <typename T>
inline TypedKeyNotFound <T> MakeTypedKeyNotFound(const Mark& mark, const T& key) {
return TypedKeyNotFound <T> (mark, key);
}
class InvalidNode: public RepresentationException {
public:
InvalidNode()
: RepresentationException(Mark::null_mark(), ErrorMsg::INVALID_NODE) {}
};
class BadConversion: public RepresentationException {
public:
BadConversion()
: RepresentationException(Mark::null_mark(), ErrorMsg::BAD_CONVERSION) {}
};
template<typename T>
class TypedBadConversion: public BadConversion {
public:
TypedBadConversion()
: BadConversion() {}
};
class BadDereference: public RepresentationException {
public:
BadDereference()
: RepresentationException(Mark::null_mark(), ErrorMsg::BAD_DEREFERENCE) {}
};
class BadSubscript: public RepresentationException {
public:
BadSubscript()
: RepresentationException(Mark::null_mark(), ErrorMsg::BAD_SUBSCRIPT) {}
};
class BadPushback: public RepresentationException {
public:
BadPushback()
: RepresentationException(Mark::null_mark(), ErrorMsg::BAD_PUSHBACK) {}
};
class BadInsert: public RepresentationException {
public:
BadInsert()
: RepresentationException(Mark::null_mark(), ErrorMsg::BAD_INSERT) {}
};
class EmitterException: public Exception {
public:
EmitterException(const std::string& msg_)
: Exception(Mark::null_mark(), msg_) {}
};
class BadFile: public Exception {
public:
BadFile(): Exception(Mark::null_mark(), ErrorMsg::BAD_FILE) {}
};
} }
#endif // EXCEPTIONS_H_62B23520_7C8E_11DE_8A39_0800200C9A66 inline const std::string KEY_NOT_FOUND_WITH_KEY(const std::string& key) {
std::stringstream stream;
stream << KEY_NOT_FOUND << ": " << key;
return stream.str();
}
template <typename T>
inline const std::string KEY_NOT_FOUND_WITH_KEY(
const T& key, typename enable_if<is_numeric<T> >::type* = 0) {
std::stringstream stream;
stream << KEY_NOT_FOUND << ": " << key;
return stream.str();
}
}
class Exception : public std::runtime_error {
public:
Exception(const Mark& mark_, const std::string& msg_)
: std::runtime_error(build_what(mark_, msg_)), mark(mark_), msg(msg_) {}
virtual ~Exception() throw() {}
Mark mark;
std::string msg;
private:
static const std::string build_what(const Mark& mark,
const std::string& msg) {
if (mark.is_null()) {
return msg.c_str();
}
std::stringstream output;
output << "yaml-cpp: error at line " << mark.line + 1 << ", column "
<< mark.column + 1 << ": " << msg;
return output.str();
}
};
class ParserException : public Exception {
public:
ParserException(const Mark& mark_, const std::string& msg_)
: Exception(mark_, msg_) {}
};
class RepresentationException : public Exception {
public:
RepresentationException(const Mark& mark_, const std::string& msg_)
: Exception(mark_, msg_) {}
};
// representation exceptions
class InvalidScalar : public RepresentationException {
public:
InvalidScalar(const Mark& mark_)
: RepresentationException(mark_, ErrorMsg::INVALID_SCALAR) {}
};
class KeyNotFound : public RepresentationException {
public:
template <typename T>
KeyNotFound(const Mark& mark_, const T& key_)
: RepresentationException(mark_, ErrorMsg::KEY_NOT_FOUND_WITH_KEY(key_)) {
}
};
template <typename T>
class TypedKeyNotFound : public KeyNotFound {
public:
TypedKeyNotFound(const Mark& mark_, const T& key_)
: KeyNotFound(mark_, key_), key(key_) {}
virtual ~TypedKeyNotFound() throw() {}
T key;
};
template <typename T>
inline TypedKeyNotFound<T> MakeTypedKeyNotFound(const Mark& mark,
const T& key) {
return TypedKeyNotFound<T>(mark, key);
}
class InvalidNode : public RepresentationException {
public:
InvalidNode()
: RepresentationException(Mark::null_mark(), ErrorMsg::INVALID_NODE) {}
};
class BadConversion : public RepresentationException {
public:
explicit BadConversion(const Mark& mark_)
: RepresentationException(mark_, ErrorMsg::BAD_CONVERSION) {}
};
template <typename T>
class TypedBadConversion : public BadConversion {
public:
explicit TypedBadConversion(const Mark& mark_) : BadConversion(mark_) {}
};
class BadDereference : public RepresentationException {
public:
BadDereference()
: RepresentationException(Mark::null_mark(), ErrorMsg::BAD_DEREFERENCE) {}
};
class BadSubscript : public RepresentationException {
public:
BadSubscript()
: RepresentationException(Mark::null_mark(), ErrorMsg::BAD_SUBSCRIPT) {}
};
class BadPushback : public RepresentationException {
public:
BadPushback()
: RepresentationException(Mark::null_mark(), ErrorMsg::BAD_PUSHBACK) {}
};
class BadInsert : public RepresentationException {
public:
BadInsert()
: RepresentationException(Mark::null_mark(), ErrorMsg::BAD_INSERT) {}
};
class EmitterException : public Exception {
public:
EmitterException(const std::string& msg_)
: Exception(Mark::null_mark(), msg_) {}
};
class BadFile : public Exception {
public:
BadFile() : Exception(Mark::null_mark(), ErrorMsg::BAD_FILE) {}
};
}
#endif // EXCEPTIONS_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@@ -1,26 +1,29 @@
#ifndef MARK_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #ifndef MARK_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define MARK_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #define MARK_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || (defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || (__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4 #if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once #pragma once
#endif #endif
#include "yaml-cpp/dll.h" #include "yaml-cpp/dll.h"
namespace YAML namespace YAML {
{ struct YAML_CPP_API Mark {
struct YAML_CPP_API Mark { Mark() : pos(0), line(0), column(0) {}
Mark(): pos(0), line(0), column(0) {}
static const Mark null_mark() { return Mark(-1, -1, -1); } static const Mark null_mark() { return Mark(-1, -1, -1); }
int pos; bool is_null() const { return pos == -1 && line == -1 && column == -1; }
int line, column;
private: int pos;
Mark(int pos_, int line_, int column_): pos(pos_), line(line_), column(column_) {} int line, column;
};
private:
Mark(int pos_, int line_, int column_)
: pos(pos_), line(line_), column(column_) {}
};
} }
#endif // MARK_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #endif // MARK_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@@ -1,280 +1,297 @@
#ifndef NODE_CONVERT_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #ifndef NODE_CONVERT_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define NODE_CONVERT_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #define NODE_CONVERT_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || (defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || (__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4 #if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once #pragma once
#endif #endif
#include "yaml-cpp/binary.h"
#include "yaml-cpp/node/node.h"
#include "yaml-cpp/node/iterator.h"
#include "yaml-cpp/null.h"
#include <limits> #include <limits>
#include <list> #include <list>
#include <map> #include <map>
#include <sstream> #include <sstream>
#include <vector> #include <vector>
namespace YAML #include "yaml-cpp/binary.h"
{ #include "yaml-cpp/node/impl.h"
namespace conversion { #include "yaml-cpp/node/iterator.h"
inline bool IsInfinity(const std::string& input) { #include "yaml-cpp/node/node.h"
return input == ".inf" || input == ".Inf" || input == ".INF" || input == "+.inf" || input == "+.Inf" || input == "+.INF"; #include "yaml-cpp/node/type.h"
} #include "yaml-cpp/null.h"
inline bool IsNegativeInfinity(const std::string& input) { namespace YAML {
return input == "-.inf" || input == "-.Inf" || input == "-.INF"; class Binary;
} struct _Null;
template <typename T>
struct convert;
} // namespace YAML
inline bool IsNaN(const std::string& input) { namespace YAML {
return input == ".nan" || input == ".NaN" || input == ".NAN"; namespace conversion {
} inline bool IsInfinity(const std::string& input) {
} return input == ".inf" || input == ".Inf" || input == ".INF" ||
input == "+.inf" || input == "+.Inf" || input == "+.INF";
}
// std::string inline bool IsNegativeInfinity(const std::string& input) {
template<> return input == "-.inf" || input == "-.Inf" || input == "-.INF";
struct convert<std::string> { }
static Node encode(const std::string& rhs) {
return Node(rhs);
}
static bool decode(const Node& node, std::string& rhs) { inline bool IsNaN(const std::string& input) {
if(!node.IsScalar()) return input == ".nan" || input == ".NaN" || input == ".NAN";
return false; }
rhs = node.Scalar(); }
return true;
}
};
// C-strings can only be encoded // Node
template<> template <>
struct convert<const char *> { struct convert<Node> {
static Node encode(const char *&rhs) { static Node encode(const Node& rhs) { return rhs; }
return Node(rhs);
}
};
template<std::size_t N> static bool decode(const Node& node, Node& rhs) {
struct convert<const char[N]> { rhs.reset(node);
static Node encode(const char (&rhs)[N]) { return true;
return Node(rhs); }
} };
};
template<> // std::string
struct convert<_Null> { template <>
static Node encode(const _Null& /* rhs */) { struct convert<std::string> {
return Node(); static Node encode(const std::string& rhs) { return Node(rhs); }
}
static bool decode(const Node& node, _Null& /* rhs */) { static bool decode(const Node& node, std::string& rhs) {
return node.IsNull(); if (!node.IsScalar())
} return false;
}; rhs = node.Scalar();
return true;
}
};
#define YAML_DEFINE_CONVERT_STREAMABLE(type, negative_op)\ // C-strings can only be encoded
template<>\ template <>
struct convert<type> {\ struct convert<const char*> {
static Node encode(const type& rhs) {\ static Node encode(const char*& rhs) { return Node(rhs); }
std::stringstream stream;\ };
stream.precision(std::numeric_limits<type>::digits10 + 1);\
stream << rhs;\
return Node(stream.str());\
}\
\
static bool decode(const Node& node, type& rhs) {\
if(node.Type() != NodeType::Scalar)\
return false;\
const std::string& input = node.Scalar();\
std::stringstream stream(input);\
stream.unsetf(std::ios::dec);\
if((stream >> rhs) && (stream >> std::ws).eof())\
return true;\
if(std::numeric_limits<type>::has_infinity) {\
if(conversion::IsInfinity(input)) {\
rhs = std::numeric_limits<type>::infinity();\
return true;\
} else if(conversion::IsNegativeInfinity(input)) {\
rhs = negative_op std::numeric_limits<type>::infinity();\
return true;\
}\
}\
\
if(std::numeric_limits<type>::has_quiet_NaN && conversion::IsNaN(input)) {\
rhs = std::numeric_limits<type>::quiet_NaN();\
return true;\
}\
\
return false;\
}\
}
#define YAML_DEFINE_CONVERT_STREAMABLE_SIGNED(type)\ template <std::size_t N>
YAML_DEFINE_CONVERT_STREAMABLE(type, -) struct convert<const char[N]> {
static Node encode(const char(&rhs)[N]) { return Node(rhs); }
};
#define YAML_DEFINE_CONVERT_STREAMABLE_UNSIGNED(type)\ template <>
YAML_DEFINE_CONVERT_STREAMABLE(type, +) struct convert<_Null> {
static Node encode(const _Null& /* rhs */) { return Node(); }
YAML_DEFINE_CONVERT_STREAMABLE_SIGNED(int); static bool decode(const Node& node, _Null& /* rhs */) {
YAML_DEFINE_CONVERT_STREAMABLE_SIGNED(short); return node.IsNull();
YAML_DEFINE_CONVERT_STREAMABLE_SIGNED(long); }
YAML_DEFINE_CONVERT_STREAMABLE_SIGNED(long long); };
YAML_DEFINE_CONVERT_STREAMABLE_UNSIGNED(unsigned);
YAML_DEFINE_CONVERT_STREAMABLE_UNSIGNED(unsigned short);
YAML_DEFINE_CONVERT_STREAMABLE_UNSIGNED(unsigned long);
YAML_DEFINE_CONVERT_STREAMABLE_UNSIGNED(unsigned long long);
YAML_DEFINE_CONVERT_STREAMABLE_SIGNED(char); #define YAML_DEFINE_CONVERT_STREAMABLE(type, negative_op) \
YAML_DEFINE_CONVERT_STREAMABLE_UNSIGNED(unsigned char); template <> \
struct convert<type> { \
static Node encode(const type& rhs) { \
std::stringstream stream; \
stream.precision(std::numeric_limits<type>::digits10 + 1); \
stream << rhs; \
return Node(stream.str()); \
} \
\
static bool decode(const Node& node, type& rhs) { \
if (node.Type() != NodeType::Scalar) \
return false; \
const std::string& input = node.Scalar(); \
std::stringstream stream(input); \
stream.unsetf(std::ios::dec); \
if ((stream >> std::noskipws >> rhs) && (stream >> std::ws).eof()) \
return true; \
if (std::numeric_limits<type>::has_infinity) { \
if (conversion::IsInfinity(input)) { \
rhs = std::numeric_limits<type>::infinity(); \
return true; \
} else if (conversion::IsNegativeInfinity(input)) { \
rhs = negative_op std::numeric_limits<type>::infinity(); \
return true; \
} \
} \
\
if (std::numeric_limits<type>::has_quiet_NaN && \
conversion::IsNaN(input)) { \
rhs = std::numeric_limits<type>::quiet_NaN(); \
return true; \
} \
\
return false; \
} \
}
YAML_DEFINE_CONVERT_STREAMABLE_SIGNED(float); #define YAML_DEFINE_CONVERT_STREAMABLE_SIGNED(type) \
YAML_DEFINE_CONVERT_STREAMABLE_SIGNED(double); YAML_DEFINE_CONVERT_STREAMABLE(type, -)
YAML_DEFINE_CONVERT_STREAMABLE_SIGNED(long double);
#define YAML_DEFINE_CONVERT_STREAMABLE_UNSIGNED(type) \
YAML_DEFINE_CONVERT_STREAMABLE(type, +)
YAML_DEFINE_CONVERT_STREAMABLE_SIGNED(int);
YAML_DEFINE_CONVERT_STREAMABLE_SIGNED(short);
YAML_DEFINE_CONVERT_STREAMABLE_SIGNED(long);
YAML_DEFINE_CONVERT_STREAMABLE_SIGNED(long long);
YAML_DEFINE_CONVERT_STREAMABLE_UNSIGNED(unsigned);
YAML_DEFINE_CONVERT_STREAMABLE_UNSIGNED(unsigned short);
YAML_DEFINE_CONVERT_STREAMABLE_UNSIGNED(unsigned long);
YAML_DEFINE_CONVERT_STREAMABLE_UNSIGNED(unsigned long long);
YAML_DEFINE_CONVERT_STREAMABLE_SIGNED(char);
YAML_DEFINE_CONVERT_STREAMABLE_SIGNED(signed char);
YAML_DEFINE_CONVERT_STREAMABLE_UNSIGNED(unsigned char);
YAML_DEFINE_CONVERT_STREAMABLE_SIGNED(float);
YAML_DEFINE_CONVERT_STREAMABLE_SIGNED(double);
YAML_DEFINE_CONVERT_STREAMABLE_SIGNED(long double);
#undef YAML_DEFINE_CONVERT_STREAMABLE_SIGNED #undef YAML_DEFINE_CONVERT_STREAMABLE_SIGNED
#undef YAML_DEFINE_CONVERT_STREAMABLE_UNSIGNED #undef YAML_DEFINE_CONVERT_STREAMABLE_UNSIGNED
#undef YAML_DEFINE_CONVERT_STREAMABLE #undef YAML_DEFINE_CONVERT_STREAMABLE
// bool // bool
template<> template <>
struct convert<bool> { struct convert<bool> {
static Node encode(bool rhs) { static Node encode(bool rhs) { return rhs ? Node("true") : Node("false"); }
return rhs ? Node("true") : Node("false");
}
static bool decode(const Node& node, bool& rhs); YAML_CPP_API static bool decode(const Node& node, bool& rhs);
}; };
// std::map // std::map
template<typename K, typename V> template <typename K, typename V>
struct convert<std::map<K, V> > { struct convert<std::map<K, V> > {
static Node encode(const std::map<K, V>& rhs) { static Node encode(const std::map<K, V>& rhs) {
Node node(NodeType::Map); Node node(NodeType::Map);
for(typename std::map<K, V>::const_iterator it=rhs.begin();it!=rhs.end();++it) for (typename std::map<K, V>::const_iterator it = rhs.begin();
node.force_insert(it->first, it->second); it != rhs.end(); ++it)
return node; node.force_insert(it->first, it->second);
} return node;
}
static bool decode(const Node& node, std::map<K, V>& rhs) { static bool decode(const Node& node, std::map<K, V>& rhs) {
if(!node.IsMap()) if (!node.IsMap())
return false; return false;
rhs.clear(); rhs.clear();
for(const_iterator it=node.begin();it!=node.end();++it) for (const_iterator it = node.begin(); it != node.end(); ++it)
#if defined(__GNUC__) && __GNUC__ < 4 #if defined(__GNUC__) && __GNUC__ < 4
//workaround for GCC 3: // workaround for GCC 3:
rhs[it->first.template as<K>()] = it->second.template as<V>(); rhs[it->first.template as<K>()] = it->second.template as<V>();
#else #else
rhs[it->first.as<K>()] = it->second.as<V>(); rhs[it->first.as<K>()] = it->second.as<V>();
#endif #endif
return true; return true;
} }
}; };
// std::vector // std::vector
template<typename T> template <typename T>
struct convert<std::vector<T> > { struct convert<std::vector<T> > {
static Node encode(const std::vector<T>& rhs) { static Node encode(const std::vector<T>& rhs) {
Node node(NodeType::Sequence); Node node(NodeType::Sequence);
for(typename std::vector<T>::const_iterator it=rhs.begin();it!=rhs.end();++it) for (typename std::vector<T>::const_iterator it = rhs.begin();
node.push_back(*it); it != rhs.end(); ++it)
return node; node.push_back(*it);
} return node;
}
static bool decode(const Node& node, std::vector<T>& rhs) { static bool decode(const Node& node, std::vector<T>& rhs) {
if(!node.IsSequence()) if (!node.IsSequence())
return false; return false;
rhs.clear(); rhs.clear();
for(const_iterator it=node.begin();it!=node.end();++it) for (const_iterator it = node.begin(); it != node.end(); ++it)
#if defined(__GNUC__) && __GNUC__ < 4 #if defined(__GNUC__) && __GNUC__ < 4
//workaround for GCC 3: // workaround for GCC 3:
rhs.push_back(it->template as<T>()); rhs.push_back(it->template as<T>());
#else #else
rhs.push_back(it->as<T>()); rhs.push_back(it->as<T>());
#endif #endif
return true; return true;
} }
}; };
// std::list // std::list
template<typename T> template <typename T>
struct convert<std::list<T> > { struct convert<std::list<T> > {
static Node encode(const std::list<T>& rhs) { static Node encode(const std::list<T>& rhs) {
Node node(NodeType::Sequence); Node node(NodeType::Sequence);
for(typename std::list<T>::const_iterator it=rhs.begin();it!=rhs.end();++it) for (typename std::list<T>::const_iterator it = rhs.begin();
node.push_back(*it); it != rhs.end(); ++it)
return node; node.push_back(*it);
} return node;
}
static bool decode(const Node& node, std::list<T>& rhs) { static bool decode(const Node& node, std::list<T>& rhs) {
if(!node.IsSequence()) if (!node.IsSequence())
return false; return false;
rhs.clear(); rhs.clear();
for(const_iterator it=node.begin();it!=node.end();++it) for (const_iterator it = node.begin(); it != node.end(); ++it)
#if defined(__GNUC__) && __GNUC__ < 4 #if defined(__GNUC__) && __GNUC__ < 4
//workaround for GCC 3: // workaround for GCC 3:
rhs.push_back(it->template as<T>()); rhs.push_back(it->template as<T>());
#else #else
rhs.push_back(it->as<T>()); rhs.push_back(it->as<T>());
#endif #endif
return true; return true;
} }
}; };
// std::pair // std::pair
template<typename T, typename U> template <typename T, typename U>
struct convert<std::pair<T, U> > { struct convert<std::pair<T, U> > {
static Node encode(const std::pair<T, U>& rhs) { static Node encode(const std::pair<T, U>& rhs) {
Node node(NodeType::Sequence); Node node(NodeType::Sequence);
node.push_back(rhs.first); node.push_back(rhs.first);
node.push_back(rhs.second); node.push_back(rhs.second);
return node; return node;
} }
static bool decode(const Node& node, std::pair<T, U>& rhs) { static bool decode(const Node& node, std::pair<T, U>& rhs) {
if(!node.IsSequence()) if (!node.IsSequence())
return false; return false;
if (node.size() != 2) if (node.size() != 2)
return false; return false;
#if defined(__GNUC__) && __GNUC__ < 4 #if defined(__GNUC__) && __GNUC__ < 4
//workaround for GCC 3: // workaround for GCC 3:
rhs.first = node[0].template as<T>(); rhs.first = node[0].template as<T>();
#else #else
rhs.first = node[0].as<T>(); rhs.first = node[0].as<T>();
#endif #endif
#if defined(__GNUC__) && __GNUC__ < 4 #if defined(__GNUC__) && __GNUC__ < 4
//workaround for GCC 3: // workaround for GCC 3:
rhs.second = node[1].template as<U>(); rhs.second = node[1].template as<U>();
#else #else
rhs.second = node[1].as<U>(); rhs.second = node[1].as<U>();
#endif #endif
return true; return true;
} }
}; };
// binary // binary
template<> template <>
struct convert<Binary> { struct convert<Binary> {
static Node encode(const Binary& rhs) { static Node encode(const Binary& rhs) {
return Node(EncodeBase64(rhs.data(), rhs.size())); return Node(EncodeBase64(rhs.data(), rhs.size()));
} }
static bool decode(const Node& node, Binary& rhs) { static bool decode(const Node& node, Binary& rhs) {
if(!node.IsScalar()) if (!node.IsScalar())
return false; return false;
std::vector<unsigned char> data = DecodeBase64(node.Scalar()); std::vector<unsigned char> data = DecodeBase64(node.Scalar());
if(data.empty() && !node.Scalar().empty()) if (data.empty() && !node.Scalar().empty())
return false; return false;
rhs.swap(data); rhs.swap(data);
return true; return true;
} }
}; };
} }
#endif // NODE_CONVERT_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #endif // NODE_CONVERT_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@@ -1,26 +1,26 @@
#ifndef NODE_DETAIL_BOOL_TYPE_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #ifndef NODE_DETAIL_BOOL_TYPE_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define NODE_DETAIL_BOOL_TYPE_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #define NODE_DETAIL_BOOL_TYPE_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || (defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || (__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4 #if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once #pragma once
#endif #endif
namespace YAML namespace YAML {
{ namespace detail {
namespace detail struct unspecified_bool {
{ struct NOT_ALLOWED;
struct unspecified_bool { static void true_value(NOT_ALLOWED*) {}
struct NOT_ALLOWED; };
static void true_value(NOT_ALLOWED*) {} typedef void (*unspecified_bool_type)(unspecified_bool::NOT_ALLOWED*);
}; }
typedef void (*unspecified_bool_type)(unspecified_bool::NOT_ALLOWED*);
}
} }
#define YAML_CPP_OPERATOR_BOOL()\ #define YAML_CPP_OPERATOR_BOOL() \
operator YAML::detail::unspecified_bool_type() const\ operator YAML::detail::unspecified_bool_type() const { \
{\ return this->operator!() ? 0 \
return this->operator!() ? 0 : &YAML::detail::unspecified_bool::true_value;\ : &YAML::detail::unspecified_bool::true_value; \
} }
#endif // NODE_DETAIL_BOOL_TYPE_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #endif // NODE_DETAIL_BOOL_TYPE_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@@ -1,168 +1,177 @@
#ifndef NODE_DETAIL_IMPL_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #ifndef NODE_DETAIL_IMPL_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define NODE_DETAIL_IMPL_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #define NODE_DETAIL_IMPL_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || (defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || (__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4 #if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once #pragma once
#endif #endif
#include "yaml-cpp/node/detail/node.h" #include "yaml-cpp/node/detail/node.h"
#include "yaml-cpp/node/detail/node_data.h" #include "yaml-cpp/node/detail/node_data.h"
#include <boost/type_traits.hpp> #include <boost/type_traits.hpp>
namespace YAML namespace YAML {
{ namespace detail {
namespace detail template <typename Key, typename Enable = void>
{ struct get_idx {
template<typename Key, typename Enable = void> static node* get(const std::vector<node*>& /* sequence */,
struct get_idx { const Key& /* key */, shared_memory_holder /* pMemory */) {
static node *get(const std::vector<node *>& /* sequence */, const Key& /* key */, shared_memory_holder /* pMemory */) { return 0;
return 0; }
} };
};
template<typename Key> template <typename Key>
struct get_idx<Key, typename boost::enable_if_c<boost::is_unsigned<Key>::value && !boost::is_same<Key, bool>::value>::type> { struct get_idx<
static node *get(const std::vector<node *>& sequence, const Key& key, shared_memory_holder /* pMemory */) { Key, typename boost::enable_if_c<boost::is_unsigned<Key>::value &&
return key < sequence.size() ? sequence[key] : 0; !boost::is_same<Key, bool>::value>::type> {
} static node* get(const std::vector<node*>& sequence, const Key& key,
shared_memory_holder /* pMemory */) {
return key < sequence.size() ? sequence[key] : 0;
}
static node *get(std::vector<node *>& sequence, const Key& key, shared_memory_holder pMemory) { static node* get(std::vector<node*>& sequence, const Key& key,
if(key > sequence.size()) shared_memory_holder pMemory) {
return 0; if (key > sequence.size())
if(key == sequence.size()) return 0;
sequence.push_back(&pMemory->create_node()); if (key == sequence.size())
return sequence[key]; sequence.push_back(&pMemory->create_node());
} return sequence[key];
}; }
};
template<typename Key> template <typename Key>
struct get_idx<Key, typename boost::enable_if<boost::is_signed<Key> >::type> { struct get_idx<Key, typename boost::enable_if<boost::is_signed<Key> >::type> {
static node *get(const std::vector<node *>& sequence, const Key& key, shared_memory_holder pMemory) { static node* get(const std::vector<node*>& sequence, const Key& key,
return key >= 0 ? get_idx<std::size_t>::get(sequence, static_cast<std::size_t>(key), pMemory) : 0; shared_memory_holder pMemory) {
} return key >= 0 ? get_idx<std::size_t>::get(
static node *get(std::vector<node *>& sequence, const Key& key, shared_memory_holder pMemory) { sequence, static_cast<std::size_t>(key), pMemory)
return key >= 0 ? get_idx<std::size_t>::get(sequence, static_cast<std::size_t>(key), pMemory) : 0; : 0;
} }
}; static node* get(std::vector<node*>& sequence, const Key& key,
shared_memory_holder pMemory) {
return key >= 0 ? get_idx<std::size_t>::get(
sequence, static_cast<std::size_t>(key), pMemory)
: 0;
}
};
// indexing template <typename T>
template<typename Key> inline bool node::equals(const T& rhs, shared_memory_holder pMemory) {
inline node& node_data::get(const Key& key, shared_memory_holder pMemory) const T lhs;
{ if (convert<T>::decode(Node(*this, pMemory), lhs)) {
switch(m_type) { return lhs == rhs;
case NodeType::Map: }
break; return false;
case NodeType::Undefined:
case NodeType::Null:
return pMemory->create_node();
case NodeType::Sequence:
if(node *pNode = get_idx<Key>::get(m_sequence, key, pMemory))
return *pNode;
return pMemory->create_node();
case NodeType::Scalar:
throw BadSubscript();
}
for(node_map::const_iterator it=m_map.begin();it!=m_map.end();++it) {
if(equals(*it->first, key, pMemory))
return *it->second;
}
return pMemory->create_node();
}
template<typename Key>
inline node& node_data::get(const Key& key, shared_memory_holder pMemory)
{
switch(m_type) {
case NodeType::Map:
break;
case NodeType::Undefined:
case NodeType::Null:
case NodeType::Sequence:
if(node *pNode = get_idx<Key>::get(m_sequence, key, pMemory)) {
m_type = NodeType::Sequence;
return *pNode;
}
convert_to_map(pMemory);
break;
case NodeType::Scalar:
throw BadSubscript();
}
for(node_map::const_iterator it=m_map.begin();it!=m_map.end();++it) {
if(equals(*it->first, key, pMemory))
return *it->second;
}
node& k = convert_to_node(key, pMemory);
node& v = pMemory->create_node();
insert_map_pair(k, v);
return v;
}
template<typename Key>
inline bool node_data::remove(const Key& key, shared_memory_holder pMemory)
{
if(m_type != NodeType::Map)
return false;
for(node_map::iterator it=m_map.begin();it!=m_map.end();++it) {
if(equals(*it->first, key, pMemory)) {
m_map.erase(it);
return true;
}
}
return false;
}
// map
template<typename Key, typename Value>
inline void node_data::force_insert(const Key& key, const Value& value, shared_memory_holder pMemory)
{
switch(m_type) {
case NodeType::Map:
break;
case NodeType::Undefined:
case NodeType::Null:
case NodeType::Sequence:
convert_to_map(pMemory);
break;
case NodeType::Scalar:
throw BadInsert();
}
node& k = convert_to_node(key, pMemory);
node& v = convert_to_node(value, pMemory);
insert_map_pair(k, v);
}
template<typename T>
inline bool node_data::equals(node& node, const T& rhs, shared_memory_holder pMemory)
{
T lhs;
if(convert<T>::decode(Node(node, pMemory), lhs))
return lhs == rhs;
return false;
}
inline bool node_data::equals(node& node, const char *rhs, shared_memory_holder pMemory)
{
return equals<std::string>(node, rhs, pMemory);
}
template<typename T>
inline node& node_data::convert_to_node(const T& rhs, shared_memory_holder pMemory)
{
Node value = convert<T>::encode(rhs);
value.EnsureNodeExists();
pMemory->merge(*value.m_pMemory);
return *value.m_pNode;
}
}
} }
#endif // NODE_DETAIL_IMPL_H_62B23520_7C8E_11DE_8A39_0800200C9A66 inline bool node::equals(const char* rhs, shared_memory_holder pMemory) {
return equals<std::string>(rhs, pMemory);
}
// indexing
template <typename Key>
inline node* node_data::get(const Key& key,
shared_memory_holder pMemory) const {
switch (m_type) {
case NodeType::Map:
break;
case NodeType::Undefined:
case NodeType::Null:
return NULL;
case NodeType::Sequence:
if (node* pNode = get_idx<Key>::get(m_sequence, key, pMemory))
return pNode;
return NULL;
case NodeType::Scalar:
throw BadSubscript();
}
for (node_map::const_iterator it = m_map.begin(); it != m_map.end(); ++it) {
if (it->first->equals(key, pMemory)) {
return it->second;
}
}
return NULL;
}
template <typename Key>
inline node& node_data::get(const Key& key, shared_memory_holder pMemory) {
switch (m_type) {
case NodeType::Map:
break;
case NodeType::Undefined:
case NodeType::Null:
case NodeType::Sequence:
if (node* pNode = get_idx<Key>::get(m_sequence, key, pMemory)) {
m_type = NodeType::Sequence;
return *pNode;
}
convert_to_map(pMemory);
break;
case NodeType::Scalar:
throw BadSubscript();
}
for (node_map::const_iterator it = m_map.begin(); it != m_map.end(); ++it) {
if (it->first->equals(key, pMemory)) {
return *it->second;
}
}
node& k = convert_to_node(key, pMemory);
node& v = pMemory->create_node();
insert_map_pair(k, v);
return v;
}
template <typename Key>
inline bool node_data::remove(const Key& key, shared_memory_holder pMemory) {
if (m_type != NodeType::Map)
return false;
for (node_map::iterator it = m_map.begin(); it != m_map.end(); ++it) {
if (it->first->equals(key, pMemory)) {
m_map.erase(it);
return true;
}
}
return false;
}
// map
template <typename Key, typename Value>
inline void node_data::force_insert(const Key& key, const Value& value,
shared_memory_holder pMemory) {
switch (m_type) {
case NodeType::Map:
break;
case NodeType::Undefined:
case NodeType::Null:
case NodeType::Sequence:
convert_to_map(pMemory);
break;
case NodeType::Scalar:
throw BadInsert();
}
node& k = convert_to_node(key, pMemory);
node& v = convert_to_node(value, pMemory);
insert_map_pair(k, v);
}
template <typename T>
inline node& node_data::convert_to_node(const T& rhs,
shared_memory_holder pMemory) {
Node value = convert<T>::encode(rhs);
value.EnsureNodeExists();
pMemory->merge(*value.m_pMemory);
return *value.m_pNode;
}
}
}
#endif // NODE_DETAIL_IMPL_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@@ -1,64 +1,65 @@
#ifndef VALUE_DETAIL_ITERATOR_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #ifndef VALUE_DETAIL_ITERATOR_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define VALUE_DETAIL_ITERATOR_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #define VALUE_DETAIL_ITERATOR_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || (defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || (__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4 #if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once #pragma once
#endif #endif
#include "yaml-cpp/dll.h" #include "yaml-cpp/dll.h"
#include "yaml-cpp/node/ptr.h" #include "yaml-cpp/node/ptr.h"
#include "yaml-cpp/node/detail/node_iterator.h" #include "yaml-cpp/node/detail/node_iterator.h"
#include <boost/iterator/iterator_adaptor.hpp> #include <boost/iterator/iterator_adaptor.hpp>
#include <boost/utility.hpp> #include <boost/utility.hpp>
namespace YAML namespace YAML {
{ namespace detail {
namespace detail struct iterator_value;
{
struct iterator_value;
template<typename V> template <typename V>
class iterator_base: public boost::iterator_adaptor< class iterator_base
iterator_base<V>, : public boost::iterator_adaptor<iterator_base<V>, node_iterator, V,
node_iterator, std::forward_iterator_tag, V> {
V, private:
std::forward_iterator_tag, template <typename>
V> friend class iterator_base;
{ struct enabler {};
private: typedef typename iterator_base::base_type base_type;
template<typename> friend class iterator_base;
struct enabler {};
typedef typename iterator_base::base_type base_type;
public: public:
typedef typename iterator_base::value_type value_type; typedef typename iterator_base::value_type value_type;
public: public:
iterator_base() {} iterator_base() {}
explicit iterator_base(base_type rhs, shared_memory_holder pMemory): iterator_base::iterator_adaptor_(rhs), m_pMemory(pMemory) {} explicit iterator_base(base_type rhs, shared_memory_holder pMemory)
: iterator_base::iterator_adaptor_(rhs), m_pMemory(pMemory) {}
template<class W> template <class W>
iterator_base(const iterator_base<W>& rhs, typename boost::enable_if<boost::is_convertible<W*, V*>, enabler>::type = enabler()): iterator_base::iterator_adaptor_(rhs.base()), m_pMemory(rhs.m_pMemory) {} iterator_base(const iterator_base<W>& rhs,
typename boost::enable_if<boost::is_convertible<W*, V*>,
enabler>::type = enabler())
: iterator_base::iterator_adaptor_(rhs.base()),
m_pMemory(rhs.m_pMemory) {}
private: private:
friend class boost::iterator_core_access; friend class boost::iterator_core_access;
void increment() { this->base_reference() = boost::next(this->base()); } void increment() { this->base_reference() = boost::next(this->base()); }
value_type dereference() const { value_type dereference() const {
const typename base_type::value_type& v = *this->base(); const typename base_type::value_type& v = *this->base();
if(v.pNode) if (v.pNode)
return value_type(Node(*v, m_pMemory)); return value_type(Node(*v, m_pMemory));
if(v.first && v.second) if (v.first && v.second)
return value_type(Node(*v.first, m_pMemory), Node(*v.second, m_pMemory)); return value_type(Node(*v.first, m_pMemory), Node(*v.second, m_pMemory));
return value_type(); return value_type();
} }
private: private:
shared_memory_holder m_pMemory; shared_memory_holder m_pMemory;
}; };
} }
} }
#endif // VALUE_DETAIL_ITERATOR_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #endif // VALUE_DETAIL_ITERATOR_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@@ -1,27 +1,28 @@
#ifndef VALUE_DETAIL_ITERATOR_FWD_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #ifndef VALUE_DETAIL_ITERATOR_FWD_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define VALUE_DETAIL_ITERATOR_FWD_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #define VALUE_DETAIL_ITERATOR_FWD_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || (defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || (__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4 #if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once #pragma once
#endif #endif
#include "yaml-cpp/dll.h" #include "yaml-cpp/dll.h"
#include <list> #include <list>
#include <utility> #include <utility>
#include <vector> #include <vector>
namespace YAML namespace YAML {
{ class node;
class node;
namespace detail { namespace detail {
struct iterator_value; struct iterator_value;
template<typename V> class iterator_base; template <typename V>
} class iterator_base;
typedef detail::iterator_base<detail::iterator_value> iterator;
typedef detail::iterator_base<const detail::iterator_value> const_iterator;
} }
#endif // VALUE_DETAIL_ITERATOR_FWD_H_62B23520_7C8E_11DE_8A39_0800200C9A66 typedef detail::iterator_base<detail::iterator_value> iterator;
typedef detail::iterator_base<const detail::iterator_value> const_iterator;
}
#endif // VALUE_DETAIL_ITERATOR_FWD_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@@ -1,39 +1,46 @@
#ifndef VALUE_DETAIL_MEMORY_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #ifndef VALUE_DETAIL_MEMORY_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define VALUE_DETAIL_MEMORY_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #define VALUE_DETAIL_MEMORY_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || (defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || (__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4 #if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once #pragma once
#endif #endif
#include "yaml-cpp/node/ptr.h"
#include <set> #include <set>
#include <boost/shared_ptr.hpp>
namespace YAML #include "yaml-cpp/dll.h"
{ #include "yaml-cpp/node/ptr.h"
namespace detail
{
class memory {
public:
node& create_node();
void merge(const memory& rhs);
private: namespace YAML {
typedef std::set<shared_node> Nodes; namespace detail {
Nodes m_nodes; class node;
}; } // namespace detail
} // namespace YAML
class memory_holder { namespace YAML {
public: namespace detail {
memory_holder(): m_pMemory(new memory) {} class YAML_CPP_API memory {
public:
node& create_node();
void merge(const memory& rhs);
node& create_node() { return m_pMemory->create_node(); } private:
void merge(memory_holder& rhs); typedef std::set<shared_node> Nodes;
Nodes m_nodes;
};
private: class YAML_CPP_API memory_holder {
boost::shared_ptr<memory> m_pMemory; public:
}; memory_holder() : m_pMemory(new memory) {}
}
node& create_node() { return m_pMemory->create_node(); }
void merge(memory_holder& rhs);
private:
shared_memory m_pMemory;
};
}
} }
#endif // VALUE_DETAIL_MEMORY_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #endif // VALUE_DETAIL_MEMORY_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@@ -1,11 +1,13 @@
#ifndef NODE_DETAIL_NODE_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #ifndef NODE_DETAIL_NODE_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define NODE_DETAIL_NODE_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #define NODE_DETAIL_NODE_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || (defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || (__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4 #if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once #pragma once
#endif #endif
#include "yaml-cpp/emitterstyle.h"
#include "yaml-cpp/dll.h" #include "yaml-cpp/dll.h"
#include "yaml-cpp/node/type.h" #include "yaml-cpp/node/type.h"
#include "yaml-cpp/node/ptr.h" #include "yaml-cpp/node/ptr.h"
@@ -13,118 +15,156 @@
#include <set> #include <set>
#include <boost/utility.hpp> #include <boost/utility.hpp>
namespace YAML namespace YAML {
{ namespace detail {
namespace detail class node : private boost::noncopyable {
{ public:
class node: private boost::noncopyable node() : m_pRef(new node_ref) {}
{
public:
node(): m_pRef(new node_ref) {}
bool is(const node& rhs) const { return m_pRef == rhs.m_pRef; } bool is(const node& rhs) const { return m_pRef == rhs.m_pRef; }
const node_ref *ref() const { return m_pRef.get(); } const node_ref* ref() const { return m_pRef.get(); }
bool is_defined() const { return m_pRef->is_defined(); } bool is_defined() const { return m_pRef->is_defined(); }
NodeType::value type() const { return m_pRef->type(); } const Mark& mark() const { return m_pRef->mark(); }
NodeType::value type() const { return m_pRef->type(); }
const std::string& scalar() const { return m_pRef->scalar(); } const std::string& scalar() const { return m_pRef->scalar(); }
const std::string& tag() const { return m_pRef->tag(); } const std::string& tag() const { return m_pRef->tag(); }
EmitterStyle::value style() const { return m_pRef->style(); }
void mark_defined() { template <typename T>
if(is_defined()) bool equals(const T& rhs, shared_memory_holder pMemory);
return; bool equals(const char* rhs, shared_memory_holder pMemory);
m_pRef->mark_defined(); void mark_defined() {
for(nodes::iterator it=m_dependencies.begin();it!=m_dependencies.end();++it) if (is_defined())
(*it)->mark_defined(); return;
m_dependencies.clear();
}
void add_dependency(node& rhs) { m_pRef->mark_defined();
if(is_defined()) for (nodes::iterator it = m_dependencies.begin();
rhs.mark_defined(); it != m_dependencies.end(); ++it)
else (*it)->mark_defined();
m_dependencies.insert(&rhs); m_dependencies.clear();
} }
void set_ref(const node& rhs) { void add_dependency(node& rhs) {
if(rhs.is_defined()) if (is_defined())
mark_defined(); rhs.mark_defined();
m_pRef = rhs.m_pRef; else
} m_dependencies.insert(&rhs);
void set_data(const node& rhs) { }
if(rhs.is_defined())
mark_defined();
m_pRef->set_data(*rhs.m_pRef);
}
void set_type(NodeType::value type) { void set_ref(const node& rhs) {
if(type != NodeType::Undefined) if (rhs.is_defined())
mark_defined(); mark_defined();
m_pRef->set_type(type); m_pRef = rhs.m_pRef;
} }
void set_null() { void set_data(const node& rhs) {
mark_defined(); if (rhs.is_defined())
m_pRef->set_null(); mark_defined();
} m_pRef->set_data(*rhs.m_pRef);
void set_scalar(const std::string& scalar) { }
mark_defined();
m_pRef->set_scalar(scalar);
}
void set_tag(const std::string& tag) {
mark_defined();
m_pRef->set_tag(tag);
}
// size/iterator void set_mark(const Mark& mark) {
std::size_t size() const { return m_pRef->size(); } m_pRef->set_mark(mark);
}
const_node_iterator begin() const { return static_cast<const node_ref&>(*m_pRef).begin(); } void set_type(NodeType::value type) {
node_iterator begin() { return m_pRef->begin(); } if (type != NodeType::Undefined)
mark_defined();
m_pRef->set_type(type);
}
void set_null() {
mark_defined();
m_pRef->set_null();
}
void set_scalar(const std::string& scalar) {
mark_defined();
m_pRef->set_scalar(scalar);
}
void set_tag(const std::string& tag) {
mark_defined();
m_pRef->set_tag(tag);
}
const_node_iterator end() const { return static_cast<const node_ref&>(*m_pRef).end(); } // style
node_iterator end() { return m_pRef->end(); } void set_style(EmitterStyle::value style) {
mark_defined();
m_pRef->set_style(style);
}
// sequence // size/iterator
void push_back(node& node, shared_memory_holder pMemory) { std::size_t size() const { return m_pRef->size(); }
m_pRef->push_back(node, pMemory);
node.add_dependency(*this);
}
void insert(node& key, node& value, shared_memory_holder pMemory) {
m_pRef->insert(key, value, pMemory);
key.add_dependency(*this);
value.add_dependency(*this);
}
// indexing const_node_iterator begin() const {
template<typename Key> node& get(const Key& key, shared_memory_holder pMemory) const { return static_cast<const node_ref&>(*m_pRef).get(key, pMemory); } return static_cast<const node_ref&>(*m_pRef).begin();
template<typename Key> node& get(const Key& key, shared_memory_holder pMemory) { }
node& value = m_pRef->get(key, pMemory); node_iterator begin() { return m_pRef->begin(); }
value.add_dependency(*this);
return value;
}
template<typename Key> bool remove(const Key& key, shared_memory_holder pMemory) { return m_pRef->remove(key, pMemory); }
node& get(node& key, shared_memory_holder pMemory) const { return static_cast<const node_ref&>(*m_pRef).get(key, pMemory); } const_node_iterator end() const {
node& get(node& key, shared_memory_holder pMemory) { return static_cast<const node_ref&>(*m_pRef).end();
node& value = m_pRef->get(key, pMemory); }
key.add_dependency(*this); node_iterator end() { return m_pRef->end(); }
value.add_dependency(*this);
return value;
}
bool remove(node& key, shared_memory_holder pMemory) { return m_pRef->remove(key, pMemory); }
// map // sequence
template<typename Key, typename Value> void push_back(node& node, shared_memory_holder pMemory) {
void force_insert(const Key& key, const Value& value, shared_memory_holder pMemory){ m_pRef->force_insert(key, value, pMemory); } m_pRef->push_back(node, pMemory);
node.add_dependency(*this);
}
void insert(node& key, node& value, shared_memory_holder pMemory) {
m_pRef->insert(key, value, pMemory);
key.add_dependency(*this);
value.add_dependency(*this);
}
private: // indexing
shared_node_ref m_pRef; template <typename Key>
typedef std::set<node *> nodes; node* get(const Key& key, shared_memory_holder pMemory) const {
nodes m_dependencies; // NOTE: this returns a non-const node so that the top-level Node can wrap
}; // it, and returns a pointer so that it can be NULL (if there is no such
} // key).
return static_cast<const node_ref&>(*m_pRef).get(key, pMemory);
}
template <typename Key>
node& get(const Key& key, shared_memory_holder pMemory) {
node& value = m_pRef->get(key, pMemory);
value.add_dependency(*this);
return value;
}
template <typename Key>
bool remove(const Key& key, shared_memory_holder pMemory) {
return m_pRef->remove(key, pMemory);
}
node* get(node& key, shared_memory_holder pMemory) const {
// NOTE: this returns a non-const node so that the top-level Node can wrap
// it, and returns a pointer so that it can be NULL (if there is no such
// key).
return static_cast<const node_ref&>(*m_pRef).get(key, pMemory);
}
node& get(node& key, shared_memory_holder pMemory) {
node& value = m_pRef->get(key, pMemory);
key.add_dependency(*this);
value.add_dependency(*this);
return value;
}
bool remove(node& key, shared_memory_holder pMemory) {
return m_pRef->remove(key, pMemory);
}
// map
template <typename Key, typename Value>
void force_insert(const Key& key, const Value& value,
shared_memory_holder pMemory) {
m_pRef->force_insert(key, value, pMemory);
}
private:
shared_node_ref m_pRef;
typedef std::set<node*> nodes;
nodes m_dependencies;
};
}
} }
#endif // NODE_DETAIL_NODE_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #endif // NODE_DETAIL_NODE_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@@ -1,110 +1,127 @@
#ifndef VALUE_DETAIL_NODE_DATA_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #ifndef VALUE_DETAIL_NODE_DATA_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define VALUE_DETAIL_NODE_DATA_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #define VALUE_DETAIL_NODE_DATA_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || (defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || (__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4 #if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once #pragma once
#endif #endif
#include <boost/noncopyable.hpp>
#include "yaml-cpp/dll.h"
#include "yaml-cpp/node/iterator.h"
#include "yaml-cpp/node/ptr.h"
#include "yaml-cpp/node/type.h"
#include <boost/utility.hpp> #include <boost/utility.hpp>
#include <list> #include <list>
#include <map>
#include <string>
#include <utility> #include <utility>
#include <vector> #include <vector>
namespace YAML #include "yaml-cpp/dll.h"
{ #include "yaml-cpp/node/detail/node_iterator.h"
namespace detail #include "yaml-cpp/node/iterator.h"
{ #include "yaml-cpp/node/ptr.h"
class node_data: private boost::noncopyable #include "yaml-cpp/node/type.h"
{
public:
node_data();
void mark_defined(); namespace YAML {
void set_type(NodeType::value type); namespace detail {
void set_tag(const std::string& tag); class node;
void set_null(); } // namespace detail
void set_scalar(const std::string& scalar); } // namespace YAML
bool is_defined() const { return m_isDefined; } namespace YAML {
NodeType::value type() const { return m_isDefined ? m_type : NodeType::Undefined; } namespace detail {
const std::string& scalar() const { return m_scalar; } class YAML_CPP_API node_data : private boost::noncopyable {
const std::string& tag() const { return m_tag; } public:
node_data();
// size/iterator void mark_defined();
std::size_t size() const; void set_mark(const Mark& mark);
void set_type(NodeType::value type);
void set_tag(const std::string& tag);
void set_null();
void set_scalar(const std::string& scalar);
void set_style(EmitterStyle::value style);
const_node_iterator begin() const; bool is_defined() const { return m_isDefined; }
node_iterator begin(); const Mark& mark() const { return m_mark; }
NodeType::value type() const {
return m_isDefined ? m_type : NodeType::Undefined;
}
const std::string& scalar() const { return m_scalar; }
const std::string& tag() const { return m_tag; }
EmitterStyle::value style() const { return m_style; }
const_node_iterator end() const; // size/iterator
node_iterator end(); std::size_t size() const;
// sequence const_node_iterator begin() const;
void push_back(node& node, shared_memory_holder pMemory); node_iterator begin();
void insert(node& key, node& value, shared_memory_holder pMemory);
// indexing const_node_iterator end() const;
template<typename Key> node& get(const Key& key, shared_memory_holder pMemory) const; node_iterator end();
template<typename Key> node& get(const Key& key, shared_memory_holder pMemory);
template<typename Key> bool remove(const Key& key, shared_memory_holder pMemory);
node& get(node& key, shared_memory_holder pMemory) const; // sequence
node& get(node& key, shared_memory_holder pMemory); void push_back(node& node, shared_memory_holder pMemory);
bool remove(node& key, shared_memory_holder pMemory); void insert(node& key, node& value, shared_memory_holder pMemory);
// map // indexing
template<typename Key, typename Value> template <typename Key>
void force_insert(const Key& key, const Value& value, shared_memory_holder pMemory); node* get(const Key& key, shared_memory_holder pMemory) const;
template <typename Key>
node& get(const Key& key, shared_memory_holder pMemory);
template <typename Key>
bool remove(const Key& key, shared_memory_holder pMemory);
public: node* get(node& key, shared_memory_holder pMemory) const;
static std::string empty_scalar; node& get(node& key, shared_memory_holder pMemory);
bool remove(node& key, shared_memory_holder pMemory);
private: // map
void compute_seq_size() const; template <typename Key, typename Value>
void compute_map_size() const; void force_insert(const Key& key, const Value& value,
shared_memory_holder pMemory);
void reset_sequence(); public:
void reset_map(); static std::string empty_scalar;
void insert_map_pair(node& key, node& value); private:
void convert_to_map(shared_memory_holder pMemory); void compute_seq_size() const;
void convert_sequence_to_map(shared_memory_holder pMemory); void compute_map_size() const;
template<typename T> void reset_sequence();
static bool equals(node& node, const T& rhs, shared_memory_holder pMemory); void reset_map();
static bool equals(node& node, const char *rhs, shared_memory_holder pMemory);
template<typename T> void insert_map_pair(node& key, node& value);
static node& convert_to_node(const T& rhs, shared_memory_holder pMemory); void convert_to_map(shared_memory_holder pMemory);
void convert_sequence_to_map(shared_memory_holder pMemory);
private: template <typename T>
bool m_isDefined; static node& convert_to_node(const T& rhs, shared_memory_holder pMemory);
NodeType::value m_type;
std::string m_tag;
// scalar private:
std::string m_scalar; bool m_isDefined;
Mark m_mark;
NodeType::value m_type;
std::string m_tag;
EmitterStyle::value m_style;
// sequence // scalar
typedef std::vector<node *> node_seq; std::string m_scalar;
node_seq m_sequence;
mutable std::size_t m_seqSize; // sequence
typedef std::vector<node*> node_seq;
node_seq m_sequence;
// map mutable std::size_t m_seqSize;
typedef std::map<node *, node *> node_map;
node_map m_map;
typedef std::pair<node *, node *> kv_pair; // map
typedef std::list<kv_pair> kv_pairs; typedef std::map<node*, node*> node_map;
mutable kv_pairs m_undefinedPairs; node_map m_map;
};
} typedef std::pair<node*, node*> kv_pair;
typedef std::list<kv_pair> kv_pairs;
mutable kv_pairs m_undefinedPairs;
};
}
} }
#endif // VALUE_DETAIL_NODE_DATA_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #endif // VALUE_DETAIL_NODE_DATA_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@@ -1,11 +1,12 @@
#ifndef VALUE_DETAIL_NODE_ITERATOR_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #ifndef VALUE_DETAIL_NODE_ITERATOR_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define VALUE_DETAIL_NODE_ITERATOR_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #define VALUE_DETAIL_NODE_ITERATOR_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || (defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || (__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4 #if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once #pragma once
#endif #endif
#include "yaml-cpp/dll.h" #include "yaml-cpp/dll.h"
#include "yaml-cpp/node/ptr.h" #include "yaml-cpp/node/ptr.h"
#include <boost/iterator/iterator_facade.hpp> #include <boost/iterator/iterator_facade.hpp>
@@ -14,126 +15,145 @@
#include <utility> #include <utility>
#include <vector> #include <vector>
namespace YAML namespace YAML {
{ namespace detail {
namespace detail struct iterator_type {
{ enum value { None, Sequence, Map };
struct iterator_type { enum value { None, Sequence, Map }; }; };
template<typename V> template <typename V>
struct node_iterator_value: public std::pair<V*, V*> { struct node_iterator_value : public std::pair<V*, V*> {
typedef std::pair<V*, V*> kv; typedef std::pair<V*, V*> kv;
node_iterator_value(): kv(), pNode(0) {} node_iterator_value() : kv(), pNode(0) {}
explicit node_iterator_value(V& rhs): kv(), pNode(&rhs) {} explicit node_iterator_value(V& rhs) : kv(), pNode(&rhs) {}
explicit node_iterator_value(V& key, V& value): kv(&key, &value), pNode(0) {} explicit node_iterator_value(V& key, V& value) : kv(&key, &value), pNode(0) {}
V& operator *() const { return *pNode; } V& operator*() const { return *pNode; }
V& operator ->() const { return *pNode; } V& operator->() const { return *pNode; }
V *pNode; V* pNode;
}; };
typedef std::vector<node *> node_seq; typedef std::vector<node*> node_seq;
typedef std::map<node *, node *> node_map; typedef std::map<node*, node*> node_map;
template<typename V> template <typename V>
struct node_iterator_type { struct node_iterator_type {
typedef node_seq::iterator seq; typedef node_seq::iterator seq;
typedef node_map::iterator map; typedef node_map::iterator map;
}; };
template<typename V> template <typename V>
struct node_iterator_type<const V> { struct node_iterator_type<const V> {
typedef node_seq::const_iterator seq; typedef node_seq::const_iterator seq;
typedef node_map::const_iterator map; typedef node_map::const_iterator map;
}; };
template <typename V>
class node_iterator_base
: public boost::iterator_facade<
node_iterator_base<V>, node_iterator_value<V>,
std::forward_iterator_tag, node_iterator_value<V> > {
private:
struct enabler {};
template<typename V> public:
class node_iterator_base: public boost::iterator_facade< typedef typename node_iterator_type<V>::seq SeqIter;
node_iterator_base<V>, typedef typename node_iterator_type<V>::map MapIter;
node_iterator_value<V>, typedef node_iterator_value<V> value_type;
std::forward_iterator_tag,
node_iterator_value<V> >
{
private:
struct enabler {};
public: node_iterator_base()
typedef typename node_iterator_type<V>::seq SeqIter; : m_type(iterator_type::None), m_seqIt(), m_mapIt(), m_mapEnd() {}
typedef typename node_iterator_type<V>::map MapIter; explicit node_iterator_base(SeqIter seqIt)
typedef node_iterator_value<V> value_type; : m_type(iterator_type::Sequence),
m_seqIt(seqIt),
m_mapIt(),
m_mapEnd() {}
explicit node_iterator_base(MapIter mapIt, MapIter mapEnd)
: m_type(iterator_type::Map),
m_seqIt(),
m_mapIt(mapIt),
m_mapEnd(mapEnd) {
m_mapIt = increment_until_defined(m_mapIt);
}
node_iterator_base(): m_type(iterator_type::None) {} template <typename W>
explicit node_iterator_base(SeqIter seqIt): m_type(iterator_type::Sequence), m_seqIt(seqIt) {} node_iterator_base(const node_iterator_base<W>& rhs,
explicit node_iterator_base(MapIter mapIt, MapIter mapEnd): m_type(iterator_type::Map), m_mapIt(mapIt), m_mapEnd(mapEnd) { typename boost::enable_if<boost::is_convertible<W*, V*>,
m_mapIt = increment_until_defined(m_mapIt); enabler>::type = enabler())
} : m_type(rhs.m_type),
m_seqIt(rhs.m_seqIt),
m_mapIt(rhs.m_mapIt),
m_mapEnd(rhs.m_mapEnd) {}
template<typename W> private:
node_iterator_base(const node_iterator_base<W>& rhs, typename boost::enable_if<boost::is_convertible<W*, V*>, enabler>::type = enabler()) friend class boost::iterator_core_access;
: m_type(rhs.m_type), m_seqIt(rhs.m_seqIt), m_mapIt(rhs.m_mapIt), m_mapEnd(rhs.m_mapEnd) {} template <typename>
friend class node_iterator_base;
private: template <typename W>
friend class boost::iterator_core_access; bool equal(const node_iterator_base<W>& rhs) const {
template<typename> friend class node_iterator_base; if (m_type != rhs.m_type)
return false;
template<typename W> switch (m_type) {
bool equal(const node_iterator_base<W>& rhs) const { case iterator_type::None:
if(m_type != rhs.m_type) return true;
return false; case iterator_type::Sequence:
return m_seqIt == rhs.m_seqIt;
case iterator_type::Map:
return m_mapIt == rhs.m_mapIt;
}
return true;
}
switch(m_type) { void increment() {
case iterator_type::None: return true; switch (m_type) {
case iterator_type::Sequence: return m_seqIt == rhs.m_seqIt; case iterator_type::None:
case iterator_type::Map: return m_mapIt == rhs.m_mapIt; break;
} case iterator_type::Sequence:
return true; ++m_seqIt;
} break;
case iterator_type::Map:
++m_mapIt;
m_mapIt = increment_until_defined(m_mapIt);
break;
}
}
void increment() { value_type dereference() const {
switch(m_type) { switch (m_type) {
case iterator_type::None: break; case iterator_type::None:
case iterator_type::Sequence: return value_type();
++m_seqIt; case iterator_type::Sequence:
break; return value_type(**m_seqIt);
case iterator_type::Map: case iterator_type::Map:
++m_mapIt; return value_type(*m_mapIt->first, *m_mapIt->second);
m_mapIt = increment_until_defined(m_mapIt); }
break; return value_type();
} }
}
value_type dereference() const { MapIter increment_until_defined(MapIter it) {
switch(m_type) { while (it != m_mapEnd && !is_defined(it))
case iterator_type::None: return value_type(); ++it;
case iterator_type::Sequence: return value_type(**m_seqIt); return it;
case iterator_type::Map: return value_type(*m_mapIt->first, *m_mapIt->second); }
}
return value_type();
}
MapIter increment_until_defined(MapIter it) { bool is_defined(MapIter it) const {
while(it != m_mapEnd && !is_defined(it)) return it->first->is_defined() && it->second->is_defined();
++it; }
return it;
}
bool is_defined(MapIter it) const { private:
return it->first->is_defined() && it->second->is_defined(); typename iterator_type::value m_type;
}
private: SeqIter m_seqIt;
typename iterator_type::value m_type; MapIter m_mapIt, m_mapEnd;
};
SeqIter m_seqIt; typedef node_iterator_base<node> node_iterator;
MapIter m_mapIt, m_mapEnd; typedef node_iterator_base<const node> const_node_iterator;
}; }
typedef node_iterator_base<node> node_iterator;
typedef node_iterator_base<const node> const_node_iterator;
}
} }
#endif // VALUE_DETAIL_NODE_ITERATOR_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #endif // VALUE_DETAIL_NODE_ITERATOR_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@@ -1,69 +1,97 @@
#ifndef VALUE_DETAIL_NODE_REF_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #ifndef VALUE_DETAIL_NODE_REF_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define VALUE_DETAIL_NODE_REF_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #define VALUE_DETAIL_NODE_REF_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || (defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || (__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4 #if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once #pragma once
#endif #endif
#include "yaml-cpp/dll.h" #include "yaml-cpp/dll.h"
#include "yaml-cpp/node/type.h" #include "yaml-cpp/node/type.h"
#include "yaml-cpp/node/ptr.h" #include "yaml-cpp/node/ptr.h"
#include "yaml-cpp/node/detail/node_data.h" #include "yaml-cpp/node/detail/node_data.h"
#include <boost/utility.hpp> #include <boost/utility.hpp>
namespace YAML namespace YAML {
{ namespace detail {
namespace detail class node_ref : private boost::noncopyable {
{ public:
class node_ref: private boost::noncopyable node_ref() : m_pData(new node_data) {}
{
public:
node_ref(): m_pData(new node_data) {}
bool is_defined() const { return m_pData->is_defined(); } bool is_defined() const { return m_pData->is_defined(); }
NodeType::value type() const { return m_pData->type(); } const Mark& mark() const { return m_pData->mark(); }
const std::string& scalar() const { return m_pData->scalar(); } NodeType::value type() const { return m_pData->type(); }
const std::string& tag() const { return m_pData->tag(); } const std::string& scalar() const { return m_pData->scalar(); }
const std::string& tag() const { return m_pData->tag(); }
EmitterStyle::value style() const { return m_pData->style(); }
void mark_defined() { m_pData->mark_defined(); } void mark_defined() { m_pData->mark_defined(); }
void set_data(const node_ref& rhs) { m_pData = rhs.m_pData; } void set_data(const node_ref& rhs) { m_pData = rhs.m_pData; }
void set_type(NodeType::value type) { m_pData->set_type(type); } void set_mark(const Mark& mark) { m_pData->set_mark(mark); }
void set_tag(const std::string& tag) { m_pData->set_tag(tag); } void set_type(NodeType::value type) { m_pData->set_type(type); }
void set_null() { m_pData->set_null(); } void set_tag(const std::string& tag) { m_pData->set_tag(tag); }
void set_scalar(const std::string& scalar) { m_pData->set_scalar(scalar); } void set_null() { m_pData->set_null(); }
void set_scalar(const std::string& scalar) { m_pData->set_scalar(scalar); }
void set_style(EmitterStyle::value style) { m_pData->set_style(style); }
// size/iterator // size/iterator
std::size_t size() const { return m_pData->size(); } std::size_t size() const { return m_pData->size(); }
const_node_iterator begin() const { return static_cast<const node_data&>(*m_pData).begin(); } const_node_iterator begin() const {
node_iterator begin() {return m_pData->begin(); } return static_cast<const node_data&>(*m_pData).begin();
}
node_iterator begin() { return m_pData->begin(); }
const_node_iterator end() const { return static_cast<const node_data&>(*m_pData).end(); } const_node_iterator end() const {
node_iterator end() {return m_pData->end(); } return static_cast<const node_data&>(*m_pData).end();
}
node_iterator end() { return m_pData->end(); }
// sequence // sequence
void push_back(node& node, shared_memory_holder pMemory) { m_pData->push_back(node, pMemory); } void push_back(node& node, shared_memory_holder pMemory) {
void insert(node& key, node& value, shared_memory_holder pMemory) { m_pData->insert(key, value, pMemory); } m_pData->push_back(node, pMemory);
}
void insert(node& key, node& value, shared_memory_holder pMemory) {
m_pData->insert(key, value, pMemory);
}
// indexing // indexing
template<typename Key> node& get(const Key& key, shared_memory_holder pMemory) const { return static_cast<const node_data&>(*m_pData).get(key, pMemory); } template <typename Key>
template<typename Key> node& get(const Key& key, shared_memory_holder pMemory) { return m_pData->get(key, pMemory); } node* get(const Key& key, shared_memory_holder pMemory) const {
template<typename Key> bool remove(const Key& key, shared_memory_holder pMemory) { return m_pData->remove(key, pMemory); } return static_cast<const node_data&>(*m_pData).get(key, pMemory);
}
template <typename Key>
node& get(const Key& key, shared_memory_holder pMemory) {
return m_pData->get(key, pMemory);
}
template <typename Key>
bool remove(const Key& key, shared_memory_holder pMemory) {
return m_pData->remove(key, pMemory);
}
node& get(node& key, shared_memory_holder pMemory) const { return static_cast<const node_data&>(*m_pData).get(key, pMemory); } node* get(node& key, shared_memory_holder pMemory) const {
node& get(node& key, shared_memory_holder pMemory) { return m_pData->get(key, pMemory); } return static_cast<const node_data&>(*m_pData).get(key, pMemory);
bool remove(node& key, shared_memory_holder pMemory) { return m_pData->remove(key, pMemory); } }
node& get(node& key, shared_memory_holder pMemory) {
return m_pData->get(key, pMemory);
}
bool remove(node& key, shared_memory_holder pMemory) {
return m_pData->remove(key, pMemory);
}
// map // map
template<typename Key, typename Value> template <typename Key, typename Value>
void force_insert(const Key& key, const Value& value, shared_memory_holder pMemory) { m_pData->force_insert(key, value, pMemory); } void force_insert(const Key& key, const Value& value,
shared_memory_holder pMemory) {
m_pData->force_insert(key, value, pMemory);
}
private: private:
shared_node_data m_pData; shared_node_data m_pData;
}; };
} }
} }
#endif // VALUE_DETAIL_NODE_REF_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #endif // VALUE_DETAIL_NODE_REF_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@@ -1,23 +1,25 @@
#ifndef NODE_EMIT_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #ifndef NODE_EMIT_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define NODE_EMIT_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #define NODE_EMIT_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || (defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || (__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4 #if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once #pragma once
#endif #endif
#include <string> #include <string>
#include <iosfwd> #include <iosfwd>
namespace YAML #include "yaml-cpp/dll.h"
{
class Emitter;
class Node;
Emitter& operator << (Emitter& out, const Node& node); namespace YAML {
std::ostream& operator << (std::ostream& out, const Node& node); class Emitter;
class Node;
std::string Dump(const Node& node); YAML_CPP_API Emitter& operator<<(Emitter& out, const Node& node);
YAML_CPP_API std::ostream& operator<<(std::ostream& out, const Node& node);
YAML_CPP_API std::string Dump(const Node& node);
} }
#endif // NODE_EMIT_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #endif // NODE_EMIT_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@@ -1,11 +1,12 @@
#ifndef NODE_IMPL_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #ifndef NODE_IMPL_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define NODE_IMPL_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #define NODE_IMPL_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || (defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || (__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4 #if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once #pragma once
#endif #endif
#include "yaml-cpp/node/node.h" #include "yaml-cpp/node/node.h"
#include "yaml-cpp/node/iterator.h" #include "yaml-cpp/node/iterator.h"
#include "yaml-cpp/node/detail/memory.h" #include "yaml-cpp/node/detail/memory.h"
@@ -13,439 +14,435 @@
#include "yaml-cpp/exceptions.h" #include "yaml-cpp/exceptions.h"
#include <string> #include <string>
namespace YAML namespace YAML {
{ inline Node::Node() : m_isValid(true), m_pNode(NULL) {}
inline Node::Node(): m_isValid(true), m_pNode(NULL)
{
}
inline Node::Node(NodeType::value type): m_isValid(true), m_pMemory(new detail::memory_holder), m_pNode(&m_pMemory->create_node()) inline Node::Node(NodeType::value type)
{ : m_isValid(true),
m_pNode->set_type(type); m_pMemory(new detail::memory_holder),
} m_pNode(&m_pMemory->create_node()) {
m_pNode->set_type(type);
template<typename T>
inline Node::Node(const T& rhs): m_isValid(true), m_pMemory(new detail::memory_holder), m_pNode(&m_pMemory->create_node())
{
Assign(rhs);
}
inline Node::Node(const detail::iterator_value& rhs): m_isValid(rhs.m_isValid), m_pMemory(rhs.m_pMemory), m_pNode(rhs.m_pNode)
{
}
inline Node::Node(const Node& rhs): m_isValid(rhs.m_isValid), m_pMemory(rhs.m_pMemory), m_pNode(rhs.m_pNode)
{
}
inline Node::Node(Zombie): m_isValid(false), m_pNode(NULL)
{
}
inline Node::Node(detail::node& node, detail::shared_memory_holder pMemory): m_isValid(true), m_pMemory(pMemory), m_pNode(&node)
{
}
inline Node::~Node()
{
}
inline void Node::EnsureNodeExists() const
{
if(!m_isValid)
throw InvalidNode();
if(!m_pNode) {
m_pMemory.reset(new detail::memory_holder);
m_pNode = &m_pMemory->create_node();
m_pNode->set_null();
}
}
inline bool Node::IsDefined() const
{
if(!m_isValid)
throw InvalidNode();
return m_pNode ? m_pNode->is_defined() : true;
}
inline NodeType::value Node::Type() const
{
if(!m_isValid)
throw InvalidNode();
return m_pNode ? m_pNode->type() : NodeType::Null;
}
// access
// template helpers
template<typename T, typename S>
struct as_if {
explicit as_if(const Node& node_): node(node_) {}
const Node& node;
const T operator()(const S& fallback) const {
if(!node.m_pNode)
return fallback;
T t;
if(convert<T>::decode(node, t))
return t;
return fallback;
}
};
template<typename S>
struct as_if<std::string, S> {
explicit as_if(const Node& node_): node(node_) {}
const Node& node;
const std::string operator()(const S& fallback) const {
if(node.Type() != NodeType::Scalar)
return fallback;
return node.Scalar();
}
};
template<typename T>
struct as_if<T, void> {
explicit as_if(const Node& node_): node(node_) {}
const Node& node;
const T operator()() const {
if(!node.m_pNode)
throw TypedBadConversion<T>();
T t;
if(convert<T>::decode(node, t))
return t;
throw TypedBadConversion<T>();
}
};
template<>
struct as_if<std::string, void> {
explicit as_if(const Node& node_): node(node_) {}
const Node& node;
const std::string operator()() const {
if(node.Type() != NodeType::Scalar)
throw TypedBadConversion<std::string>();
return node.Scalar();
}
};
// access functions
template<typename T>
inline const T Node::as() const
{
if(!m_isValid)
throw InvalidNode();
return as_if<T, void>(*this)();
}
template<typename T, typename S>
inline const T Node::as(const S& fallback) const
{
if(!m_isValid)
throw InvalidNode();
return as_if<T, S>(*this)(fallback);
}
inline const std::string& Node::Scalar() const
{
if(!m_isValid)
throw InvalidNode();
return m_pNode ? m_pNode->scalar() : detail::node_data::empty_scalar;
}
inline const std::string& Node::Tag() const
{
if(!m_isValid)
throw InvalidNode();
return m_pNode ? m_pNode->tag() : detail::node_data::empty_scalar;
}
inline void Node::SetTag(const std::string& tag)
{
if(!m_isValid)
throw InvalidNode();
EnsureNodeExists();
m_pNode->set_tag(tag);
}
// assignment
inline bool Node::is(const Node& rhs) const
{
if(!m_isValid || !rhs.m_isValid)
throw InvalidNode();
if(!m_pNode || !rhs.m_pNode)
return false;
return m_pNode->is(*rhs.m_pNode);
}
template<typename T>
inline Node& Node::operator=(const T& rhs)
{
if(!m_isValid)
throw InvalidNode();
Assign(rhs);
return *this;
}
inline void Node::reset(const YAML::Node& rhs)
{
if(!m_isValid || !rhs.m_isValid)
throw InvalidNode();
m_pMemory = rhs.m_pMemory;
m_pNode = rhs.m_pNode;
}
template<typename T>
inline void Node::Assign(const T& rhs)
{
if(!m_isValid)
throw InvalidNode();
AssignData(convert<T>::encode(rhs));
}
template<>
inline void Node::Assign(const std::string& rhs)
{
if(!m_isValid)
throw InvalidNode();
EnsureNodeExists();
m_pNode->set_scalar(rhs);
}
inline void Node::Assign(const char *rhs)
{
if(!m_isValid)
throw InvalidNode();
EnsureNodeExists();
m_pNode->set_scalar(rhs);
}
inline void Node::Assign(char *rhs)
{
if(!m_isValid)
throw InvalidNode();
EnsureNodeExists();
m_pNode->set_scalar(rhs);
}
inline Node& Node::operator=(const Node& rhs)
{
if(!m_isValid || !rhs.m_isValid)
throw InvalidNode();
if(is(rhs))
return *this;
AssignNode(rhs);
return *this;
}
inline void Node::AssignData(const Node& rhs)
{
if(!m_isValid || !rhs.m_isValid)
throw InvalidNode();
EnsureNodeExists();
rhs.EnsureNodeExists();
m_pNode->set_data(*rhs.m_pNode);
m_pMemory->merge(*rhs.m_pMemory);
}
inline void Node::AssignNode(const Node& rhs)
{
if(!m_isValid || !rhs.m_isValid)
throw InvalidNode();
rhs.EnsureNodeExists();
if(!m_pNode) {
m_pNode = rhs.m_pNode;
m_pMemory = rhs.m_pMemory;
return;
}
m_pNode->set_ref(*rhs.m_pNode);
m_pMemory->merge(*rhs.m_pMemory);
m_pNode = rhs.m_pNode;
}
// size/iterator
inline std::size_t Node::size() const
{
if(!m_isValid)
throw InvalidNode();
return m_pNode ? m_pNode->size() : 0;
}
inline const_iterator Node::begin() const
{
if(!m_isValid)
throw InvalidNode();
return m_pNode ? const_iterator(m_pNode->begin(), m_pMemory) : const_iterator();
}
inline iterator Node::begin()
{
if(!m_isValid)
throw InvalidNode();
return m_pNode ? iterator(m_pNode->begin(), m_pMemory) : iterator();
}
inline const_iterator Node::end() const
{
if(!m_isValid)
throw InvalidNode();
return m_pNode ? const_iterator(m_pNode->end(), m_pMemory) : const_iterator();
}
inline iterator Node::end()
{
if(!m_isValid)
throw InvalidNode();
return m_pNode ? iterator(m_pNode->end(), m_pMemory) : iterator();
}
// sequence
template<typename T>
inline void Node::push_back(const T& rhs)
{
if(!m_isValid)
throw InvalidNode();
push_back(Node(rhs));
}
inline void Node::push_back(const Node& rhs)
{
if(!m_isValid || !rhs.m_isValid)
throw InvalidNode();
EnsureNodeExists();
rhs.EnsureNodeExists();
m_pNode->push_back(*rhs.m_pNode, m_pMemory);
m_pMemory->merge(*rhs.m_pMemory);
}
// helpers for indexing
namespace detail {
template<typename T>
struct to_value_t {
explicit to_value_t(const T& t_): t(t_) {}
const T& t;
typedef const T& return_type;
const T& operator()() const { return t; }
};
template<>
struct to_value_t<const char*> {
explicit to_value_t(const char *t_): t(t_) {}
const char *t;
typedef std::string return_type;
const std::string operator()() const { return t; }
};
template<>
struct to_value_t<char*> {
explicit to_value_t(char *t_): t(t_) {}
const char *t;
typedef std::string return_type;
const std::string operator()() const { return t; }
};
template<std::size_t N>
struct to_value_t<char [N]> {
explicit to_value_t(const char *t_): t(t_) {}
const char *t;
typedef std::string return_type;
const std::string operator()() const { return t; }
};
// converts C-strings to std::strings so they can be copied
template<typename T>
inline typename to_value_t<T>::return_type to_value(const T& t) {
return to_value_t<T>(t)();
}
}
// indexing
template<typename Key>
inline const Node Node::operator[](const Key& key) const
{
if(!m_isValid)
throw InvalidNode();
EnsureNodeExists();
detail::node& value = static_cast<const detail::node&>(*m_pNode).get(detail::to_value(key), m_pMemory);
return Node(value, m_pMemory);
}
template<typename Key>
inline Node Node::operator[](const Key& key)
{
if(!m_isValid)
throw InvalidNode();
EnsureNodeExists();
detail::node& value = m_pNode->get(detail::to_value(key), m_pMemory);
return Node(value, m_pMemory);
}
template<typename Key>
inline bool Node::remove(const Key& key)
{
if(!m_isValid)
throw InvalidNode();
EnsureNodeExists();
return m_pNode->remove(detail::to_value(key), m_pMemory);
}
inline const Node Node::operator[](const Node& key) const
{
if(!m_isValid || !key.m_isValid)
throw InvalidNode();
EnsureNodeExists();
key.EnsureNodeExists();
detail::node& value = static_cast<const detail::node&>(*m_pNode).get(*key.m_pNode, m_pMemory);
return Node(value, m_pMemory);
}
inline Node Node::operator[](const Node& key)
{
if(!m_isValid || !key.m_isValid)
throw InvalidNode();
EnsureNodeExists();
key.EnsureNodeExists();
detail::node& value = m_pNode->get(*key.m_pNode, m_pMemory);
return Node(value, m_pMemory);
}
inline bool Node::remove(const Node& key)
{
if(!m_isValid || !key.m_isValid)
throw InvalidNode();
EnsureNodeExists();
key.EnsureNodeExists();
return m_pNode->remove(*key.m_pNode, m_pMemory);
}
// map
template<typename Key, typename Value>
inline void Node::force_insert(const Key& key, const Value& value)
{
if(!m_isValid)
throw InvalidNode();
EnsureNodeExists();
m_pNode->force_insert(detail::to_value(key), detail::to_value(value), m_pMemory);
}
// free functions
inline bool operator==(const Node& lhs, const Node& rhs)
{
return lhs.is(rhs);
}
} }
#endif // NODE_IMPL_H_62B23520_7C8E_11DE_8A39_0800200C9A66 template <typename T>
inline Node::Node(const T& rhs)
: m_isValid(true),
m_pMemory(new detail::memory_holder),
m_pNode(&m_pMemory->create_node()) {
Assign(rhs);
}
inline Node::Node(const detail::iterator_value& rhs)
: m_isValid(rhs.m_isValid),
m_pMemory(rhs.m_pMemory),
m_pNode(rhs.m_pNode) {}
inline Node::Node(const Node& rhs)
: m_isValid(rhs.m_isValid),
m_pMemory(rhs.m_pMemory),
m_pNode(rhs.m_pNode) {}
inline Node::Node(Zombie) : m_isValid(false), m_pNode(NULL) {}
inline Node::Node(detail::node& node, detail::shared_memory_holder pMemory)
: m_isValid(true), m_pMemory(pMemory), m_pNode(&node) {}
inline Node::~Node() {}
inline void Node::EnsureNodeExists() const {
if (!m_isValid)
throw InvalidNode();
if (!m_pNode) {
m_pMemory.reset(new detail::memory_holder);
m_pNode = &m_pMemory->create_node();
m_pNode->set_null();
}
}
inline bool Node::IsDefined() const {
if (!m_isValid) {
return false;
}
return m_pNode ? m_pNode->is_defined() : true;
}
inline Mark Node::Mark() const {
if (!m_isValid) {
throw InvalidNode();
}
return m_pNode ? m_pNode->mark() : Mark::null_mark();
}
inline NodeType::value Node::Type() const {
if (!m_isValid)
throw InvalidNode();
return m_pNode ? m_pNode->type() : NodeType::Null;
}
// access
// template helpers
template <typename T, typename S>
struct as_if {
explicit as_if(const Node& node_) : node(node_) {}
const Node& node;
T operator()(const S& fallback) const {
if (!node.m_pNode)
return fallback;
T t;
if (convert<T>::decode(node, t))
return t;
return fallback;
}
};
template <typename S>
struct as_if<std::string, S> {
explicit as_if(const Node& node_) : node(node_) {}
const Node& node;
const std::string operator()(const S& fallback) const {
if (node.Type() != NodeType::Scalar)
return fallback;
return node.Scalar();
}
};
template <typename T>
struct as_if<T, void> {
explicit as_if(const Node& node_) : node(node_) {}
const Node& node;
const T operator()() const {
if (!node.m_pNode)
throw TypedBadConversion<T>(node.Mark());
T t;
if (convert<T>::decode(node, t))
return t;
throw TypedBadConversion<T>(node.Mark());
}
};
template <>
struct as_if<std::string, void> {
explicit as_if(const Node& node_) : node(node_) {}
const Node& node;
const std::string operator()() const {
if (node.Type() != NodeType::Scalar)
throw TypedBadConversion<std::string>(node.Mark());
return node.Scalar();
}
};
// access functions
template <typename T>
inline T Node::as() const {
if (!m_isValid)
throw InvalidNode();
return as_if<T, void>(*this)();
}
template <typename T, typename S>
inline T Node::as(const S& fallback) const {
if (!m_isValid)
return fallback;
return as_if<T, S>(*this)(fallback);
}
inline const std::string& Node::Scalar() const {
if (!m_isValid)
throw InvalidNode();
return m_pNode ? m_pNode->scalar() : detail::node_data::empty_scalar;
}
inline const std::string& Node::Tag() const {
if (!m_isValid)
throw InvalidNode();
return m_pNode ? m_pNode->tag() : detail::node_data::empty_scalar;
}
inline void Node::SetTag(const std::string& tag) {
if (!m_isValid)
throw InvalidNode();
EnsureNodeExists();
m_pNode->set_tag(tag);
}
inline EmitterStyle::value Node::Style() const {
if (!m_isValid)
throw InvalidNode();
return m_pNode ? m_pNode->style() : EmitterStyle::Default;
}
inline void Node::SetStyle(EmitterStyle::value style) {
if (!m_isValid)
throw InvalidNode();
EnsureNodeExists();
m_pNode->set_style(style);
}
// assignment
inline bool Node::is(const Node& rhs) const {
if (!m_isValid || !rhs.m_isValid)
throw InvalidNode();
if (!m_pNode || !rhs.m_pNode)
return false;
return m_pNode->is(*rhs.m_pNode);
}
template <typename T>
inline Node& Node::operator=(const T& rhs) {
if (!m_isValid)
throw InvalidNode();
Assign(rhs);
return *this;
}
inline void Node::reset(const YAML::Node& rhs) {
if (!m_isValid || !rhs.m_isValid)
throw InvalidNode();
m_pMemory = rhs.m_pMemory;
m_pNode = rhs.m_pNode;
}
template <typename T>
inline void Node::Assign(const T& rhs) {
if (!m_isValid)
throw InvalidNode();
AssignData(convert<T>::encode(rhs));
}
template <>
inline void Node::Assign(const std::string& rhs) {
if (!m_isValid)
throw InvalidNode();
EnsureNodeExists();
m_pNode->set_scalar(rhs);
}
inline void Node::Assign(const char* rhs) {
if (!m_isValid)
throw InvalidNode();
EnsureNodeExists();
m_pNode->set_scalar(rhs);
}
inline void Node::Assign(char* rhs) {
if (!m_isValid)
throw InvalidNode();
EnsureNodeExists();
m_pNode->set_scalar(rhs);
}
inline Node& Node::operator=(const Node& rhs) {
if (!m_isValid || !rhs.m_isValid)
throw InvalidNode();
if (is(rhs))
return *this;
AssignNode(rhs);
return *this;
}
inline void Node::AssignData(const Node& rhs) {
if (!m_isValid || !rhs.m_isValid)
throw InvalidNode();
EnsureNodeExists();
rhs.EnsureNodeExists();
m_pNode->set_data(*rhs.m_pNode);
m_pMemory->merge(*rhs.m_pMemory);
}
inline void Node::AssignNode(const Node& rhs) {
if (!m_isValid || !rhs.m_isValid)
throw InvalidNode();
rhs.EnsureNodeExists();
if (!m_pNode) {
m_pNode = rhs.m_pNode;
m_pMemory = rhs.m_pMemory;
return;
}
m_pNode->set_ref(*rhs.m_pNode);
m_pMemory->merge(*rhs.m_pMemory);
m_pNode = rhs.m_pNode;
}
// size/iterator
inline std::size_t Node::size() const {
if (!m_isValid)
throw InvalidNode();
return m_pNode ? m_pNode->size() : 0;
}
inline const_iterator Node::begin() const {
if (!m_isValid)
return const_iterator();
return m_pNode ? const_iterator(m_pNode->begin(), m_pMemory)
: const_iterator();
}
inline iterator Node::begin() {
if (!m_isValid)
return iterator();
return m_pNode ? iterator(m_pNode->begin(), m_pMemory) : iterator();
}
inline const_iterator Node::end() const {
if (!m_isValid)
return const_iterator();
return m_pNode ? const_iterator(m_pNode->end(), m_pMemory) : const_iterator();
}
inline iterator Node::end() {
if (!m_isValid)
return iterator();
return m_pNode ? iterator(m_pNode->end(), m_pMemory) : iterator();
}
// sequence
template <typename T>
inline void Node::push_back(const T& rhs) {
if (!m_isValid)
throw InvalidNode();
push_back(Node(rhs));
}
inline void Node::push_back(const Node& rhs) {
if (!m_isValid || !rhs.m_isValid)
throw InvalidNode();
EnsureNodeExists();
rhs.EnsureNodeExists();
m_pNode->push_back(*rhs.m_pNode, m_pMemory);
m_pMemory->merge(*rhs.m_pMemory);
}
// helpers for indexing
namespace detail {
template <typename T>
struct to_value_t {
explicit to_value_t(const T& t_) : t(t_) {}
const T& t;
typedef const T& return_type;
const T& operator()() const { return t; }
};
template <>
struct to_value_t<const char*> {
explicit to_value_t(const char* t_) : t(t_) {}
const char* t;
typedef std::string return_type;
const std::string operator()() const { return t; }
};
template <>
struct to_value_t<char*> {
explicit to_value_t(char* t_) : t(t_) {}
const char* t;
typedef std::string return_type;
const std::string operator()() const { return t; }
};
template <std::size_t N>
struct to_value_t<char[N]> {
explicit to_value_t(const char* t_) : t(t_) {}
const char* t;
typedef std::string return_type;
const std::string operator()() const { return t; }
};
// converts C-strings to std::strings so they can be copied
template <typename T>
inline typename to_value_t<T>::return_type to_value(const T& t) {
return to_value_t<T>(t)();
}
}
// indexing
template <typename Key>
inline const Node Node::operator[](const Key& key) const {
if (!m_isValid)
throw InvalidNode();
EnsureNodeExists();
detail::node* value = static_cast<const detail::node&>(*m_pNode)
.get(detail::to_value(key), m_pMemory);
if (!value) {
return Node(ZombieNode);
}
return Node(*value, m_pMemory);
}
template <typename Key>
inline Node Node::operator[](const Key& key) {
if (!m_isValid)
throw InvalidNode();
EnsureNodeExists();
detail::node& value = m_pNode->get(detail::to_value(key), m_pMemory);
return Node(value, m_pMemory);
}
template <typename Key>
inline bool Node::remove(const Key& key) {
if (!m_isValid)
throw InvalidNode();
EnsureNodeExists();
return m_pNode->remove(detail::to_value(key), m_pMemory);
}
inline const Node Node::operator[](const Node& key) const {
if (!m_isValid || !key.m_isValid)
throw InvalidNode();
EnsureNodeExists();
key.EnsureNodeExists();
m_pMemory->merge(*key.m_pMemory);
detail::node* value =
static_cast<const detail::node&>(*m_pNode).get(*key.m_pNode, m_pMemory);
if (!value) {
return Node(ZombieNode);
}
return Node(*value, m_pMemory);
}
inline Node Node::operator[](const Node& key) {
if (!m_isValid || !key.m_isValid)
throw InvalidNode();
EnsureNodeExists();
key.EnsureNodeExists();
m_pMemory->merge(*key.m_pMemory);
detail::node& value = m_pNode->get(*key.m_pNode, m_pMemory);
return Node(value, m_pMemory);
}
inline bool Node::remove(const Node& key) {
if (!m_isValid || !key.m_isValid)
throw InvalidNode();
EnsureNodeExists();
key.EnsureNodeExists();
return m_pNode->remove(*key.m_pNode, m_pMemory);
}
// map
template <typename Key, typename Value>
inline void Node::force_insert(const Key& key, const Value& value) {
if (!m_isValid)
throw InvalidNode();
EnsureNodeExists();
m_pNode->force_insert(detail::to_value(key), detail::to_value(value),
m_pMemory);
}
// free functions
inline bool operator==(const Node& lhs, const Node& rhs) { return lhs.is(rhs); }
}
#endif // NODE_IMPL_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@@ -1,11 +1,12 @@
#ifndef VALUE_ITERATOR_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #ifndef VALUE_ITERATOR_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define VALUE_ITERATOR_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #define VALUE_ITERATOR_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || (defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || (__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4 #if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once #pragma once
#endif #endif
#include "yaml-cpp/dll.h" #include "yaml-cpp/dll.h"
#include "yaml-cpp/node/node.h" #include "yaml-cpp/node/node.h"
#include "yaml-cpp/node/detail/iterator_fwd.h" #include "yaml-cpp/node/detail/iterator_fwd.h"
@@ -14,15 +15,17 @@
#include <utility> #include <utility>
#include <vector> #include <vector>
namespace YAML namespace YAML {
{ namespace detail {
namespace detail { struct iterator_value : public Node, std::pair<Node, Node> {
struct iterator_value: public Node, std::pair<Node, Node> { iterator_value() {}
iterator_value() {} explicit iterator_value(const Node& rhs)
explicit iterator_value(const Node& rhs): Node(rhs), std::pair<Node, Node>(Node(Node::ZombieNode), Node(Node::ZombieNode)) {} : Node(rhs),
explicit iterator_value(const Node& key, const Node& value): Node(Node::ZombieNode), std::pair<Node, Node>(key, value) {} std::pair<Node, Node>(Node(Node::ZombieNode), Node(Node::ZombieNode)) {}
}; explicit iterator_value(const Node& key, const Node& value)
} : Node(Node::ZombieNode), std::pair<Node, Node>(key, value) {}
};
}
} }
#endif // VALUE_ITERATOR_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #endif // VALUE_ITERATOR_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@@ -1,116 +1,145 @@
#ifndef NODE_NODE_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #ifndef NODE_NODE_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define NODE_NODE_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #define NODE_NODE_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || (defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || (__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4 #if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once #pragma once
#endif #endif
#include "yaml-cpp/dll.h"
#include "yaml-cpp/node/ptr.h"
#include "yaml-cpp/node/type.h"
#include "yaml-cpp/node/detail/iterator_fwd.h"
#include "yaml-cpp/node/detail/bool_type.h"
#include <stdexcept> #include <stdexcept>
namespace YAML #include "yaml-cpp/dll.h"
{ #include "yaml-cpp/emitterstyle.h"
class Node #include "yaml-cpp/mark.h"
{ #include "yaml-cpp/node/detail/bool_type.h"
public: #include "yaml-cpp/node/detail/iterator_fwd.h"
friend class NodeBuilder; #include "yaml-cpp/node/ptr.h"
friend class NodeEvents; #include "yaml-cpp/node/type.h"
friend struct detail::iterator_value;
friend class detail::node_data;
template<typename> friend class detail::iterator_base;
template<typename T, typename S> friend struct as_if;
typedef YAML::iterator iterator; namespace YAML {
typedef YAML::const_iterator const_iterator; namespace detail {
class node;
class node_data;
struct iterator_value;
} // namespace detail
} // namespace YAML
Node(); namespace YAML {
explicit Node(NodeType::value type); class YAML_CPP_API Node {
template<typename T> explicit Node(const T& rhs); public:
explicit Node(const detail::iterator_value& rhs); friend class NodeBuilder;
Node(const Node& rhs); friend class NodeEvents;
~Node(); friend struct detail::iterator_value;
friend class detail::node;
friend class detail::node_data;
template <typename>
friend class detail::iterator_base;
template <typename T, typename S>
friend struct as_if;
NodeType::value Type() const; typedef YAML::iterator iterator;
bool IsDefined() const; typedef YAML::const_iterator const_iterator;
bool IsNull() const { return Type() == NodeType::Null; }
bool IsScalar() const { return Type() == NodeType::Scalar; }
bool IsSequence() const { return Type() == NodeType::Sequence; }
bool IsMap() const { return Type() == NodeType::Map; }
// bool conversions Node();
YAML_CPP_OPERATOR_BOOL(); explicit Node(NodeType::value type);
bool operator!() const { return !IsDefined(); } template <typename T>
explicit Node(const T& rhs);
explicit Node(const detail::iterator_value& rhs);
Node(const Node& rhs);
~Node();
// access YAML::Mark Mark() const;
template<typename T> const T as() const; NodeType::value Type() const;
template<typename T, typename S> const T as(const S& fallback) const; bool IsDefined() const;
const std::string& Scalar() const; bool IsNull() const { return Type() == NodeType::Null; }
const std::string& Tag() const; bool IsScalar() const { return Type() == NodeType::Scalar; }
void SetTag(const std::string& tag); bool IsSequence() const { return Type() == NodeType::Sequence; }
bool IsMap() const { return Type() == NodeType::Map; }
// assignment // bool conversions
bool is(const Node& rhs) const; YAML_CPP_OPERATOR_BOOL();
template<typename T> Node& operator=(const T& rhs); bool operator!() const { return !IsDefined(); }
Node& operator=(const Node& rhs);
void reset(const Node& rhs = Node());
// size/iterator // access
std::size_t size() const; template <typename T>
T as() const;
template <typename T, typename S>
T as(const S& fallback) const;
const std::string& Scalar() const;
const_iterator begin() const; const std::string& Tag() const;
iterator begin(); void SetTag(const std::string& tag);
const_iterator end() const; // style
iterator end(); // WARNING: This API might change in future releases.
EmitterStyle::value Style() const;
void SetStyle(EmitterStyle::value style);
// sequence // assignment
template<typename T> void push_back(const T& rhs); bool is(const Node& rhs) const;
void push_back(const Node& rhs); template <typename T>
Node& operator=(const T& rhs);
Node& operator=(const Node& rhs);
void reset(const Node& rhs = Node());
// indexing // size/iterator
template<typename Key> const Node operator[](const Key& key) const; std::size_t size() const;
template<typename Key> Node operator[](const Key& key);
template<typename Key> bool remove(const Key& key);
const Node operator[](const Node& key) const; const_iterator begin() const;
Node operator[](const Node& key); iterator begin();
bool remove(const Node& key);
// map const_iterator end() const;
template<typename Key, typename Value> iterator end();
void force_insert(const Key& key, const Value& value);
private: // sequence
enum Zombie { ZombieNode }; template <typename T>
explicit Node(Zombie); void push_back(const T& rhs);
explicit Node(detail::node& node, detail::shared_memory_holder pMemory); void push_back(const Node& rhs);
void EnsureNodeExists() const; // indexing
template <typename Key>
const Node operator[](const Key& key) const;
template <typename Key>
Node operator[](const Key& key);
template <typename Key>
bool remove(const Key& key);
template<typename T> void Assign(const T& rhs); const Node operator[](const Node& key) const;
void Assign(const char *rhs); Node operator[](const Node& key);
void Assign(char *rhs); bool remove(const Node& key);
void AssignData(const Node& rhs); // map
void AssignNode(const Node& rhs); template <typename Key, typename Value>
void force_insert(const Key& key, const Value& value);
private: private:
bool m_isValid; enum Zombie { ZombieNode };
mutable detail::shared_memory_holder m_pMemory; explicit Node(Zombie);
mutable detail::node *m_pNode; explicit Node(detail::node& node, detail::shared_memory_holder pMemory);
};
bool operator==(const Node& lhs, const Node& rhs); void EnsureNodeExists() const;
Node Clone(const Node& node); template <typename T>
void Assign(const T& rhs);
void Assign(const char* rhs);
void Assign(char* rhs);
template<typename T> void AssignData(const Node& rhs);
struct convert; void AssignNode(const Node& rhs);
private:
bool m_isValid;
mutable detail::shared_memory_holder m_pMemory;
mutable detail::node* m_pNode;
};
YAML_CPP_API bool operator==(const Node& lhs, const Node& rhs);
YAML_CPP_API Node Clone(const Node& node);
template <typename T>
struct convert;
} }
#endif // NODE_NODE_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #endif // NODE_NODE_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@@ -1,7 +1,9 @@
#ifndef VALUE_PARSE_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #ifndef VALUE_PARSE_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define VALUE_PARSE_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #define VALUE_PARSE_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || (defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || (__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4 #if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once #pragma once
#endif #endif
@@ -9,20 +11,20 @@
#include <string> #include <string>
#include <vector> #include <vector>
namespace YAML #include "yaml-cpp/dll.h"
{
class Node;
Node Load(const std::string& input); namespace YAML {
Node Load(const char *input); class Node;
Node Load(std::istream& input);
Node LoadFile(const std::string& filename);
std::vector<Node> LoadAll(const std::string& input); YAML_CPP_API Node Load(const std::string& input);
std::vector<Node> LoadAll(const char *input); YAML_CPP_API Node Load(const char* input);
std::vector<Node> LoadAll(std::istream& input); YAML_CPP_API Node Load(std::istream& input);
std::vector<Node> LoadAllFromFile(const std::string& filename); YAML_CPP_API Node LoadFile(const std::string& filename);
YAML_CPP_API std::vector<Node> LoadAll(const std::string& input);
YAML_CPP_API std::vector<Node> LoadAll(const char* input);
YAML_CPP_API std::vector<Node> LoadAll(std::istream& input);
YAML_CPP_API std::vector<Node> LoadAllFromFile(const std::string& filename);
} }
#endif // VALUE_PARSE_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #endif // VALUE_PARSE_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@@ -1,29 +1,29 @@
#ifndef VALUE_PTR_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #ifndef VALUE_PTR_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define VALUE_PTR_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #define VALUE_PTR_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || (defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || (__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4 #if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once #pragma once
#endif #endif
#include "yaml-cpp/dll.h" #include "yaml-cpp/dll.h"
#include <boost/shared_ptr.hpp> #include <boost/shared_ptr.hpp>
namespace YAML namespace YAML {
{ namespace detail {
namespace detail { class node;
class node; class node_ref;
class node_ref; class node_data;
class node_data; class memory;
class memory; class memory_holder;
class memory_holder;
typedef boost::shared_ptr<node> shared_node; typedef boost::shared_ptr<node> shared_node;
typedef boost::shared_ptr<node_ref> shared_node_ref; typedef boost::shared_ptr<node_ref> shared_node_ref;
typedef boost::shared_ptr<node_data> shared_node_data; typedef boost::shared_ptr<node_data> shared_node_data;
typedef boost::shared_ptr<memory_holder> shared_memory_holder; typedef boost::shared_ptr<memory_holder> shared_memory_holder;
typedef boost::shared_ptr<memory> shared_memory; typedef boost::shared_ptr<memory> shared_memory;
} }
} }
#endif // VALUE_PTR_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #endif // VALUE_PTR_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@@ -1,14 +1,16 @@
#ifndef VALUE_TYPE_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #ifndef VALUE_TYPE_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define VALUE_TYPE_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #define VALUE_TYPE_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || (defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || (__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4 #if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once #pragma once
#endif #endif
namespace YAML {
namespace YAML struct NodeType {
{ enum value { Undefined, Null, Scalar, Sequence, Map };
struct NodeType { enum value { Undefined, Null, Scalar, Sequence, Map }; }; };
} }
#endif // VALUE_TYPE_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #endif // VALUE_TYPE_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@@ -1,25 +1,25 @@
#ifndef NONCOPYABLE_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #ifndef NONCOPYABLE_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define NONCOPYABLE_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #define NONCOPYABLE_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || (defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || (__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4 #if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once #pragma once
#endif #endif
#include "yaml-cpp/dll.h" #include "yaml-cpp/dll.h"
namespace YAML namespace YAML {
{ // this is basically boost::noncopyable
// this is basically boost::noncopyable class YAML_CPP_API noncopyable {
class YAML_CPP_API noncopyable protected:
{ noncopyable() {}
protected: ~noncopyable() {}
noncopyable() {}
~noncopyable() {}
private: private:
noncopyable(const noncopyable&); noncopyable(const noncopyable&);
const noncopyable& operator = (const noncopyable&); const noncopyable& operator=(const noncopyable&);
}; };
} }
#endif // NONCOPYABLE_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #endif // NONCOPYABLE_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@@ -1,25 +1,24 @@
#ifndef NULL_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #ifndef NULL_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define NULL_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #define NULL_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || (defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || (__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4 #if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once #pragma once
#endif #endif
#include "yaml-cpp/dll.h" #include "yaml-cpp/dll.h"
namespace YAML namespace YAML {
{ class Node;
class Node;
struct YAML_CPP_API _Null {}; struct YAML_CPP_API _Null {};
inline bool operator == (const _Null&, const _Null&) { return true; } inline bool operator==(const _Null&, const _Null&) { return true; }
inline bool operator != (const _Null&, const _Null&) { return false; } inline bool operator!=(const _Null&, const _Null&) { return false; }
YAML_CPP_API bool IsNull(const Node& node); // old API only YAML_CPP_API bool IsNull(const Node& node); // old API only
extern YAML_CPP_API _Null Null; extern YAML_CPP_API _Null Null;
} }
#endif // NULL_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #endif // NULL_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@@ -1,69 +1,72 @@
#ifndef OSTREAM_WRAPPER_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #ifndef OSTREAM_WRAPPER_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define OSTREAM_WRAPPER_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #define OSTREAM_WRAPPER_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || (defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || (__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4 #if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once #pragma once
#endif #endif
#include <string> #include <string>
#include <vector> #include <vector>
namespace YAML #include "yaml-cpp/dll.h"
{
class ostream_wrapper
{
public:
ostream_wrapper();
explicit ostream_wrapper(std::ostream& stream);
~ostream_wrapper();
void write(const std::string& str); namespace YAML {
void write(const char *str, std::size_t size); class YAML_CPP_API ostream_wrapper {
public:
ostream_wrapper();
explicit ostream_wrapper(std::ostream& stream);
~ostream_wrapper();
void set_comment() { m_comment = true; } void write(const std::string& str);
void write(const char* str, std::size_t size);
const char *str() const { void set_comment() { m_comment = true; }
if(m_pStream) {
return 0;
} else {
m_buffer[m_pos] = '\0';
return &m_buffer[0];
}
}
std::size_t row() const { return m_row; } const char* str() const {
std::size_t col() const { return m_col; } if (m_pStream) {
std::size_t pos() const { return m_pos; } return 0;
bool comment() const { return m_comment; } } else {
m_buffer[m_pos] = '\0';
private: return &m_buffer[0];
void update_pos(char ch);
private:
mutable std::vector<char> m_buffer;
std::ostream *m_pStream;
std::size_t m_pos;
std::size_t m_row, m_col;
bool m_comment;
};
template<std::size_t N>
inline ostream_wrapper& operator << (ostream_wrapper& stream, const char (&str)[N]) {
stream.write(str, N-1);
return stream;
} }
}
inline ostream_wrapper& operator << (ostream_wrapper& stream, const std::string& str) { std::size_t row() const { return m_row; }
stream.write(str); std::size_t col() const { return m_col; }
return stream; std::size_t pos() const { return m_pos; }
} bool comment() const { return m_comment; }
inline ostream_wrapper& operator << (ostream_wrapper& stream, char ch) { private:
stream.write(&ch, 1); void update_pos(char ch);
return stream;
} private:
mutable std::vector<char> m_buffer;
std::ostream* const m_pStream;
std::size_t m_pos;
std::size_t m_row, m_col;
bool m_comment;
};
template <std::size_t N>
inline ostream_wrapper& operator<<(ostream_wrapper& stream,
const char(&str)[N]) {
stream.write(str, N - 1);
return stream;
} }
#endif // OSTREAM_WRAPPER_H_62B23520_7C8E_11DE_8A39_0800200C9A66 inline ostream_wrapper& operator<<(ostream_wrapper& stream,
const std::string& str) {
stream.write(str);
return stream;
}
inline ostream_wrapper& operator<<(ostream_wrapper& stream, char ch) {
stream.write(&ch, 1);
return stream;
}
}
#endif // OSTREAM_WRAPPER_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@@ -1,47 +1,48 @@
#ifndef PARSER_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #ifndef PARSER_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define PARSER_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #define PARSER_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || (defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || (__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4 #if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once #pragma once
#endif #endif
#include "yaml-cpp/dll.h"
#include "yaml-cpp/noncopyable.h"
#include <ios> #include <ios>
#include <memory> #include <memory>
namespace YAML #include "yaml-cpp/dll.h"
{ #include "yaml-cpp/noncopyable.h"
struct Directives;
struct Token;
class EventHandler;
class Scanner;
class YAML_CPP_API Parser: private noncopyable namespace YAML {
{ class EventHandler;
public: class Node;
Parser(); class Scanner;
Parser(std::istream& in); struct Directives;
~Parser(); struct Token;
operator bool() const; class YAML_CPP_API Parser : private noncopyable {
public:
Parser();
Parser(std::istream& in);
~Parser();
void Load(std::istream& in); operator bool() const;
bool HandleNextDocument(EventHandler& eventHandler);
void PrintTokens(std::ostream& out); void Load(std::istream& in);
bool HandleNextDocument(EventHandler& eventHandler);
private: void PrintTokens(std::ostream& out);
void ParseDirectives();
void HandleDirective(const Token& token);
void HandleYamlDirective(const Token& token);
void HandleTagDirective(const Token& token);
private: private:
std::auto_ptr<Scanner> m_pScanner; void ParseDirectives();
std::auto_ptr<Directives> m_pDirectives; void HandleDirective(const Token& token);
}; void HandleYamlDirective(const Token& token);
void HandleTagDirective(const Token& token);
private:
std::auto_ptr<Scanner> m_pScanner;
std::auto_ptr<Directives> m_pDirectives;
};
} }
#endif // PARSER_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #endif // PARSER_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@@ -1,51 +1,51 @@
#ifndef STLEMITTER_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #ifndef STLEMITTER_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define STLEMITTER_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #define STLEMITTER_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || (defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || (__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4 #if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once #pragma once
#endif #endif
#include <vector> #include <vector>
#include <list> #include <list>
#include <set> #include <set>
#include <map> #include <map>
namespace YAML namespace YAML {
{ template <typename Seq>
template<typename Seq> inline Emitter& EmitSeq(Emitter& emitter, const Seq& seq) {
inline Emitter& EmitSeq(Emitter& emitter, const Seq& seq) { emitter << BeginSeq;
emitter << BeginSeq; for (typename Seq::const_iterator it = seq.begin(); it != seq.end(); ++it)
for(typename Seq::const_iterator it=seq.begin();it!=seq.end();++it) emitter << *it;
emitter << *it; emitter << EndSeq;
emitter << EndSeq; return emitter;
return emitter;
}
template<typename T>
inline Emitter& operator << (Emitter& emitter, const std::vector<T>& v) {
return EmitSeq(emitter, v);
}
template<typename T>
inline Emitter& operator << (Emitter& emitter, const std::list<T>& v) {
return EmitSeq(emitter, v);
}
template<typename T>
inline Emitter& operator << (Emitter& emitter, const std::set<T>& v) {
return EmitSeq(emitter, v);
}
template <typename K, typename V>
inline Emitter& operator << (Emitter& emitter, const std::map<K, V>& m) {
typedef typename std::map <K, V> map;
emitter << BeginMap;
for(typename map::const_iterator it=m.begin();it!=m.end();++it)
emitter << Key << it->first << Value << it->second;
emitter << EndMap;
return emitter;
}
} }
#endif // STLEMITTER_H_62B23520_7C8E_11DE_8A39_0800200C9A66 template <typename T>
inline Emitter& operator<<(Emitter& emitter, const std::vector<T>& v) {
return EmitSeq(emitter, v);
}
template <typename T>
inline Emitter& operator<<(Emitter& emitter, const std::list<T>& v) {
return EmitSeq(emitter, v);
}
template <typename T>
inline Emitter& operator<<(Emitter& emitter, const std::set<T>& v) {
return EmitSeq(emitter, v);
}
template <typename K, typename V>
inline Emitter& operator<<(Emitter& emitter, const std::map<K, V>& m) {
typedef typename std::map<K, V> map;
emitter << BeginMap;
for (typename map::const_iterator it = m.begin(); it != m.end(); ++it)
emitter << Key << it->first << Value << it->second;
emitter << EndMap;
return emitter;
}
}
#endif // STLEMITTER_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@@ -1,57 +1,103 @@
#ifndef TRAITS_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #ifndef TRAITS_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define TRAITS_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #define TRAITS_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || (defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || (__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4 #if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once #pragma once
#endif #endif
namespace YAML {
template <typename>
struct is_numeric {
enum { value = false };
};
namespace YAML template <>
{ struct is_numeric<char> {
template <typename> enum { value = true };
struct is_numeric { enum { value = false }; }; };
template <>
template <> struct is_numeric <char> { enum { value = true }; }; struct is_numeric<unsigned char> {
template <> struct is_numeric <unsigned char> { enum { value = true }; }; enum { value = true };
template <> struct is_numeric <int> { enum { value = true }; }; };
template <> struct is_numeric <unsigned int> { enum { value = true }; }; template <>
template <> struct is_numeric <long int> { enum { value = true }; }; struct is_numeric<int> {
template <> struct is_numeric <unsigned long int> { enum { value = true }; }; enum { value = true };
template <> struct is_numeric <short int> { enum { value = true }; }; };
template <> struct is_numeric <unsigned short int> { enum { value = true }; }; template <>
struct is_numeric<unsigned int> {
enum { value = true };
};
template <>
struct is_numeric<long int> {
enum { value = true };
};
template <>
struct is_numeric<unsigned long int> {
enum { value = true };
};
template <>
struct is_numeric<short int> {
enum { value = true };
};
template <>
struct is_numeric<unsigned short int> {
enum { value = true };
};
#if defined(_MSC_VER) && (_MSC_VER < 1310) #if defined(_MSC_VER) && (_MSC_VER < 1310)
template <> struct is_numeric <__int64> { enum { value = true }; }; template <>
template <> struct is_numeric <unsigned __int64> { enum { value = true }; }; struct is_numeric<__int64> {
enum { value = true };
};
template <>
struct is_numeric<unsigned __int64> {
enum { value = true };
};
#else #else
template <> struct is_numeric <long long> { enum { value = true }; }; template <>
template <> struct is_numeric <unsigned long long> { enum { value = true }; }; struct is_numeric<long long> {
enum { value = true };
};
template <>
struct is_numeric<unsigned long long> {
enum { value = true };
};
#endif #endif
template <> struct is_numeric <float> { enum { value = true }; }; template <>
template <> struct is_numeric <double> { enum { value = true }; }; struct is_numeric<float> {
template <> struct is_numeric <long double> { enum { value = true }; }; enum { value = true };
};
template <>
struct is_numeric<double> {
enum { value = true };
};
template <>
struct is_numeric<long double> {
enum { value = true };
};
template <bool, class T = void> template <bool, class T = void>
struct enable_if_c { struct enable_if_c {
typedef T type; typedef T type;
}; };
template <class T> template <class T>
struct enable_if_c<false, T> {}; struct enable_if_c<false, T> {};
template <class Cond, class T = void> template <class Cond, class T = void>
struct enable_if : public enable_if_c<Cond::value, T> {}; struct enable_if : public enable_if_c<Cond::value, T> {};
template <bool, class T = void> template <bool, class T = void>
struct disable_if_c { struct disable_if_c {
typedef T type; typedef T type;
}; };
template <class T> template <class T>
struct disable_if_c<true, T> {}; struct disable_if_c<true, T> {};
template <class Cond, class T = void> template <class Cond, class T = void>
struct disable_if : public disable_if_c<Cond::value, T> {}; struct disable_if : public disable_if_c<Cond::value, T> {};
} }
#endif // TRAITS_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #endif // TRAITS_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@@ -1,12 +1,15 @@
#ifndef YAML_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #ifndef YAML_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define YAML_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #define YAML_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || (defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || (__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4 #if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once #pragma once
#endif #endif
#include "yaml-cpp/parser.h" #include "yaml-cpp/parser.h"
#include "yaml-cpp/emitter.h" #include "yaml-cpp/emitter.h"
#include "yaml-cpp/emitterstyle.h"
#include "yaml-cpp/stlemitter.h" #include "yaml-cpp/stlemitter.h"
#include "yaml-cpp/exceptions.h" #include "yaml-cpp/exceptions.h"
@@ -18,4 +21,4 @@
#include "yaml-cpp/node/parse.h" #include "yaml-cpp/node/parse.h"
#include "yaml-cpp/node/emit.h" #include "yaml-cpp/node/emit.h"
#endif // YAML_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #endif // YAML_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@@ -1,93 +1,93 @@
#include "yaml-cpp/binary.h" #include "yaml-cpp/binary.h"
namespace YAML namespace YAML {
{ static const char encoding[] =
static const char encoding[] = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"; "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
std::string EncodeBase64(const unsigned char *data, std::size_t size) std::string EncodeBase64(const unsigned char *data, std::size_t size) {
{ const char PAD = '=';
const char PAD = '=';
std::string ret; std::string ret;
ret.resize(4 * size / 3 + 3); ret.resize(4 * size / 3 + 3);
char *out = &ret[0]; char *out = &ret[0];
std::size_t chunks = size / 3; std::size_t chunks = size / 3;
std::size_t remainder = size % 3; std::size_t remainder = size % 3;
for(std::size_t i=0;i<chunks;i++, data += 3) { for (std::size_t i = 0; i < chunks; i++, data += 3) {
*out++ = encoding[data[0] >> 2]; *out++ = encoding[data[0] >> 2];
*out++ = encoding[((data[0] & 0x3) << 4) | (data[1] >> 4)]; *out++ = encoding[((data[0] & 0x3) << 4) | (data[1] >> 4)];
*out++ = encoding[((data[1] & 0xf) << 2) | (data[2] >> 6)]; *out++ = encoding[((data[1] & 0xf) << 2) | (data[2] >> 6)];
*out++ = encoding[data[2] & 0x3f]; *out++ = encoding[data[2] & 0x3f];
} }
switch(remainder) { switch (remainder) {
case 0: case 0:
break; break;
case 1: case 1:
*out++ = encoding[data[0] >> 2]; *out++ = encoding[data[0] >> 2];
*out++ = encoding[((data[0] & 0x3) << 4)]; *out++ = encoding[((data[0] & 0x3) << 4)];
*out++ = PAD; *out++ = PAD;
*out++ = PAD; *out++ = PAD;
break; break;
case 2: case 2:
*out++ = encoding[data[0] >> 2]; *out++ = encoding[data[0] >> 2];
*out++ = encoding[((data[0] & 0x3) << 4) | (data[1] >> 4)]; *out++ = encoding[((data[0] & 0x3) << 4) | (data[1] >> 4)];
*out++ = encoding[((data[1] & 0xf) << 2)]; *out++ = encoding[((data[1] & 0xf) << 2)];
*out++ = PAD; *out++ = PAD;
break; break;
} }
ret.resize(out - &ret[0]); ret.resize(out - &ret[0]);
return ret; return ret;
} }
static const unsigned char decoding[] = { static const unsigned char decoding[] = {
255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255,255,255,255,255,255,255,255,255,255,255, 62,255,255,255, 63, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 62, 255,
52, 53, 54, 55, 56, 57, 58, 59, 60, 61,255,255,255, 0,255,255, 255, 255, 63, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 255, 255,
255, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 255, 0, 255, 255, 255, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25,255,255,255,255,255, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
255, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 25, 255, 255, 255, 255, 255, 255, 26, 27, 28, 29, 30, 31, 32, 33,
41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51,255,255,255,255,255, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48,
255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255, 49, 50, 51, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
}; 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255,
std::vector<unsigned char> DecodeBase64(const std::string& input) };
{
typedef std::vector<unsigned char> ret_type; std::vector<unsigned char> DecodeBase64(const std::string &input) {
if(input.empty()) typedef std::vector<unsigned char> ret_type;
return ret_type(); if (input.empty())
return ret_type();
ret_type ret(3 * input.size() / 4 + 1);
unsigned char *out = &ret[0]; ret_type ret(3 * input.size() / 4 + 1);
unsigned char *out = &ret[0];
unsigned value = 0;
for(std::size_t i=0;i<input.size();i++) { unsigned value = 0;
unsigned char d = decoding[static_cast<unsigned>(input[i])]; for (std::size_t i = 0; i < input.size(); i++) {
if(d == 255) unsigned char d = decoding[static_cast<unsigned>(input[i])];
return ret_type(); if (d == 255)
return ret_type();
value = (value << 6) | d;
if(i % 4 == 3) { value = (value << 6) | d;
*out++ = value >> 16; if (i % 4 == 3) {
if(i > 0 && input[i - 1] != '=') *out++ = value >> 16;
*out++ = value >> 8; if (i > 0 && input[i - 1] != '=')
if(input[i] != '=') *out++ = value >> 8;
*out++ = value; if (input[i] != '=')
} *out++ = value;
} }
}
ret.resize(out - &ret[0]);
return ret; ret.resize(out - &ret[0]);
} return ret;
}
} }

View File

@@ -1,35 +1,39 @@
#ifndef COLLECTIONSTACK_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #ifndef COLLECTIONSTACK_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define COLLECTIONSTACK_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #define COLLECTIONSTACK_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || (defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || (__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4 #if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once #pragma once
#endif #endif
#include <stack> #include <stack>
#include <cassert> #include <cassert>
namespace YAML namespace YAML {
{ struct CollectionType {
struct CollectionType { enum value { NoCollection, BlockMap, BlockSeq, FlowMap, FlowSeq, CompactMap };
enum value { None, BlockMap, BlockSeq, FlowMap, FlowSeq, CompactMap }; };
};
class CollectionStack class CollectionStack {
{ public:
public: CollectionType::value GetCurCollectionType() const {
CollectionType::value GetCurCollectionType() const { if (collectionStack.empty())
if(collectionStack.empty()) return CollectionType::NoCollection;
return CollectionType::None; return collectionStack.top();
return collectionStack.top(); }
}
void PushCollectionType(CollectionType::value type) { collectionStack.push(type); } void PushCollectionType(CollectionType::value type) {
void PopCollectionType(CollectionType::value type) { assert(type == GetCurCollectionType()); collectionStack.pop(); } collectionStack.push(type);
}
void PopCollectionType(CollectionType::value type) {
assert(type == GetCurCollectionType());
collectionStack.pop();
}
private: private:
std::stack<CollectionType::value> collectionStack; std::stack<CollectionType::value> collectionStack;
}; };
} }
#endif // COLLECTIONSTACK_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #endif // COLLECTIONSTACK_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@@ -1,16 +1,17 @@
#include "yaml-cpp/parser.h"
#include "yaml-cpp/contrib/graphbuilder.h"
#include "graphbuilderadapter.h" #include "graphbuilderadapter.h"
namespace YAML #include "yaml-cpp/parser.h" // IWYU pragma: keep
{
void *BuildGraphOfNextDocument(Parser& parser, GraphBuilderInterface& graphBuilder) namespace YAML {
{ class GraphBuilderInterface;
GraphBuilderAdapter eventHandler(graphBuilder);
if (parser.HandleNextDocument(eventHandler)) { void* BuildGraphOfNextDocument(Parser& parser,
return eventHandler.RootNode(); GraphBuilderInterface& graphBuilder) {
} else { GraphBuilderAdapter eventHandler(graphBuilder);
return NULL; if (parser.HandleNextDocument(eventHandler)) {
} return eventHandler.RootNode();
} else {
return NULL;
} }
} }
}

View File

@@ -1,96 +1,94 @@
#include "graphbuilderadapter.h" #include "graphbuilderadapter.h"
#include "yaml-cpp/contrib/graphbuilder.h"
namespace YAML namespace YAML {
{ struct Mark;
int GraphBuilderAdapter::ContainerFrame::sequenceMarker;
void GraphBuilderAdapter::OnNull(const Mark& mark, anchor_t anchor) int GraphBuilderAdapter::ContainerFrame::sequenceMarker;
{
void *pParent = GetCurrentParent();
void *pNode = m_builder.NewNull(mark, pParent);
RegisterAnchor(anchor, pNode);
DispositionNode(pNode); void GraphBuilderAdapter::OnNull(const Mark &mark, anchor_t anchor) {
void *pParent = GetCurrentParent();
void *pNode = m_builder.NewNull(mark, pParent);
RegisterAnchor(anchor, pNode);
DispositionNode(pNode);
}
void GraphBuilderAdapter::OnAlias(const Mark &mark, anchor_t anchor) {
void *pReffedNode = m_anchors.Get(anchor);
DispositionNode(m_builder.AnchorReference(mark, pReffedNode));
}
void GraphBuilderAdapter::OnScalar(const Mark &mark, const std::string &tag,
anchor_t anchor, const std::string &value) {
void *pParent = GetCurrentParent();
void *pNode = m_builder.NewScalar(mark, tag, pParent, value);
RegisterAnchor(anchor, pNode);
DispositionNode(pNode);
}
void GraphBuilderAdapter::OnSequenceStart(const Mark &mark,
const std::string &tag,
anchor_t anchor,
EmitterStyle::value /* style */) {
void *pNode = m_builder.NewSequence(mark, tag, GetCurrentParent());
m_containers.push(ContainerFrame(pNode));
RegisterAnchor(anchor, pNode);
}
void GraphBuilderAdapter::OnSequenceEnd() {
void *pSequence = m_containers.top().pContainer;
m_containers.pop();
DispositionNode(pSequence);
}
void GraphBuilderAdapter::OnMapStart(const Mark &mark, const std::string &tag,
anchor_t anchor,
EmitterStyle::value /* style */) {
void *pNode = m_builder.NewMap(mark, tag, GetCurrentParent());
m_containers.push(ContainerFrame(pNode, m_pKeyNode));
m_pKeyNode = NULL;
RegisterAnchor(anchor, pNode);
}
void GraphBuilderAdapter::OnMapEnd() {
void *pMap = m_containers.top().pContainer;
m_pKeyNode = m_containers.top().pPrevKeyNode;
m_containers.pop();
DispositionNode(pMap);
}
void *GraphBuilderAdapter::GetCurrentParent() const {
if (m_containers.empty()) {
return NULL;
} }
return m_containers.top().pContainer;
}
void GraphBuilderAdapter::OnAlias(const Mark& mark, anchor_t anchor) void GraphBuilderAdapter::RegisterAnchor(anchor_t anchor, void *pNode) {
{ if (anchor) {
void *pReffedNode = m_anchors.Get(anchor); m_anchors.Register(anchor, pNode);
DispositionNode(m_builder.AnchorReference(mark, pReffedNode));
}
void GraphBuilderAdapter::OnScalar(const Mark& mark, const std::string& tag, anchor_t anchor, const std::string& value)
{
void *pParent = GetCurrentParent();
void *pNode = m_builder.NewScalar(mark, tag, pParent, value);
RegisterAnchor(anchor, pNode);
DispositionNode(pNode);
}
void GraphBuilderAdapter::OnSequenceStart(const Mark& mark, const std::string& tag, anchor_t anchor)
{
void *pNode = m_builder.NewSequence(mark, tag, GetCurrentParent());
m_containers.push(ContainerFrame(pNode));
RegisterAnchor(anchor, pNode);
}
void GraphBuilderAdapter::OnSequenceEnd()
{
void *pSequence = m_containers.top().pContainer;
m_containers.pop();
DispositionNode(pSequence);
}
void GraphBuilderAdapter::OnMapStart(const Mark& mark, const std::string& tag, anchor_t anchor)
{
void *pNode = m_builder.NewMap(mark, tag, GetCurrentParent());
m_containers.push(ContainerFrame(pNode, m_pKeyNode));
m_pKeyNode = NULL;
RegisterAnchor(anchor, pNode);
}
void GraphBuilderAdapter::OnMapEnd()
{
void *pMap = m_containers.top().pContainer;
m_pKeyNode = m_containers.top().pPrevKeyNode;
m_containers.pop();
DispositionNode(pMap);
}
void *GraphBuilderAdapter::GetCurrentParent() const
{
if (m_containers.empty()) {
return NULL;
}
return m_containers.top().pContainer;
}
void GraphBuilderAdapter::RegisterAnchor(anchor_t anchor, void *pNode)
{
if (anchor) {
m_anchors.Register(anchor, pNode);
}
}
void GraphBuilderAdapter::DispositionNode(void *pNode)
{
if (m_containers.empty()) {
m_pRootNode = pNode;
return;
}
void *pContainer = m_containers.top().pContainer;
if (m_containers.top().isMap()) {
if (m_pKeyNode) {
m_builder.AssignInMap(pContainer, m_pKeyNode, pNode);
m_pKeyNode = NULL;
} else {
m_pKeyNode = pNode;
}
} else {
m_builder.AppendToSequence(pContainer, pNode);
}
} }
} }
void GraphBuilderAdapter::DispositionNode(void *pNode) {
if (m_containers.empty()) {
m_pRootNode = pNode;
return;
}
void *pContainer = m_containers.top().pContainer;
if (m_containers.top().isMap()) {
if (m_pKeyNode) {
m_builder.AssignInMap(pContainer, m_pKeyNode, pNode);
m_pKeyNode = NULL;
} else {
m_pKeyNode = pNode;
}
} else {
m_builder.AppendToSequence(pContainer, pNode);
}
}
}

View File

@@ -1,73 +1,79 @@
#ifndef GRAPHBUILDERADAPTER_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #ifndef GRAPHBUILDERADAPTER_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define GRAPHBUILDERADAPTER_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #define GRAPHBUILDERADAPTER_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || (defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || (__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4 #if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once #pragma once
#endif #endif
#include <cstdlib> #include <cstdlib>
#include <map> #include <map>
#include <stack> #include <stack>
#include "yaml-cpp/eventhandler.h"
#include "yaml-cpp/anchor.h"
#include "yaml-cpp/contrib/anchordict.h" #include "yaml-cpp/contrib/anchordict.h"
#include "yaml-cpp/contrib/graphbuilder.h" #include "yaml-cpp/contrib/graphbuilder.h"
#include "yaml-cpp/emitterstyle.h"
#include "yaml-cpp/eventhandler.h"
namespace YAML namespace YAML {
{ class GraphBuilderInterface;
class GraphBuilderAdapter : public EventHandler struct Mark;
{ } // namespace YAML
public:
GraphBuilderAdapter(GraphBuilderInterface& builder)
: m_builder(builder), m_pRootNode(NULL), m_pKeyNode(NULL)
{
}
virtual void OnDocumentStart(const Mark& mark) {(void)mark;} namespace YAML {
virtual void OnDocumentEnd() {} class GraphBuilderAdapter : public EventHandler {
public:
GraphBuilderAdapter(GraphBuilderInterface& builder)
: m_builder(builder), m_pRootNode(NULL), m_pKeyNode(NULL) {}
virtual void OnNull(const Mark& mark, anchor_t anchor); virtual void OnDocumentStart(const Mark& mark) { (void)mark; }
virtual void OnAlias(const Mark& mark, anchor_t anchor); virtual void OnDocumentEnd() {}
virtual void OnScalar(const Mark& mark, const std::string& tag, anchor_t anchor, const std::string& value);
virtual void OnSequenceStart(const Mark& mark, const std::string& tag, anchor_t anchor); virtual void OnNull(const Mark& mark, anchor_t anchor);
virtual void OnSequenceEnd(); virtual void OnAlias(const Mark& mark, anchor_t anchor);
virtual void OnScalar(const Mark& mark, const std::string& tag,
anchor_t anchor, const std::string& value);
virtual void OnMapStart(const Mark& mark, const std::string& tag, anchor_t anchor); virtual void OnSequenceStart(const Mark& mark, const std::string& tag,
virtual void OnMapEnd(); anchor_t anchor, EmitterStyle::value style);
virtual void OnSequenceEnd();
void *RootNode() const {return m_pRootNode;} virtual void OnMapStart(const Mark& mark, const std::string& tag,
anchor_t anchor, EmitterStyle::value style);
virtual void OnMapEnd();
private: void* RootNode() const { return m_pRootNode; }
struct ContainerFrame
{
ContainerFrame(void *pSequence)
: pContainer(pSequence), pPrevKeyNode(&sequenceMarker)
{}
ContainerFrame(void *pMap, void* pPrevKeyNode)
: pContainer(pMap), pPrevKeyNode(pPrevKeyNode)
{}
void *pContainer; private:
void *pPrevKeyNode; struct ContainerFrame {
ContainerFrame(void* pSequence)
: pContainer(pSequence), pPrevKeyNode(&sequenceMarker) {}
ContainerFrame(void* pMap, void* pPrevKeyNode)
: pContainer(pMap), pPrevKeyNode(pPrevKeyNode) {}
bool isMap() const {return pPrevKeyNode != &sequenceMarker;} void* pContainer;
void* pPrevKeyNode;
private: bool isMap() const { return pPrevKeyNode != &sequenceMarker; }
static int sequenceMarker;
};
typedef std::stack<ContainerFrame> ContainerStack;
typedef AnchorDict<void*> AnchorMap;
GraphBuilderInterface& m_builder; private:
ContainerStack m_containers; static int sequenceMarker;
AnchorMap m_anchors;
void *m_pRootNode;
void *m_pKeyNode;
void *GetCurrentParent() const;
void RegisterAnchor(anchor_t anchor, void *pNode);
void DispositionNode(void *pNode);
}; };
typedef std::stack<ContainerFrame> ContainerStack;
typedef AnchorDict<void*> AnchorMap;
GraphBuilderInterface& m_builder;
ContainerStack m_containers;
AnchorMap m_anchors;
void* m_pRootNode;
void* m_pKeyNode;
void* GetCurrentParent() const;
void RegisterAnchor(anchor_t anchor, void* pNode);
void DispositionNode(void* pNode);
};
} }
#endif // GRAPHBUILDERADAPTER_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #endif // GRAPHBUILDERADAPTER_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@@ -1,83 +1,75 @@
#include "yaml-cpp/node/convert.h"
#include "yaml-cpp/node/impl.h"
#include <algorithm> #include <algorithm>
namespace #include "yaml-cpp/node/convert.h"
{
// we're not gonna mess with the mess that is all the isupper/etc. functions
bool IsLower(char ch) { return 'a' <= ch && ch <= 'z'; }
bool IsUpper(char ch) { return 'A' <= ch && ch <= 'Z'; }
char ToLower(char ch) { return IsUpper(ch) ? ch + 'a' - 'A' : ch; }
std::string tolower(const std::string& str) namespace {
{ // we're not gonna mess with the mess that is all the isupper/etc. functions
std::string s(str); bool IsLower(char ch) { return 'a' <= ch && ch <= 'z'; }
std::transform(s.begin(), s.end(), s.begin(), ToLower); bool IsUpper(char ch) { return 'A' <= ch && ch <= 'Z'; }
return s; char ToLower(char ch) { return IsUpper(ch) ? ch + 'a' - 'A' : ch; }
}
template <typename T> std::string tolower(const std::string& str) {
bool IsEntirely(const std::string& str, T func) std::string s(str);
{ std::transform(s.begin(), s.end(), s.begin(), ToLower);
for(std::size_t i=0;i<str.size();i++) return s;
if(!func(str[i]))
return false;
return true;
}
// IsFlexibleCase
// . Returns true if 'str' is:
// . UPPERCASE
// . lowercase
// . Capitalized
bool IsFlexibleCase(const std::string& str)
{
if(str.empty())
return true;
if(IsEntirely(str, IsLower))
return true;
bool firstcaps = IsUpper(str[0]);
std::string rest = str.substr(1);
return firstcaps && (IsEntirely(rest, IsLower) || IsEntirely(rest, IsUpper));
}
} }
namespace YAML template <typename T>
{ bool IsEntirely(const std::string& str, T func) {
bool convert<bool>::decode(const Node& node, bool& rhs) { for (std::size_t i = 0; i < str.size(); i++)
if(!node.IsScalar()) if (!func(str[i]))
return false; return false;
// we can't use iostream bool extraction operators as they don't return true;
// recognize all possible values in the table below (taken from }
// http://yaml.org/type/bool.html)
static const struct { // IsFlexibleCase
std::string truename, falsename; // . Returns true if 'str' is:
} names[] = { // . UPPERCASE
{ "y", "n" }, // . lowercase
{ "yes", "no" }, // . Capitalized
{ "true", "false" }, bool IsFlexibleCase(const std::string& str) {
{ "on", "off" }, if (str.empty())
}; return true;
if(!IsFlexibleCase(node.Scalar())) if (IsEntirely(str, IsLower))
return false; return true;
for(unsigned i=0;i<sizeof(names)/sizeof(names[0]);i++) { bool firstcaps = IsUpper(str[0]);
if(names[i].truename == tolower(node.Scalar())) { std::string rest = str.substr(1);
rhs = true; return firstcaps && (IsEntirely(rest, IsLower) || IsEntirely(rest, IsUpper));
return true; }
} }
if(names[i].falsename == tolower(node.Scalar())) { namespace YAML {
rhs = false; bool convert<bool>::decode(const Node& node, bool& rhs) {
return true; if (!node.IsScalar())
} return false;
}
// we can't use iostream bool extraction operators as they don't
return false; // recognize all possible values in the table below (taken from
} // http://yaml.org/type/bool.html)
static const struct {
std::string truename, falsename;
} names[] = {
{"y", "n"}, {"yes", "no"}, {"true", "false"}, {"on", "off"},
};
if (!IsFlexibleCase(node.Scalar()))
return false;
for (unsigned i = 0; i < sizeof(names) / sizeof(names[0]); i++) {
if (names[i].truename == tolower(node.Scalar())) {
rhs = true;
return true;
}
if (names[i].falsename == tolower(node.Scalar())) {
rhs = false;
return true;
}
}
return false;
}
} }

View File

@@ -1,24 +1,22 @@
#include "directives.h" #include "directives.h"
namespace YAML namespace YAML {
{ Directives::Directives() {
Directives::Directives() // version
{ version.isDefault = true;
// version version.major = 1;
version.isDefault = true; version.minor = 2;
version.major = 1; }
version.minor = 2;
} const std::string Directives::TranslateTagHandle(
const std::string& handle) const {
const std::string Directives::TranslateTagHandle(const std::string& handle) const std::map<std::string, std::string>::const_iterator it = tags.find(handle);
{ if (it == tags.end()) {
std::map <std::string, std::string>::const_iterator it = tags.find(handle); if (handle == "!!")
if(it == tags.end()) { return "tag:yaml.org,2002:";
if(handle == "!!") return handle;
return "tag:yaml.org,2002:"; }
return handle;
} return it->second;
}
return it->second;
}
} }

View File

@@ -1,29 +1,29 @@
#ifndef DIRECTIVES_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #ifndef DIRECTIVES_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define DIRECTIVES_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #define DIRECTIVES_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || (defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || (__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4 #if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once #pragma once
#endif #endif
#include <string> #include <string>
#include <map> #include <map>
namespace YAML namespace YAML {
{ struct Version {
struct Version { bool isDefault;
bool isDefault; int major, minor;
int major, minor; };
};
struct Directives { struct Directives {
Directives(); Directives();
const std::string TranslateTagHandle(const std::string& handle) const; const std::string TranslateTagHandle(const std::string& handle) const;
Version version; Version version;
std::map<std::string, std::string> tags; std::map<std::string, std::string> tags;
}; };
} }
#endif // DIRECTIVES_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #endif // DIRECTIVES_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@@ -3,27 +3,23 @@
#include "yaml-cpp/emitter.h" #include "yaml-cpp/emitter.h"
#include "nodeevents.h" #include "nodeevents.h"
namespace YAML namespace YAML {
{ Emitter& operator<<(Emitter& out, const Node& node) {
Emitter& operator << (Emitter& out, const Node& node) EmitFromEvents emitFromEvents(out);
{ NodeEvents events(node);
EmitFromEvents emitFromEvents(out); events.Emit(emitFromEvents);
NodeEvents events(node); return out;
events.Emit(emitFromEvents); }
return out;
} std::ostream& operator<<(std::ostream& out, const Node& node) {
Emitter emitter(out);
std::ostream& operator << (std::ostream& out, const Node& node) emitter << node;
{ return out;
Emitter emitter(out); }
emitter << node;
return out; std::string Dump(const Node& node) {
} Emitter emitter;
emitter << node;
std::string Dump(const Node& node) return emitter.c_str();
{ }
Emitter emitter;
emitter << node;
return emitter.c_str();
}
} }

View File

@@ -1,105 +1,119 @@
#include "yaml-cpp/emitfromevents.h"
#include "yaml-cpp/emitter.h"
#include "yaml-cpp/null.h"
#include <cassert> #include <cassert>
#include <sstream> #include <sstream>
#include "yaml-cpp/emitfromevents.h"
#include "yaml-cpp/emitter.h"
#include "yaml-cpp/emittermanip.h"
#include "yaml-cpp/null.h"
namespace YAML {
struct Mark;
} // namespace YAML
namespace { namespace {
std::string ToString(YAML::anchor_t anchor) { std::string ToString(YAML::anchor_t anchor) {
std::stringstream stream; std::stringstream stream;
stream << anchor; stream << anchor;
return stream.str(); return stream.str();
} }
} }
namespace YAML namespace YAML {
{ EmitFromEvents::EmitFromEvents(Emitter& emitter) : m_emitter(emitter) {}
EmitFromEvents::EmitFromEvents(Emitter& emitter): m_emitter(emitter)
{
}
void EmitFromEvents::OnDocumentStart(const Mark&) void EmitFromEvents::OnDocumentStart(const Mark&) {}
{
}
void EmitFromEvents::OnDocumentEnd() void EmitFromEvents::OnDocumentEnd() {}
{
}
void EmitFromEvents::OnNull(const Mark&, anchor_t anchor) void EmitFromEvents::OnNull(const Mark&, anchor_t anchor) {
{ BeginNode();
BeginNode(); EmitProps("", anchor);
EmitProps("", anchor); m_emitter << Null;
m_emitter << Null; }
}
void EmitFromEvents::OnAlias(const Mark&, anchor_t anchor) {
void EmitFromEvents::OnAlias(const Mark&, anchor_t anchor) BeginNode();
{ m_emitter << Alias(ToString(anchor));
BeginNode(); }
m_emitter << Alias(ToString(anchor));
} void EmitFromEvents::OnScalar(const Mark&, const std::string& tag,
anchor_t anchor, const std::string& value) {
void EmitFromEvents::OnScalar(const Mark&, const std::string& tag, anchor_t anchor, const std::string& value) BeginNode();
{ EmitProps(tag, anchor);
BeginNode(); m_emitter << value;
EmitProps(tag, anchor); }
m_emitter << value;
} void EmitFromEvents::OnSequenceStart(const Mark&, const std::string& tag,
anchor_t anchor,
void EmitFromEvents::OnSequenceStart(const Mark&, const std::string& tag, anchor_t anchor) EmitterStyle::value style) {
{ BeginNode();
BeginNode(); EmitProps(tag, anchor);
EmitProps(tag, anchor); switch (style) {
m_emitter << BeginSeq; case EmitterStyle::Block:
m_stateStack.push(State::WaitingForSequenceEntry); m_emitter << Block;
} break;
case EmitterStyle::Flow:
void EmitFromEvents::OnSequenceEnd() m_emitter << Flow;
{ break;
m_emitter << EndSeq; default:
assert(m_stateStack.top() == State::WaitingForSequenceEntry); break;
m_stateStack.pop(); }
} m_emitter << BeginSeq;
m_stateStack.push(State::WaitingForSequenceEntry);
void EmitFromEvents::OnMapStart(const Mark&, const std::string& tag, anchor_t anchor) }
{
BeginNode(); void EmitFromEvents::OnSequenceEnd() {
EmitProps(tag, anchor); m_emitter << EndSeq;
m_emitter << BeginMap; assert(m_stateStack.top() == State::WaitingForSequenceEntry);
m_stateStack.push(State::WaitingForKey); m_stateStack.pop();
} }
void EmitFromEvents::OnMapEnd() void EmitFromEvents::OnMapStart(const Mark&, const std::string& tag,
{ anchor_t anchor, EmitterStyle::value style) {
m_emitter << EndMap; BeginNode();
assert(m_stateStack.top() == State::WaitingForKey); EmitProps(tag, anchor);
m_stateStack.pop(); switch (style) {
} case EmitterStyle::Block:
m_emitter << Block;
void EmitFromEvents::BeginNode() break;
{ case EmitterStyle::Flow:
if(m_stateStack.empty()) m_emitter << Flow;
return; break;
default:
switch(m_stateStack.top()) { break;
case State::WaitingForKey: }
m_emitter << Key; m_emitter << BeginMap;
m_stateStack.top() = State::WaitingForValue; m_stateStack.push(State::WaitingForKey);
break; }
case State::WaitingForValue:
m_emitter << Value; void EmitFromEvents::OnMapEnd() {
m_stateStack.top() = State::WaitingForKey; m_emitter << EndMap;
break; assert(m_stateStack.top() == State::WaitingForKey);
default: m_stateStack.pop();
break; }
}
} void EmitFromEvents::BeginNode() {
if (m_stateStack.empty())
void EmitFromEvents::EmitProps(const std::string& tag, anchor_t anchor) return;
{
if(!tag.empty() && tag != "?") switch (m_stateStack.top()) {
m_emitter << VerbatimTag(tag); case State::WaitingForKey:
if(anchor) m_emitter << Key;
m_emitter << Anchor(ToString(anchor)); m_stateStack.top() = State::WaitingForValue;
} break;
case State::WaitingForValue:
m_emitter << Value;
m_stateStack.top() = State::WaitingForKey;
break;
default:
break;
}
}
void EmitFromEvents::EmitProps(const std::string& tag, anchor_t anchor) {
if (!tag.empty() && tag != "?")
m_emitter << VerbatimTag(tag);
if (anchor)
m_emitter << Anchor(ToString(anchor));
}
} }

File diff suppressed because it is too large Load Diff

View File

@@ -1,384 +1,350 @@
#include "emitterstate.h"
#include "yaml-cpp/exceptions.h"
#include <limits> #include <limits>
namespace YAML #include "emitterstate.h"
{ #include "yaml-cpp/exceptions.h" // IWYU pragma: keep
EmitterState::EmitterState(): m_isGood(true), m_curIndent(0), m_hasAnchor(false), m_hasTag(false), m_hasNonContent(false), m_docCount(0)
{
// set default global manipulators
m_charset.set(EmitNonAscii);
m_strFmt.set(Auto);
m_boolFmt.set(TrueFalseBool);
m_boolLengthFmt.set(LongBool);
m_boolCaseFmt.set(LowerCase);
m_intFmt.set(Dec);
m_indent.set(2);
m_preCommentIndent.set(2);
m_postCommentIndent.set(1);
m_seqFmt.set(Block);
m_mapFmt.set(Block);
m_mapKeyFmt.set(Auto);
m_floatPrecision.set(std::numeric_limits<float>::digits10 + 1);
m_doublePrecision.set(std::numeric_limits<double>::digits10 + 1);
}
EmitterState::~EmitterState() namespace YAML {
{ EmitterState::EmitterState()
} : m_isGood(true),
m_curIndent(0),
// SetLocalValue m_hasAnchor(false),
// . We blindly tries to set all possible formatters to this value m_hasTag(false),
// . Only the ones that make sense will be accepted m_hasNonContent(false),
void EmitterState::SetLocalValue(EMITTER_MANIP value) m_docCount(0) {
{ // set default global manipulators
SetOutputCharset(value, FmtScope::Local); m_charset.set(EmitNonAscii);
SetStringFormat(value, FmtScope::Local); m_strFmt.set(Auto);
SetBoolFormat(value, FmtScope::Local); m_boolFmt.set(TrueFalseBool);
SetBoolCaseFormat(value, FmtScope::Local); m_boolLengthFmt.set(LongBool);
SetBoolLengthFormat(value, FmtScope::Local); m_boolCaseFmt.set(LowerCase);
SetIntFormat(value, FmtScope::Local); m_intFmt.set(Dec);
SetFlowType(GroupType::Seq, value, FmtScope::Local); m_indent.set(2);
SetFlowType(GroupType::Map, value, FmtScope::Local); m_preCommentIndent.set(2);
SetMapKeyFormat(value, FmtScope::Local); m_postCommentIndent.set(1);
} m_seqFmt.set(Block);
m_mapFmt.set(Block);
void EmitterState::SetAnchor() m_mapKeyFmt.set(Auto);
{ m_floatPrecision.set(std::numeric_limits<float>::digits10 + 1);
m_hasAnchor = true; m_doublePrecision.set(std::numeric_limits<double>::digits10 + 1);
}
void EmitterState::SetTag()
{
m_hasTag = true;
}
void EmitterState::SetNonContent()
{
m_hasNonContent = true;
}
void EmitterState::SetLongKey()
{
assert(!m_groups.empty());
if(m_groups.empty())
return;
assert(m_groups.top().type == GroupType::Map);
m_groups.top().longKey = true;
}
void EmitterState::ForceFlow()
{
assert(!m_groups.empty());
if(m_groups.empty())
return;
m_groups.top().flowType = FlowType::Flow;
}
void EmitterState::StartedNode()
{
if(m_groups.empty()) {
m_docCount++;
} else {
m_groups.top().childCount++;
if(m_groups.top().childCount % 2 == 0)
m_groups.top().longKey = false;
}
m_hasAnchor = false;
m_hasTag = false;
m_hasNonContent = false;
}
EmitterNodeType::value EmitterState::NextGroupType(GroupType::value type) const
{
if(type == GroupType::Seq) {
if(GetFlowType(type) == Block)
return EmitterNodeType::BlockSeq;
else
return EmitterNodeType::FlowSeq;
} else {
if(GetFlowType(type) == Block)
return EmitterNodeType::BlockMap;
else
return EmitterNodeType::FlowMap;
}
// can't happen
assert(false);
return EmitterNodeType::None;
}
void EmitterState::StartedDoc()
{
m_hasAnchor = false;
m_hasTag = false;
m_hasNonContent = false;
}
void EmitterState::EndedDoc()
{
m_hasAnchor = false;
m_hasTag = false;
m_hasNonContent = false;
}
void EmitterState::StartedScalar()
{
StartedNode();
ClearModifiedSettings();
}
void EmitterState::StartedGroup(GroupType::value type)
{
StartedNode();
const int lastGroupIndent = (m_groups.empty() ? 0 : m_groups.top().indent);
m_curIndent += lastGroupIndent;
std::auto_ptr<Group> pGroup(new Group(type));
// transfer settings (which last until this group is done)
pGroup->modifiedSettings = m_modifiedSettings;
// set up group
if(GetFlowType(type) == Block)
pGroup->flowType = FlowType::Block;
else
pGroup->flowType = FlowType::Flow;
pGroup->indent = GetIndent();
m_groups.push(pGroup);
}
void EmitterState::EndedGroup(GroupType::value type)
{
if(m_groups.empty()) {
if(type == GroupType::Seq)
return SetError(ErrorMsg::UNEXPECTED_END_SEQ);
else
return SetError(ErrorMsg::UNEXPECTED_END_MAP);
}
// get rid of the current group
{
std::auto_ptr<Group> pFinishedGroup = m_groups.pop();
if(pFinishedGroup->type != type)
return SetError(ErrorMsg::UNMATCHED_GROUP_TAG);
}
// reset old settings
unsigned lastIndent = (m_groups.empty() ? 0 : m_groups.top().indent);
assert(m_curIndent >= lastIndent);
m_curIndent -= lastIndent;
// some global settings that we changed may have been overridden
// by a local setting we just popped, so we need to restore them
m_globalModifiedSettings.restore();
ClearModifiedSettings();
}
EmitterNodeType::value EmitterState::CurGroupNodeType() const
{
if(m_groups.empty())
return EmitterNodeType::None;
return m_groups.top().NodeType();
}
GroupType::value EmitterState::CurGroupType() const
{
return m_groups.empty() ? GroupType::None : m_groups.top().type;
}
FlowType::value EmitterState::CurGroupFlowType() const
{
return m_groups.empty() ? FlowType::None : m_groups.top().flowType;
}
int EmitterState::CurGroupIndent() const
{
return m_groups.empty() ? 0 : m_groups.top().indent;
}
std::size_t EmitterState::CurGroupChildCount() const
{
return m_groups.empty() ? m_docCount : m_groups.top().childCount;
}
bool EmitterState::CurGroupLongKey() const
{
return m_groups.empty() ? false : m_groups.top().longKey;
}
int EmitterState::LastIndent() const
{
if(m_groups.size() <= 1)
return 0;
return m_curIndent - m_groups.top(-1).indent;
}
void EmitterState::ClearModifiedSettings()
{
m_modifiedSettings.clear();
}
bool EmitterState::SetOutputCharset(EMITTER_MANIP value, FmtScope::value scope)
{
switch(value) {
case EmitNonAscii:
case EscapeNonAscii:
_Set(m_charset, value, scope);
return true;
default:
return false;
}
}
bool EmitterState::SetStringFormat(EMITTER_MANIP value, FmtScope::value scope)
{
switch(value) {
case Auto:
case SingleQuoted:
case DoubleQuoted:
case Literal:
_Set(m_strFmt, value, scope);
return true;
default:
return false;
}
}
bool EmitterState::SetBoolFormat(EMITTER_MANIP value, FmtScope::value scope)
{
switch(value) {
case OnOffBool:
case TrueFalseBool:
case YesNoBool:
_Set(m_boolFmt, value, scope);
return true;
default:
return false;
}
}
bool EmitterState::SetBoolLengthFormat(EMITTER_MANIP value, FmtScope::value scope)
{
switch(value) {
case LongBool:
case ShortBool:
_Set(m_boolLengthFmt, value, scope);
return true;
default:
return false;
}
}
bool EmitterState::SetBoolCaseFormat(EMITTER_MANIP value, FmtScope::value scope)
{
switch(value) {
case UpperCase:
case LowerCase:
case CamelCase:
_Set(m_boolCaseFmt, value, scope);
return true;
default:
return false;
}
}
bool EmitterState::SetIntFormat(EMITTER_MANIP value, FmtScope::value scope)
{
switch(value) {
case Dec:
case Hex:
case Oct:
_Set(m_intFmt, value, scope);
return true;
default:
return false;
}
}
bool EmitterState::SetIndent(unsigned value, FmtScope::value scope)
{
if(value <= 1)
return false;
_Set(m_indent, value, scope);
return true;
}
bool EmitterState::SetPreCommentIndent(unsigned value, FmtScope::value scope)
{
if(value == 0)
return false;
_Set(m_preCommentIndent, value, scope);
return true;
}
bool EmitterState::SetPostCommentIndent(unsigned value, FmtScope::value scope)
{
if(value == 0)
return false;
_Set(m_postCommentIndent, value, scope);
return true;
}
bool EmitterState::SetFlowType(GroupType::value groupType, EMITTER_MANIP value, FmtScope::value scope)
{
switch(value) {
case Block:
case Flow:
_Set(groupType == GroupType::Seq ? m_seqFmt : m_mapFmt, value, scope);
return true;
default:
return false;
}
}
EMITTER_MANIP EmitterState::GetFlowType(GroupType::value groupType) const
{
// force flow style if we're currently in a flow
if(CurGroupFlowType() == FlowType::Flow)
return Flow;
// otherwise, go with what's asked of us
return (groupType == GroupType::Seq ? m_seqFmt.get() : m_mapFmt.get());
}
bool EmitterState::SetMapKeyFormat(EMITTER_MANIP value, FmtScope::value scope)
{
switch(value) {
case Auto:
case LongKey:
_Set(m_mapKeyFmt, value, scope);
return true;
default:
return false;
}
}
bool EmitterState::SetFloatPrecision(int value, FmtScope::value scope)
{
if(value < 0 || value > std::numeric_limits<float>::digits10 + 1)
return false;
_Set(m_floatPrecision, value, scope);
return true;
}
bool EmitterState::SetDoublePrecision(int value, FmtScope::value scope)
{
if(value < 0 || value > std::numeric_limits<double>::digits10 + 1)
return false;
_Set(m_doublePrecision, value, scope);
return true;
}
} }
EmitterState::~EmitterState() {}
// SetLocalValue
// . We blindly tries to set all possible formatters to this value
// . Only the ones that make sense will be accepted
void EmitterState::SetLocalValue(EMITTER_MANIP value) {
SetOutputCharset(value, FmtScope::Local);
SetStringFormat(value, FmtScope::Local);
SetBoolFormat(value, FmtScope::Local);
SetBoolCaseFormat(value, FmtScope::Local);
SetBoolLengthFormat(value, FmtScope::Local);
SetIntFormat(value, FmtScope::Local);
SetFlowType(GroupType::Seq, value, FmtScope::Local);
SetFlowType(GroupType::Map, value, FmtScope::Local);
SetMapKeyFormat(value, FmtScope::Local);
}
void EmitterState::SetAnchor() { m_hasAnchor = true; }
void EmitterState::SetTag() { m_hasTag = true; }
void EmitterState::SetNonContent() { m_hasNonContent = true; }
void EmitterState::SetLongKey() {
assert(!m_groups.empty());
if (m_groups.empty())
return;
assert(m_groups.top().type == GroupType::Map);
m_groups.top().longKey = true;
}
void EmitterState::ForceFlow() {
assert(!m_groups.empty());
if (m_groups.empty())
return;
m_groups.top().flowType = FlowType::Flow;
}
void EmitterState::StartedNode() {
if (m_groups.empty()) {
m_docCount++;
} else {
m_groups.top().childCount++;
if (m_groups.top().childCount % 2 == 0)
m_groups.top().longKey = false;
}
m_hasAnchor = false;
m_hasTag = false;
m_hasNonContent = false;
}
EmitterNodeType::value EmitterState::NextGroupType(
GroupType::value type) const {
if (type == GroupType::Seq) {
if (GetFlowType(type) == Block)
return EmitterNodeType::BlockSeq;
else
return EmitterNodeType::FlowSeq;
} else {
if (GetFlowType(type) == Block)
return EmitterNodeType::BlockMap;
else
return EmitterNodeType::FlowMap;
}
// can't happen
assert(false);
return EmitterNodeType::NoType;
}
void EmitterState::StartedDoc() {
m_hasAnchor = false;
m_hasTag = false;
m_hasNonContent = false;
}
void EmitterState::EndedDoc() {
m_hasAnchor = false;
m_hasTag = false;
m_hasNonContent = false;
}
void EmitterState::StartedScalar() {
StartedNode();
ClearModifiedSettings();
}
void EmitterState::StartedGroup(GroupType::value type) {
StartedNode();
const int lastGroupIndent = (m_groups.empty() ? 0 : m_groups.top().indent);
m_curIndent += lastGroupIndent;
std::auto_ptr<Group> pGroup(new Group(type));
// transfer settings (which last until this group is done)
pGroup->modifiedSettings = m_modifiedSettings;
// set up group
if (GetFlowType(type) == Block)
pGroup->flowType = FlowType::Block;
else
pGroup->flowType = FlowType::Flow;
pGroup->indent = GetIndent();
m_groups.push(pGroup);
}
void EmitterState::EndedGroup(GroupType::value type) {
if (m_groups.empty()) {
if (type == GroupType::Seq)
return SetError(ErrorMsg::UNEXPECTED_END_SEQ);
else
return SetError(ErrorMsg::UNEXPECTED_END_MAP);
}
// get rid of the current group
{
std::auto_ptr<Group> pFinishedGroup = m_groups.pop();
if (pFinishedGroup->type != type)
return SetError(ErrorMsg::UNMATCHED_GROUP_TAG);
}
// reset old settings
std::size_t lastIndent = (m_groups.empty() ? 0 : m_groups.top().indent);
assert(m_curIndent >= lastIndent);
m_curIndent -= lastIndent;
// some global settings that we changed may have been overridden
// by a local setting we just popped, so we need to restore them
m_globalModifiedSettings.restore();
ClearModifiedSettings();
}
EmitterNodeType::value EmitterState::CurGroupNodeType() const {
if (m_groups.empty())
return EmitterNodeType::NoType;
return m_groups.top().NodeType();
}
GroupType::value EmitterState::CurGroupType() const {
return m_groups.empty() ? GroupType::NoType : m_groups.top().type;
}
FlowType::value EmitterState::CurGroupFlowType() const {
return m_groups.empty() ? FlowType::NoType : m_groups.top().flowType;
}
int EmitterState::CurGroupIndent() const {
return m_groups.empty() ? 0 : m_groups.top().indent;
}
std::size_t EmitterState::CurGroupChildCount() const {
return m_groups.empty() ? m_docCount : m_groups.top().childCount;
}
bool EmitterState::CurGroupLongKey() const {
return m_groups.empty() ? false : m_groups.top().longKey;
}
int EmitterState::LastIndent() const {
if (m_groups.size() <= 1)
return 0;
return m_curIndent - m_groups.top(-1).indent;
}
void EmitterState::ClearModifiedSettings() { m_modifiedSettings.clear(); }
bool EmitterState::SetOutputCharset(EMITTER_MANIP value,
FmtScope::value scope) {
switch (value) {
case EmitNonAscii:
case EscapeNonAscii:
_Set(m_charset, value, scope);
return true;
default:
return false;
}
}
bool EmitterState::SetStringFormat(EMITTER_MANIP value, FmtScope::value scope) {
switch (value) {
case Auto:
case SingleQuoted:
case DoubleQuoted:
case Literal:
_Set(m_strFmt, value, scope);
return true;
default:
return false;
}
}
bool EmitterState::SetBoolFormat(EMITTER_MANIP value, FmtScope::value scope) {
switch (value) {
case OnOffBool:
case TrueFalseBool:
case YesNoBool:
_Set(m_boolFmt, value, scope);
return true;
default:
return false;
}
}
bool EmitterState::SetBoolLengthFormat(EMITTER_MANIP value,
FmtScope::value scope) {
switch (value) {
case LongBool:
case ShortBool:
_Set(m_boolLengthFmt, value, scope);
return true;
default:
return false;
}
}
bool EmitterState::SetBoolCaseFormat(EMITTER_MANIP value,
FmtScope::value scope) {
switch (value) {
case UpperCase:
case LowerCase:
case CamelCase:
_Set(m_boolCaseFmt, value, scope);
return true;
default:
return false;
}
}
bool EmitterState::SetIntFormat(EMITTER_MANIP value, FmtScope::value scope) {
switch (value) {
case Dec:
case Hex:
case Oct:
_Set(m_intFmt, value, scope);
return true;
default:
return false;
}
}
bool EmitterState::SetIndent(std::size_t value, FmtScope::value scope) {
if (value <= 1)
return false;
_Set(m_indent, value, scope);
return true;
}
bool EmitterState::SetPreCommentIndent(std::size_t value,
FmtScope::value scope) {
if (value == 0)
return false;
_Set(m_preCommentIndent, value, scope);
return true;
}
bool EmitterState::SetPostCommentIndent(std::size_t value,
FmtScope::value scope) {
if (value == 0)
return false;
_Set(m_postCommentIndent, value, scope);
return true;
}
bool EmitterState::SetFlowType(GroupType::value groupType, EMITTER_MANIP value,
FmtScope::value scope) {
switch (value) {
case Block:
case Flow:
_Set(groupType == GroupType::Seq ? m_seqFmt : m_mapFmt, value, scope);
return true;
default:
return false;
}
}
EMITTER_MANIP EmitterState::GetFlowType(GroupType::value groupType) const {
// force flow style if we're currently in a flow
if (CurGroupFlowType() == FlowType::Flow)
return Flow;
// otherwise, go with what's asked of us
return (groupType == GroupType::Seq ? m_seqFmt.get() : m_mapFmt.get());
}
bool EmitterState::SetMapKeyFormat(EMITTER_MANIP value, FmtScope::value scope) {
switch (value) {
case Auto:
case LongKey:
_Set(m_mapKeyFmt, value, scope);
return true;
default:
return false;
}
}
bool EmitterState::SetFloatPrecision(int value, FmtScope::value scope) {
if (value < 0 || value > std::numeric_limits<float>::digits10 + 1)
return false;
_Set(m_floatPrecision, value, scope);
return true;
}
bool EmitterState::SetDoublePrecision(int value, FmtScope::value scope) {
if (value < 0 || value > std::numeric_limits<double>::digits10 + 1)
return false;
_Set(m_doublePrecision, value, scope);
return true;
}
}

View File

@@ -1,11 +1,12 @@
#ifndef EMITTERSTATE_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #ifndef EMITTERSTATE_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define EMITTERSTATE_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #define EMITTERSTATE_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || (defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || (__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4 #if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once #pragma once
#endif #endif
#include "ptr_stack.h" #include "ptr_stack.h"
#include "setting.h" #include "setting.h"
#include "yaml-cpp/emitterdef.h" #include "yaml-cpp/emitterdef.h"
@@ -16,175 +17,187 @@
#include <memory> #include <memory>
#include <stdexcept> #include <stdexcept>
namespace YAML namespace YAML {
{ struct FmtScope {
struct FmtScope { enum value { Local, Global }; }; enum value { Local, Global };
struct GroupType { enum value { None, Seq, Map }; }; };
struct FlowType { enum value { None, Flow, Block }; }; struct GroupType {
enum value { NoType, Seq, Map };
};
struct FlowType {
enum value { NoType, Flow, Block };
};
class EmitterState class EmitterState {
{ public:
public: EmitterState();
EmitterState(); ~EmitterState();
~EmitterState();
// basic state checking // basic state checking
bool good() const { return m_isGood; } bool good() const { return m_isGood; }
const std::string GetLastError() const { return m_lastError; } const std::string GetLastError() const { return m_lastError; }
void SetError(const std::string& error) { m_isGood = false; m_lastError = error; } void SetError(const std::string& error) {
m_isGood = false;
m_lastError = error;
}
// node handling // node handling
void SetAnchor(); void SetAnchor();
void SetTag(); void SetTag();
void SetNonContent(); void SetNonContent();
void SetLongKey(); void SetLongKey();
void ForceFlow(); void ForceFlow();
void StartedDoc(); void StartedDoc();
void EndedDoc(); void EndedDoc();
void StartedScalar(); void StartedScalar();
void StartedGroup(GroupType::value type); void StartedGroup(GroupType::value type);
void EndedGroup(GroupType::value type); void EndedGroup(GroupType::value type);
EmitterNodeType::value NextGroupType(GroupType::value type) const; EmitterNodeType::value NextGroupType(GroupType::value type) const;
EmitterNodeType::value CurGroupNodeType() const; EmitterNodeType::value CurGroupNodeType() const;
GroupType::value CurGroupType() const; GroupType::value CurGroupType() const;
FlowType::value CurGroupFlowType() const; FlowType::value CurGroupFlowType() const;
int CurGroupIndent() const; int CurGroupIndent() const;
std::size_t CurGroupChildCount() const; std::size_t CurGroupChildCount() const;
bool CurGroupLongKey() const; bool CurGroupLongKey() const;
int LastIndent() const; int LastIndent() const;
int CurIndent() const { return m_curIndent; } int CurIndent() const { return m_curIndent; }
bool HasAnchor() const { return m_hasAnchor; } bool HasAnchor() const { return m_hasAnchor; }
bool HasTag() const { return m_hasTag; } bool HasTag() const { return m_hasTag; }
bool HasBegunNode() const { return m_hasAnchor || m_hasTag || m_hasNonContent; } bool HasBegunNode() const {
bool HasBegunContent() const { return m_hasAnchor || m_hasTag; } return m_hasAnchor || m_hasTag || m_hasNonContent;
}
bool HasBegunContent() const { return m_hasAnchor || m_hasTag; }
void ClearModifiedSettings(); void ClearModifiedSettings();
// formatters // formatters
void SetLocalValue(EMITTER_MANIP value); void SetLocalValue(EMITTER_MANIP value);
bool SetOutputCharset(EMITTER_MANIP value, FmtScope::value scope); bool SetOutputCharset(EMITTER_MANIP value, FmtScope::value scope);
EMITTER_MANIP GetOutputCharset() const { return m_charset.get(); } EMITTER_MANIP GetOutputCharset() const { return m_charset.get(); }
bool SetStringFormat(EMITTER_MANIP value, FmtScope::value scope); bool SetStringFormat(EMITTER_MANIP value, FmtScope::value scope);
EMITTER_MANIP GetStringFormat() const { return m_strFmt.get(); } EMITTER_MANIP GetStringFormat() const { return m_strFmt.get(); }
bool SetBoolFormat(EMITTER_MANIP value, FmtScope::value scope); bool SetBoolFormat(EMITTER_MANIP value, FmtScope::value scope);
EMITTER_MANIP GetBoolFormat() const { return m_boolFmt.get(); } EMITTER_MANIP GetBoolFormat() const { return m_boolFmt.get(); }
bool SetBoolLengthFormat(EMITTER_MANIP value, FmtScope::value scope); bool SetBoolLengthFormat(EMITTER_MANIP value, FmtScope::value scope);
EMITTER_MANIP GetBoolLengthFormat() const { return m_boolLengthFmt.get(); } EMITTER_MANIP GetBoolLengthFormat() const { return m_boolLengthFmt.get(); }
bool SetBoolCaseFormat(EMITTER_MANIP value, FmtScope::value scope); bool SetBoolCaseFormat(EMITTER_MANIP value, FmtScope::value scope);
EMITTER_MANIP GetBoolCaseFormat() const { return m_boolCaseFmt.get(); } EMITTER_MANIP GetBoolCaseFormat() const { return m_boolCaseFmt.get(); }
bool SetIntFormat(EMITTER_MANIP value, FmtScope::value scope); bool SetIntFormat(EMITTER_MANIP value, FmtScope::value scope);
EMITTER_MANIP GetIntFormat() const { return m_intFmt.get(); } EMITTER_MANIP GetIntFormat() const { return m_intFmt.get(); }
bool SetIndent(unsigned value, FmtScope::value scope); bool SetIndent(std::size_t value, FmtScope::value scope);
int GetIndent() const { return m_indent.get(); } int GetIndent() const { return m_indent.get(); }
bool SetPreCommentIndent(unsigned value, FmtScope::value scope); bool SetPreCommentIndent(std::size_t value, FmtScope::value scope);
int GetPreCommentIndent() const { return m_preCommentIndent.get(); } int GetPreCommentIndent() const { return m_preCommentIndent.get(); }
bool SetPostCommentIndent(unsigned value, FmtScope::value scope); bool SetPostCommentIndent(std::size_t value, FmtScope::value scope);
int GetPostCommentIndent() const { return m_postCommentIndent.get(); } int GetPostCommentIndent() const { return m_postCommentIndent.get(); }
bool SetFlowType(GroupType::value groupType, EMITTER_MANIP value, FmtScope::value scope); bool SetFlowType(GroupType::value groupType, EMITTER_MANIP value,
EMITTER_MANIP GetFlowType(GroupType::value groupType) const; FmtScope::value scope);
EMITTER_MANIP GetFlowType(GroupType::value groupType) const;
bool SetMapKeyFormat(EMITTER_MANIP value, FmtScope::value scope); bool SetMapKeyFormat(EMITTER_MANIP value, FmtScope::value scope);
EMITTER_MANIP GetMapKeyFormat() const { return m_mapKeyFmt.get(); } EMITTER_MANIP GetMapKeyFormat() const { return m_mapKeyFmt.get(); }
bool SetFloatPrecision(int value, FmtScope::value scope); bool SetFloatPrecision(int value, FmtScope::value scope);
unsigned GetFloatPrecision() const { return m_floatPrecision.get(); } std::size_t GetFloatPrecision() const { return m_floatPrecision.get(); }
bool SetDoublePrecision(int value, FmtScope::value scope); bool SetDoublePrecision(int value, FmtScope::value scope);
unsigned GetDoublePrecision() const { return m_doublePrecision.get(); } std::size_t GetDoublePrecision() const { return m_doublePrecision.get(); }
private: private:
template <typename T> template <typename T>
void _Set(Setting<T>& fmt, T value, FmtScope::value scope); void _Set(Setting<T>& fmt, T value, FmtScope::value scope);
void StartedNode(); void StartedNode();
private: private:
// basic state ok? // basic state ok?
bool m_isGood; bool m_isGood;
std::string m_lastError; std::string m_lastError;
// other state // other state
Setting<EMITTER_MANIP> m_charset; Setting<EMITTER_MANIP> m_charset;
Setting<EMITTER_MANIP> m_strFmt; Setting<EMITTER_MANIP> m_strFmt;
Setting<EMITTER_MANIP> m_boolFmt; Setting<EMITTER_MANIP> m_boolFmt;
Setting<EMITTER_MANIP> m_boolLengthFmt; Setting<EMITTER_MANIP> m_boolLengthFmt;
Setting<EMITTER_MANIP> m_boolCaseFmt; Setting<EMITTER_MANIP> m_boolCaseFmt;
Setting<EMITTER_MANIP> m_intFmt; Setting<EMITTER_MANIP> m_intFmt;
Setting<unsigned> m_indent; Setting<std::size_t> m_indent;
Setting<unsigned> m_preCommentIndent, m_postCommentIndent; Setting<std::size_t> m_preCommentIndent, m_postCommentIndent;
Setting<EMITTER_MANIP> m_seqFmt; Setting<EMITTER_MANIP> m_seqFmt;
Setting<EMITTER_MANIP> m_mapFmt; Setting<EMITTER_MANIP> m_mapFmt;
Setting<EMITTER_MANIP> m_mapKeyFmt; Setting<EMITTER_MANIP> m_mapKeyFmt;
Setting<int> m_floatPrecision; Setting<int> m_floatPrecision;
Setting<int> m_doublePrecision; Setting<int> m_doublePrecision;
SettingChanges m_modifiedSettings; SettingChanges m_modifiedSettings;
SettingChanges m_globalModifiedSettings; SettingChanges m_globalModifiedSettings;
struct Group { struct Group {
explicit Group(GroupType::value type_): type(type_), indent(0), childCount(0), longKey(false) {} explicit Group(GroupType::value type_)
: type(type_), indent(0), childCount(0), longKey(false) {}
GroupType::value type; GroupType::value type;
FlowType::value flowType; FlowType::value flowType;
int indent; int indent;
std::size_t childCount; std::size_t childCount;
bool longKey; bool longKey;
SettingChanges modifiedSettings; SettingChanges modifiedSettings;
EmitterNodeType::value NodeType() const { EmitterNodeType::value NodeType() const {
if(type == GroupType::Seq) { if (type == GroupType::Seq) {
if(flowType == FlowType::Flow) if (flowType == FlowType::Flow)
return EmitterNodeType::FlowSeq; return EmitterNodeType::FlowSeq;
else else
return EmitterNodeType::BlockSeq; return EmitterNodeType::BlockSeq;
} else { } else {
if(flowType == FlowType::Flow) if (flowType == FlowType::Flow)
return EmitterNodeType::FlowMap; return EmitterNodeType::FlowMap;
else else
return EmitterNodeType::BlockMap; return EmitterNodeType::BlockMap;
} }
// can't get here // can't get here
assert(false); assert(false);
return EmitterNodeType::None; return EmitterNodeType::NoType;
} }
}; };
ptr_stack<Group> m_groups; ptr_stack<Group> m_groups;
unsigned m_curIndent; std::size_t m_curIndent;
bool m_hasAnchor; bool m_hasAnchor;
bool m_hasTag; bool m_hasTag;
bool m_hasNonContent; bool m_hasNonContent;
std::size_t m_docCount; std::size_t m_docCount;
}; };
template <typename T> template <typename T>
void EmitterState::_Set(Setting<T>& fmt, T value, FmtScope::value scope) { void EmitterState::_Set(Setting<T>& fmt, T value, FmtScope::value scope) {
switch(scope) { switch (scope) {
case FmtScope::Local: case FmtScope::Local:
m_modifiedSettings.push(fmt.set(value)); m_modifiedSettings.push(fmt.set(value));
break; break;
case FmtScope::Global: case FmtScope::Global:
fmt.set(value); fmt.set(value);
m_globalModifiedSettings.push(fmt.set(value)); // this pushes an identity set, so when we restore, m_globalModifiedSettings.push(
// it restores to the value here, and not the previous one fmt.set(value)); // this pushes an identity set, so when we restore,
break; // it restores to the value here, and not the previous one
default: break;
assert(false); default:
} assert(false);
} }
}
} }
#endif // EMITTERSTATE_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #endif // EMITTERSTATE_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@@ -1,424 +1,484 @@
#include <iomanip>
#include <sstream>
#include "emitterutils.h" #include "emitterutils.h"
#include "exp.h" #include "exp.h"
#include "indentation.h" #include "indentation.h"
#include "yaml-cpp/binary.h" #include "regex_yaml.h"
#include "yaml-cpp/exceptions.h" #include "regeximpl.h"
#include "stringsource.h" #include "stringsource.h"
#include <sstream> #include "yaml-cpp/binary.h" // IWYU pragma: keep
#include <iomanip> #include "yaml-cpp/ostream_wrapper.h"
namespace YAML namespace YAML {
{ namespace Utils {
namespace Utils namespace {
{ enum { REPLACEMENT_CHARACTER = 0xFFFD };
namespace {
enum {REPLACEMENT_CHARACTER = 0xFFFD};
bool IsAnchorChar(int ch) { // test for ns-anchor-char bool IsAnchorChar(int ch) { // test for ns-anchor-char
switch (ch) { switch (ch) {
case ',': case '[': case ']': case '{': case '}': // c-flow-indicator case ',':
case ' ': case '\t': // s-white case '[':
case 0xFEFF: // c-byte-order-mark case ']':
case 0xA: case 0xD: // b-char case '{':
return false; case '}': // c-flow-indicator
case 0x85: case ' ':
return true; case '\t': // s-white
} case 0xFEFF: // c-byte-order-mark
case 0xA:
case 0xD: // b-char
return false;
case 0x85:
return true;
}
if (ch < 0x20) if (ch < 0x20) {
return false; return false;
}
if (ch < 0x7E) if (ch < 0x7E) {
return true; return true;
}
if (ch < 0xA0) if (ch < 0xA0) {
return false; return false;
if (ch >= 0xD800 && ch <= 0xDFFF) }
return false; if (ch >= 0xD800 && ch <= 0xDFFF) {
if ((ch & 0xFFFE) == 0xFFFE) return false;
return false; }
if ((ch >= 0xFDD0) && (ch <= 0xFDEF)) if ((ch & 0xFFFE) == 0xFFFE) {
return false; return false;
if (ch > 0x10FFFF) }
return false; if ((ch >= 0xFDD0) && (ch <= 0xFDEF)) {
return false;
}
if (ch > 0x10FFFF) {
return false;
}
return true; return true;
}
int Utf8BytesIndicated(char ch) {
int byteVal = static_cast<unsigned char>(ch);
switch (byteVal >> 4) {
case 0: case 1: case 2: case 3: case 4: case 5: case 6: case 7:
return 1;
case 12: case 13:
return 2;
case 14:
return 3;
case 15:
return 4;
default:
return -1;
}
}
bool IsTrailingByte(char ch) {
return (ch & 0xC0) == 0x80;
}
bool GetNextCodePointAndAdvance(int& codePoint, std::string::const_iterator& first, std::string::const_iterator last) {
if (first == last)
return false;
int nBytes = Utf8BytesIndicated(*first);
if (nBytes < 1) {
// Bad lead byte
++first;
codePoint = REPLACEMENT_CHARACTER;
return true;
}
if (nBytes == 1) {
codePoint = *first++;
return true;
}
// Gather bits from trailing bytes
codePoint = static_cast<unsigned char>(*first) & ~(0xFF << (7 - nBytes));
++first;
--nBytes;
for (; nBytes > 0; ++first, --nBytes) {
if ((first == last) || !IsTrailingByte(*first)) {
codePoint = REPLACEMENT_CHARACTER;
break;
}
codePoint <<= 6;
codePoint |= *first & 0x3F;
}
// Check for illegal code points
if (codePoint > 0x10FFFF)
codePoint = REPLACEMENT_CHARACTER;
else if (codePoint >= 0xD800 && codePoint <= 0xDFFF)
codePoint = REPLACEMENT_CHARACTER;
else if ((codePoint & 0xFFFE) == 0xFFFE)
codePoint = REPLACEMENT_CHARACTER;
else if (codePoint >= 0xFDD0 && codePoint <= 0xFDEF)
codePoint = REPLACEMENT_CHARACTER;
return true;
}
void WriteCodePoint(ostream_wrapper& out, int codePoint) {
if (codePoint < 0 || codePoint > 0x10FFFF) {
codePoint = REPLACEMENT_CHARACTER;
}
if (codePoint < 0x7F) {
out << static_cast<char>(codePoint);
} else if (codePoint < 0x7FF) {
out << static_cast<char>(0xC0 | (codePoint >> 6))
<< static_cast<char>(0x80 | (codePoint & 0x3F));
} else if (codePoint < 0xFFFF) {
out << static_cast<char>(0xE0 | (codePoint >> 12))
<< static_cast<char>(0x80 | ((codePoint >> 6) & 0x3F))
<< static_cast<char>(0x80 | (codePoint & 0x3F));
} else {
out << static_cast<char>(0xF0 | (codePoint >> 18))
<< static_cast<char>(0x80 | ((codePoint >> 12) & 0x3F))
<< static_cast<char>(0x80 | ((codePoint >> 6) & 0x3F))
<< static_cast<char>(0x80 | (codePoint & 0x3F));
}
}
bool IsValidPlainScalar(const std::string& str, FlowType::value flowType, bool allowOnlyAscii) {
if(str.empty())
return false;
// first check the start
const RegEx& start = (flowType == FlowType::Flow ? Exp::PlainScalarInFlow() : Exp::PlainScalar());
if(!start.Matches(str))
return false;
// and check the end for plain whitespace (which can't be faithfully kept in a plain scalar)
if(!str.empty() && *str.rbegin() == ' ')
return false;
// then check until something is disallowed
const RegEx& disallowed = (flowType == FlowType::Flow ? Exp::EndScalarInFlow() : Exp::EndScalar())
|| (Exp::BlankOrBreak() + Exp::Comment())
|| Exp::NotPrintable()
|| Exp::Utf8_ByteOrderMark()
|| Exp::Break()
|| Exp::Tab();
StringCharSource buffer(str.c_str(), str.size());
while(buffer) {
if(disallowed.Matches(buffer))
return false;
if(allowOnlyAscii && (0x80 <= static_cast<unsigned char>(buffer[0])))
return false;
++buffer;
}
return true;
}
bool IsValidSingleQuotedScalar(const std::string& str, bool escapeNonAscii)
{
// TODO: check for non-printable characters?
for(std::size_t i=0;i<str.size();i++) {
if(escapeNonAscii && (0x80 <= static_cast<unsigned char>(str[i])))
return false;
if(str[i] == '\n')
return false;
}
return true;
}
bool IsValidLiteralScalar(const std::string& str, FlowType::value flowType, bool escapeNonAscii)
{
if(flowType == FlowType::Flow)
return false;
// TODO: check for non-printable characters?
for(std::size_t i=0;i<str.size();i++) {
if(escapeNonAscii && (0x80 <= static_cast<unsigned char>(str[i])))
return false;
}
return true;
}
void WriteDoubleQuoteEscapeSequence(ostream_wrapper& out, int codePoint) {
static const char hexDigits[] = "0123456789abcdef";
out << "\\";
int digits = 8;
if(codePoint < 0xFF) {
out << "x";
digits = 2;
} else if(codePoint < 0xFFFF) {
out << "u";
digits = 4;
} else {
out << "U";
digits = 8;
}
// Write digits into the escape sequence
for (; digits > 0; --digits)
out << hexDigits[(codePoint >> (4 * (digits - 1))) & 0xF];
}
bool WriteAliasName(ostream_wrapper& out, const std::string& str) {
int codePoint;
for(std::string::const_iterator i = str.begin();
GetNextCodePointAndAdvance(codePoint, i, str.end());
)
{
if (!IsAnchorChar(codePoint))
return false;
WriteCodePoint(out, codePoint);
}
return true;
}
}
StringFormat::value ComputeStringFormat(const std::string& str, EMITTER_MANIP strFormat, FlowType::value flowType, bool escapeNonAscii)
{
switch(strFormat) {
case Auto:
if(IsValidPlainScalar(str, flowType, escapeNonAscii))
return StringFormat::Plain;
return StringFormat::DoubleQuoted;
case SingleQuoted:
if(IsValidSingleQuotedScalar(str, escapeNonAscii))
return StringFormat::SingleQuoted;
return StringFormat::DoubleQuoted;
case DoubleQuoted:
return StringFormat::DoubleQuoted;
case Literal:
if(IsValidLiteralScalar(str, flowType, escapeNonAscii))
return StringFormat::Literal;
return StringFormat::DoubleQuoted;
default:
break;
}
return StringFormat::DoubleQuoted;
}
bool WriteSingleQuotedString(ostream_wrapper& out, const std::string& str)
{
out << "'";
int codePoint;
for(std::string::const_iterator i = str.begin();
GetNextCodePointAndAdvance(codePoint, i, str.end());
)
{
if (codePoint == '\n')
return false; // We can't handle a new line and the attendant indentation yet
if (codePoint == '\'')
out << "''";
else
WriteCodePoint(out, codePoint);
}
out << "'";
return true;
}
bool WriteDoubleQuotedString(ostream_wrapper& out, const std::string& str, bool escapeNonAscii)
{
out << "\"";
int codePoint;
for(std::string::const_iterator i = str.begin();
GetNextCodePointAndAdvance(codePoint, i, str.end());
)
{
switch(codePoint) {
case '\"': out << "\\\""; break;
case '\\': out << "\\\\"; break;
case '\n': out << "\\n"; break;
case '\t': out << "\\t"; break;
case '\r': out << "\\r"; break;
case '\b': out << "\\b"; break;
default:
if(codePoint < 0x20 || (codePoint >= 0x80 && codePoint <= 0xA0)) // Control characters and non-breaking space
WriteDoubleQuoteEscapeSequence(out, codePoint);
else if (codePoint == 0xFEFF) // Byte order marks (ZWNS) should be escaped (YAML 1.2, sec. 5.2)
WriteDoubleQuoteEscapeSequence(out, codePoint);
else if (escapeNonAscii && codePoint > 0x7E)
WriteDoubleQuoteEscapeSequence(out, codePoint);
else
WriteCodePoint(out, codePoint);
}
}
out << "\"";
return true;
}
bool WriteLiteralString(ostream_wrapper& out, const std::string& str, int indent)
{
out << "|\n";
out << IndentTo(indent);
int codePoint;
for(std::string::const_iterator i = str.begin();
GetNextCodePointAndAdvance(codePoint, i, str.end());
)
{
if (codePoint == '\n')
out << "\n" << IndentTo(indent);
else
WriteCodePoint(out, codePoint);
}
return true;
}
bool WriteChar(ostream_wrapper& out, char ch)
{
if(('a' <= ch && ch <= 'z') || ('A' <= ch && ch <= 'Z'))
out << ch;
else if((0x20 <= ch && ch <= 0x7e) || ch == ' ')
out << "\"" << ch << "\"";
else if(ch == '\t')
out << "\"\\t\"";
else if(ch == '\n')
out << "\"\\n\"";
else if(ch == '\b')
out << "\"\\b\"";
else {
out << "\"";
WriteDoubleQuoteEscapeSequence(out, ch);
out << "\"";
}
return true;
}
bool WriteComment(ostream_wrapper& out, const std::string& str, int postCommentIndent)
{
const unsigned curIndent = out.col();
out << "#" << Indentation(postCommentIndent);
out.set_comment();
int codePoint;
for(std::string::const_iterator i = str.begin();
GetNextCodePointAndAdvance(codePoint, i, str.end());
)
{
if(codePoint == '\n') {
out << "\n" << IndentTo(curIndent) << "#" << Indentation(postCommentIndent);
out.set_comment();
} else {
WriteCodePoint(out, codePoint);
}
}
return true;
}
bool WriteAlias(ostream_wrapper& out, const std::string& str)
{
out << "*";
return WriteAliasName(out, str);
}
bool WriteAnchor(ostream_wrapper& out, const std::string& str)
{
out << "&";
return WriteAliasName(out, str);
}
bool WriteTag(ostream_wrapper& out, const std::string& str, bool verbatim)
{
out << (verbatim ? "!<" : "!");
StringCharSource buffer(str.c_str(), str.size());
const RegEx& reValid = verbatim ? Exp::URI() : Exp::Tag();
while(buffer) {
int n = reValid.Match(buffer);
if(n <= 0)
return false;
while(--n >= 0) {
out << buffer[0];
++buffer;
}
}
if (verbatim)
out << ">";
return true;
}
bool WriteTagWithPrefix(ostream_wrapper& out, const std::string& prefix, const std::string& tag)
{
out << "!";
StringCharSource prefixBuffer(prefix.c_str(), prefix.size());
while(prefixBuffer) {
int n = Exp::URI().Match(prefixBuffer);
if(n <= 0)
return false;
while(--n >= 0) {
out << prefixBuffer[0];
++prefixBuffer;
}
}
out << "!";
StringCharSource tagBuffer(tag.c_str(), tag.size());
while(tagBuffer) {
int n = Exp::Tag().Match(tagBuffer);
if(n <= 0)
return false;
while(--n >= 0) {
out << tagBuffer[0];
++tagBuffer;
}
}
return true;
}
bool WriteBinary(ostream_wrapper& out, const Binary& binary)
{
WriteDoubleQuotedString(out, EncodeBase64(binary.data(), binary.size()), false);
return true;
}
}
} }
int Utf8BytesIndicated(char ch) {
int byteVal = static_cast<unsigned char>(ch);
switch (byteVal >> 4) {
case 0:
case 1:
case 2:
case 3:
case 4:
case 5:
case 6:
case 7:
return 1;
case 12:
case 13:
return 2;
case 14:
return 3;
case 15:
return 4;
default:
return -1;
}
}
bool IsTrailingByte(char ch) { return (ch & 0xC0) == 0x80; }
bool GetNextCodePointAndAdvance(int& codePoint,
std::string::const_iterator& first,
std::string::const_iterator last) {
if (first == last)
return false;
int nBytes = Utf8BytesIndicated(*first);
if (nBytes < 1) {
// Bad lead byte
++first;
codePoint = REPLACEMENT_CHARACTER;
return true;
}
if (nBytes == 1) {
codePoint = *first++;
return true;
}
// Gather bits from trailing bytes
codePoint = static_cast<unsigned char>(*first) & ~(0xFF << (7 - nBytes));
++first;
--nBytes;
for (; nBytes > 0; ++first, --nBytes) {
if ((first == last) || !IsTrailingByte(*first)) {
codePoint = REPLACEMENT_CHARACTER;
break;
}
codePoint <<= 6;
codePoint |= *first & 0x3F;
}
// Check for illegal code points
if (codePoint > 0x10FFFF)
codePoint = REPLACEMENT_CHARACTER;
else if (codePoint >= 0xD800 && codePoint <= 0xDFFF)
codePoint = REPLACEMENT_CHARACTER;
else if ((codePoint & 0xFFFE) == 0xFFFE)
codePoint = REPLACEMENT_CHARACTER;
else if (codePoint >= 0xFDD0 && codePoint <= 0xFDEF)
codePoint = REPLACEMENT_CHARACTER;
return true;
}
void WriteCodePoint(ostream_wrapper& out, int codePoint) {
if (codePoint < 0 || codePoint > 0x10FFFF) {
codePoint = REPLACEMENT_CHARACTER;
}
if (codePoint < 0x7F) {
out << static_cast<char>(codePoint);
} else if (codePoint < 0x7FF) {
out << static_cast<char>(0xC0 | (codePoint >> 6))
<< static_cast<char>(0x80 | (codePoint & 0x3F));
} else if (codePoint < 0xFFFF) {
out << static_cast<char>(0xE0 | (codePoint >> 12))
<< static_cast<char>(0x80 | ((codePoint >> 6) & 0x3F))
<< static_cast<char>(0x80 | (codePoint & 0x3F));
} else {
out << static_cast<char>(0xF0 | (codePoint >> 18))
<< static_cast<char>(0x80 | ((codePoint >> 12) & 0x3F))
<< static_cast<char>(0x80 | ((codePoint >> 6) & 0x3F))
<< static_cast<char>(0x80 | (codePoint & 0x3F));
}
}
bool IsValidPlainScalar(const std::string& str, FlowType::value flowType,
bool allowOnlyAscii) {
if (str.empty()) {
return false;
}
// check against null
if (str == "null") {
return false;
}
// check the start
const RegEx& start = (flowType == FlowType::Flow ? Exp::PlainScalarInFlow()
: Exp::PlainScalar());
if (!start.Matches(str)) {
return false;
}
// and check the end for plain whitespace (which can't be faithfully kept in a
// plain scalar)
if (!str.empty() && *str.rbegin() == ' ') {
return false;
}
// then check until something is disallowed
static const RegEx& disallowed_flow =
Exp::EndScalarInFlow() || (Exp::BlankOrBreak() + Exp::Comment()) ||
Exp::NotPrintable() || Exp::Utf8_ByteOrderMark() || Exp::Break() ||
Exp::Tab();
static const RegEx& disallowed_block =
Exp::EndScalar() || (Exp::BlankOrBreak() + Exp::Comment()) ||
Exp::NotPrintable() || Exp::Utf8_ByteOrderMark() || Exp::Break() ||
Exp::Tab();
const RegEx& disallowed =
flowType == FlowType::Flow ? disallowed_flow : disallowed_block;
StringCharSource buffer(str.c_str(), str.size());
while (buffer) {
if (disallowed.Matches(buffer)) {
return false;
}
if (allowOnlyAscii && (0x80 <= static_cast<unsigned char>(buffer[0]))) {
return false;
}
++buffer;
}
return true;
}
bool IsValidSingleQuotedScalar(const std::string& str, bool escapeNonAscii) {
// TODO: check for non-printable characters?
for (std::size_t i = 0; i < str.size(); i++) {
if (escapeNonAscii && (0x80 <= static_cast<unsigned char>(str[i]))) {
return false;
}
if (str[i] == '\n') {
return false;
}
}
return true;
}
bool IsValidLiteralScalar(const std::string& str, FlowType::value flowType,
bool escapeNonAscii) {
if (flowType == FlowType::Flow) {
return false;
}
// TODO: check for non-printable characters?
for (std::size_t i = 0; i < str.size(); i++) {
if (escapeNonAscii && (0x80 <= static_cast<unsigned char>(str[i]))) {
return false;
}
}
return true;
}
void WriteDoubleQuoteEscapeSequence(ostream_wrapper& out, int codePoint) {
static const char hexDigits[] = "0123456789abcdef";
out << "\\";
int digits = 8;
if (codePoint < 0xFF) {
out << "x";
digits = 2;
} else if (codePoint < 0xFFFF) {
out << "u";
digits = 4;
} else {
out << "U";
digits = 8;
}
// Write digits into the escape sequence
for (; digits > 0; --digits)
out << hexDigits[(codePoint >> (4 * (digits - 1))) & 0xF];
}
bool WriteAliasName(ostream_wrapper& out, const std::string& str) {
int codePoint;
for (std::string::const_iterator i = str.begin();
GetNextCodePointAndAdvance(codePoint, i, str.end());) {
if (!IsAnchorChar(codePoint)) {
return false;
}
WriteCodePoint(out, codePoint);
}
return true;
}
}
StringFormat::value ComputeStringFormat(const std::string& str,
EMITTER_MANIP strFormat,
FlowType::value flowType,
bool escapeNonAscii) {
switch (strFormat) {
case Auto:
if (IsValidPlainScalar(str, flowType, escapeNonAscii)) {
return StringFormat::Plain;
}
return StringFormat::DoubleQuoted;
case SingleQuoted:
if (IsValidSingleQuotedScalar(str, escapeNonAscii)) {
return StringFormat::SingleQuoted;
}
return StringFormat::DoubleQuoted;
case DoubleQuoted:
return StringFormat::DoubleQuoted;
case Literal:
if (IsValidLiteralScalar(str, flowType, escapeNonAscii)) {
return StringFormat::Literal;
}
return StringFormat::DoubleQuoted;
default:
break;
}
return StringFormat::DoubleQuoted;
}
bool WriteSingleQuotedString(ostream_wrapper& out, const std::string& str) {
out << "'";
int codePoint;
for (std::string::const_iterator i = str.begin();
GetNextCodePointAndAdvance(codePoint, i, str.end());) {
if (codePoint == '\n') {
return false; // We can't handle a new line and the attendant indentation
// yet
}
if (codePoint == '\'') {
out << "''";
} else {
WriteCodePoint(out, codePoint);
}
}
out << "'";
return true;
}
bool WriteDoubleQuotedString(ostream_wrapper& out, const std::string& str,
bool escapeNonAscii) {
out << "\"";
int codePoint;
for (std::string::const_iterator i = str.begin();
GetNextCodePointAndAdvance(codePoint, i, str.end());) {
switch (codePoint) {
case '\"':
out << "\\\"";
break;
case '\\':
out << "\\\\";
break;
case '\n':
out << "\\n";
break;
case '\t':
out << "\\t";
break;
case '\r':
out << "\\r";
break;
case '\b':
out << "\\b";
break;
default:
if (codePoint < 0x20 ||
(codePoint >= 0x80 &&
codePoint <= 0xA0)) { // Control characters and non-breaking space
WriteDoubleQuoteEscapeSequence(out, codePoint);
} else if (codePoint == 0xFEFF) { // Byte order marks (ZWNS) should be
// escaped (YAML 1.2, sec. 5.2)
WriteDoubleQuoteEscapeSequence(out, codePoint);
} else if (escapeNonAscii && codePoint > 0x7E) {
WriteDoubleQuoteEscapeSequence(out, codePoint);
} else {
WriteCodePoint(out, codePoint);
}
}
}
out << "\"";
return true;
}
bool WriteLiteralString(ostream_wrapper& out, const std::string& str,
int indent) {
out << "|\n";
out << IndentTo(indent);
int codePoint;
for (std::string::const_iterator i = str.begin();
GetNextCodePointAndAdvance(codePoint, i, str.end());) {
if (codePoint == '\n') {
out << "\n" << IndentTo(indent);
} else {
WriteCodePoint(out, codePoint);
}
}
return true;
}
bool WriteChar(ostream_wrapper& out, char ch) {
if (('a' <= ch && ch <= 'z') || ('A' <= ch && ch <= 'Z')) {
out << ch;
} else if (ch == '\"') {
out << "\"\\\"\"";
} else if (ch == '\t') {
out << "\"\\t\"";
} else if (ch == '\n') {
out << "\"\\n\"";
} else if (ch == '\b') {
out << "\"\\b\"";
} else if ((0x20 <= ch && ch <= 0x7e) || ch == ' ') {
out << "\"" << ch << "\"";
} else {
out << "\"";
WriteDoubleQuoteEscapeSequence(out, ch);
out << "\"";
}
return true;
}
bool WriteComment(ostream_wrapper& out, const std::string& str,
int postCommentIndent) {
const std::size_t curIndent = out.col();
out << "#" << Indentation(postCommentIndent);
out.set_comment();
int codePoint;
for (std::string::const_iterator i = str.begin();
GetNextCodePointAndAdvance(codePoint, i, str.end());) {
if (codePoint == '\n') {
out << "\n" << IndentTo(curIndent) << "#"
<< Indentation(postCommentIndent);
out.set_comment();
} else {
WriteCodePoint(out, codePoint);
}
}
return true;
}
bool WriteAlias(ostream_wrapper& out, const std::string& str) {
out << "*";
return WriteAliasName(out, str);
}
bool WriteAnchor(ostream_wrapper& out, const std::string& str) {
out << "&";
return WriteAliasName(out, str);
}
bool WriteTag(ostream_wrapper& out, const std::string& str, bool verbatim) {
out << (verbatim ? "!<" : "!");
StringCharSource buffer(str.c_str(), str.size());
const RegEx& reValid = verbatim ? Exp::URI() : Exp::Tag();
while (buffer) {
int n = reValid.Match(buffer);
if (n <= 0) {
return false;
}
while (--n >= 0) {
out << buffer[0];
++buffer;
}
}
if (verbatim) {
out << ">";
}
return true;
}
bool WriteTagWithPrefix(ostream_wrapper& out, const std::string& prefix,
const std::string& tag) {
out << "!";
StringCharSource prefixBuffer(prefix.c_str(), prefix.size());
while (prefixBuffer) {
int n = Exp::URI().Match(prefixBuffer);
if (n <= 0) {
return false;
}
while (--n >= 0) {
out << prefixBuffer[0];
++prefixBuffer;
}
}
out << "!";
StringCharSource tagBuffer(tag.c_str(), tag.size());
while (tagBuffer) {
int n = Exp::Tag().Match(tagBuffer);
if (n <= 0) {
return false;
}
while (--n >= 0) {
out << tagBuffer[0];
++tagBuffer;
}
}
return true;
}
bool WriteBinary(ostream_wrapper& out, const Binary& binary) {
WriteDoubleQuotedString(out, EncodeBase64(binary.data(), binary.size()),
false);
return true;
}
}
}

View File

@@ -1,36 +1,50 @@
#ifndef EMITTERUTILS_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #ifndef EMITTERUTILS_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define EMITTERUTILS_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #define EMITTERUTILS_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || (defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || (__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4 #if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once #pragma once
#endif #endif
#include "emitterstate.h"
#include "yaml-cpp/ostream_wrapper.h"
#include <string> #include <string>
namespace YAML #include "emitterstate.h"
{ #include "yaml-cpp/emittermanip.h"
class Binary; #include "yaml-cpp/ostream_wrapper.h"
struct StringFormat { enum value { Plain, SingleQuoted, DoubleQuoted, Literal }; }; namespace YAML {
class ostream_wrapper;
} // namespace YAML
namespace Utils namespace YAML {
{ class Binary;
StringFormat::value ComputeStringFormat(const std::string& str, EMITTER_MANIP strFormat, FlowType::value flowType, bool escapeNonAscii);
bool WriteSingleQuotedString(ostream_wrapper& out, const std::string& str); struct StringFormat {
bool WriteDoubleQuotedString(ostream_wrapper& out, const std::string& str, bool escapeNonAscii); enum value { Plain, SingleQuoted, DoubleQuoted, Literal };
bool WriteLiteralString(ostream_wrapper& out, const std::string& str, int indent); };
bool WriteChar(ostream_wrapper& out, char ch);
bool WriteComment(ostream_wrapper& out, const std::string& str, int postCommentIndent); namespace Utils {
bool WriteAlias(ostream_wrapper& out, const std::string& str); StringFormat::value ComputeStringFormat(const std::string& str,
bool WriteAnchor(ostream_wrapper& out, const std::string& str); EMITTER_MANIP strFormat,
bool WriteTag(ostream_wrapper& out, const std::string& str, bool verbatim); FlowType::value flowType,
bool WriteTagWithPrefix(ostream_wrapper& out, const std::string& prefix, const std::string& tag); bool escapeNonAscii);
bool WriteBinary(ostream_wrapper& out, const Binary& binary);
} bool WriteSingleQuotedString(ostream_wrapper& out, const std::string& str);
bool WriteDoubleQuotedString(ostream_wrapper& out, const std::string& str,
bool escapeNonAscii);
bool WriteLiteralString(ostream_wrapper& out, const std::string& str,
int indent);
bool WriteChar(ostream_wrapper& out, char ch);
bool WriteComment(ostream_wrapper& out, const std::string& str,
int postCommentIndent);
bool WriteAlias(ostream_wrapper& out, const std::string& str);
bool WriteAnchor(ostream_wrapper& out, const std::string& str);
bool WriteTag(ostream_wrapper& out, const std::string& str, bool verbatim);
bool WriteTagWithPrefix(ostream_wrapper& out, const std::string& prefix,
const std::string& tag);
bool WriteBinary(ostream_wrapper& out, const Binary& binary);
}
} }
#endif // EMITTERUTILS_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #endif // EMITTERUTILS_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@@ -1,113 +1,136 @@
#include "exp.h"
#include "yaml-cpp/exceptions.h"
#include <sstream> #include <sstream>
namespace YAML #include "exp.h"
{ #include "stream.h"
namespace Exp #include "yaml-cpp/exceptions.h" // IWYU pragma: keep
{
unsigned ParseHex(const std::string& str, const Mark& mark)
{
unsigned value = 0;
for(std::size_t i=0;i<str.size();i++) {
char ch = str[i];
int digit = 0;
if('a' <= ch && ch <= 'f')
digit = ch - 'a' + 10;
else if('A' <= ch && ch <= 'F')
digit = ch - 'A' + 10;
else if('0' <= ch && ch <= '9')
digit = ch - '0';
else
throw ParserException(mark, ErrorMsg::INVALID_HEX);
value = (value << 4) + digit; namespace YAML {
} struct Mark;
} // namespace YAML
return value; namespace YAML {
} namespace Exp {
unsigned ParseHex(const std::string& str, const Mark& mark) {
unsigned value = 0;
for (std::size_t i = 0; i < str.size(); i++) {
char ch = str[i];
int digit = 0;
if ('a' <= ch && ch <= 'f')
digit = ch - 'a' + 10;
else if ('A' <= ch && ch <= 'F')
digit = ch - 'A' + 10;
else if ('0' <= ch && ch <= '9')
digit = ch - '0';
else
throw ParserException(mark, ErrorMsg::INVALID_HEX);
std::string Str(unsigned ch) value = (value << 4) + digit;
{ }
return std::string(1, static_cast<char>(ch));
}
// Escape return value;
// . Translates the next 'codeLength' characters into a hex number and returns the result. }
// . Throws if it's not actually hex.
std::string Escape(Stream& in, int codeLength) std::string Str(unsigned ch) { return std::string(1, static_cast<char>(ch)); }
{
// grab string // Escape
std::string str; // . Translates the next 'codeLength' characters into a hex number and returns
for(int i=0;i<codeLength;i++) // the result.
str += in.get(); // . Throws if it's not actually hex.
std::string Escape(Stream& in, int codeLength) {
// get the value // grab string
unsigned value = ParseHex(str, in.mark()); std::string str;
for (int i = 0; i < codeLength; i++)
// legal unicode? str += in.get();
if((value >= 0xD800 && value <= 0xDFFF) || value > 0x10FFFF) {
std::stringstream msg; // get the value
msg << ErrorMsg::INVALID_UNICODE << value; unsigned value = ParseHex(str, in.mark());
throw ParserException(in.mark(), msg.str());
} // legal unicode?
if ((value >= 0xD800 && value <= 0xDFFF) || value > 0x10FFFF) {
// now break it up into chars std::stringstream msg;
if(value <= 0x7F) msg << ErrorMsg::INVALID_UNICODE << value;
return Str(value); throw ParserException(in.mark(), msg.str());
else if(value <= 0x7FF) }
return Str(0xC0 + (value >> 6)) + Str(0x80 + (value & 0x3F));
else if(value <= 0xFFFF) // now break it up into chars
return Str(0xE0 + (value >> 12)) + Str(0x80 + ((value >> 6) & 0x3F)) + Str(0x80 + (value & 0x3F)); if (value <= 0x7F)
else return Str(value);
return Str(0xF0 + (value >> 18)) + Str(0x80 + ((value >> 12) & 0x3F)) + else if (value <= 0x7FF)
Str(0x80 + ((value >> 6) & 0x3F)) + Str(0x80 + (value & 0x3F)); return Str(0xC0 + (value >> 6)) + Str(0x80 + (value & 0x3F));
} else if (value <= 0xFFFF)
return Str(0xE0 + (value >> 12)) + Str(0x80 + ((value >> 6) & 0x3F)) +
// Escape Str(0x80 + (value & 0x3F));
// . Escapes the sequence starting 'in' (it must begin with a '\' or single quote) else
// and returns the result. return Str(0xF0 + (value >> 18)) + Str(0x80 + ((value >> 12) & 0x3F)) +
// . Throws if it's an unknown escape character. Str(0x80 + ((value >> 6) & 0x3F)) + Str(0x80 + (value & 0x3F));
std::string Escape(Stream& in) }
{
// eat slash // Escape
char escape = in.get(); // . Escapes the sequence starting 'in' (it must begin with a '\' or single
// quote)
// switch on escape character // and returns the result.
char ch = in.get(); // . Throws if it's an unknown escape character.
std::string Escape(Stream& in) {
// first do single quote, since it's easier // eat slash
if(escape == '\'' && ch == '\'') char escape = in.get();
return "\'";
// switch on escape character
// now do the slash (we're not gonna check if it's a slash - you better pass one!) char ch = in.get();
switch(ch) {
case '0': return std::string(1, '\x00'); // first do single quote, since it's easier
case 'a': return "\x07"; if (escape == '\'' && ch == '\'')
case 'b': return "\x08"; return "\'";
case 't':
case '\t': return "\x09"; // now do the slash (we're not gonna check if it's a slash - you better pass
case 'n': return "\x0A"; // one!)
case 'v': return "\x0B"; switch (ch) {
case 'f': return "\x0C"; case '0':
case 'r': return "\x0D"; return std::string(1, '\x00');
case 'e': return "\x1B"; case 'a':
case ' ': return "\x20"; return "\x07";
case '\"': return "\""; case 'b':
case '\'': return "\'"; return "\x08";
case '\\': return "\\"; case 't':
case '/': return "/"; case '\t':
case 'N': return "\x85"; return "\x09";
case '_': return "\xA0"; case 'n':
case 'L': return "\xE2\x80\xA8"; // LS (#x2028) return "\x0A";
case 'P': return "\xE2\x80\xA9"; // PS (#x2029) case 'v':
case 'x': return Escape(in, 2); return "\x0B";
case 'u': return Escape(in, 4); case 'f':
case 'U': return Escape(in, 8); return "\x0C";
} case 'r':
return "\x0D";
std::stringstream msg; case 'e':
throw ParserException(in.mark(), std::string(ErrorMsg::INVALID_ESCAPE) + ch); return "\x1B";
} case ' ':
} return "\x20";
case '\"':
return "\"";
case '\'':
return "\'";
case '\\':
return "\\";
case '/':
return "/";
case 'N':
return "\x85";
case '_':
return "\xA0";
case 'L':
return "\xE2\x80\xA8"; // LS (#x2028)
case 'P':
return "\xE2\x80\xA9"; // PS (#x2029)
case 'x':
return Escape(in, 2);
case 'u':
return Escape(in, 4);
case 'U':
return Escape(in, 8);
}
std::stringstream msg;
throw ParserException(in.mark(), std::string(ErrorMsg::INVALID_ESCAPE) + ch);
}
}
} }

381
src/exp.h
View File

@@ -1,196 +1,209 @@
#ifndef EXP_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #ifndef EXP_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define EXP_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #define EXP_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || (defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || (__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4 #if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once #pragma once
#endif #endif
#include "regex.h"
#include <string>
#include <ios> #include <ios>
#include <string>
#include "regex_yaml.h"
#include "stream.h" #include "stream.h"
namespace YAML namespace YAML {
{ ////////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////// // Here we store a bunch of expressions for matching different parts of the
// Here we store a bunch of expressions for matching different parts of the file. // file.
namespace Exp namespace Exp {
{ // misc
// misc inline const RegEx& Space() {
inline const RegEx& Space() { static const RegEx e = RegEx(' ');
static const RegEx e = RegEx(' '); return e;
return e; }
} inline const RegEx& Tab() {
inline const RegEx& Tab() { static const RegEx e = RegEx('\t');
static const RegEx e = RegEx('\t'); return e;
return e; }
} inline const RegEx& Blank() {
inline const RegEx& Blank() { static const RegEx e = Space() || Tab();
static const RegEx e = Space() || Tab(); return e;
return e; }
} inline const RegEx& Break() {
inline const RegEx& Break() { static const RegEx e = RegEx('\n') || RegEx("\r\n");
static const RegEx e = RegEx('\n') || RegEx("\r\n"); return e;
return e; }
} inline const RegEx& BlankOrBreak() {
inline const RegEx& BlankOrBreak() { static const RegEx e = Blank() || Break();
static const RegEx e = Blank() || Break(); return e;
return e; }
} inline const RegEx& Digit() {
inline const RegEx& Digit() { static const RegEx e = RegEx('0', '9');
static const RegEx e = RegEx('0', '9'); return e;
return e; }
} inline const RegEx& Alpha() {
inline const RegEx& Alpha() { static const RegEx e = RegEx('a', 'z') || RegEx('A', 'Z');
static const RegEx e = RegEx('a', 'z') || RegEx('A', 'Z'); return e;
return e; }
} inline const RegEx& AlphaNumeric() {
inline const RegEx& AlphaNumeric() { static const RegEx e = Alpha() || Digit();
static const RegEx e = Alpha() || Digit(); return e;
return e; }
} inline const RegEx& Word() {
inline const RegEx& Word() { static const RegEx e = AlphaNumeric() || RegEx('-');
static const RegEx e = AlphaNumeric() || RegEx('-'); return e;
return e; }
} inline const RegEx& Hex() {
inline const RegEx& Hex() { static const RegEx e = Digit() || RegEx('A', 'F') || RegEx('a', 'f');
static const RegEx e = Digit() || RegEx('A', 'F') || RegEx('a', 'f'); return e;
return e; }
} // Valid Unicode code points that are not part of c-printable (YAML 1.2, sec.
// Valid Unicode code points that are not part of c-printable (YAML 1.2, sec. 5.1) // 5.1)
inline const RegEx& NotPrintable() { inline const RegEx& NotPrintable() {
static const RegEx e = RegEx(0) || static const RegEx e =
RegEx("\x01\x02\x03\x04\x05\x06\x07\x08\x0B\x0C\x7F", REGEX_OR) || RegEx(0) ||
RegEx(0x0E, 0x1F) || RegEx("\x01\x02\x03\x04\x05\x06\x07\x08\x0B\x0C\x7F", REGEX_OR) ||
(RegEx('\xC2') + (RegEx('\x80', '\x84') || RegEx('\x86', '\x9F'))); RegEx(0x0E, 0x1F) ||
return e; (RegEx('\xC2') + (RegEx('\x80', '\x84') || RegEx('\x86', '\x9F')));
} return e;
inline const RegEx& Utf8_ByteOrderMark() { }
static const RegEx e = RegEx("\xEF\xBB\xBF"); inline const RegEx& Utf8_ByteOrderMark() {
return e; static const RegEx e = RegEx("\xEF\xBB\xBF");
} return e;
// actual tags
inline const RegEx& DocStart() {
static const RegEx e = RegEx("---") + (BlankOrBreak() || RegEx());
return e;
}
inline const RegEx& DocEnd() {
static const RegEx e = RegEx("...") + (BlankOrBreak() || RegEx());
return e;
}
inline const RegEx& DocIndicator() {
static const RegEx e = DocStart() || DocEnd();
return e;
}
inline const RegEx& BlockEntry() {
static const RegEx e = RegEx('-') + (BlankOrBreak() || RegEx());
return e;
}
inline const RegEx& Key() {
static const RegEx e = RegEx('?') + BlankOrBreak();
return e;
}
inline const RegEx& KeyInFlow() {
static const RegEx e = RegEx('?') + BlankOrBreak();
return e;
}
inline const RegEx& Value() {
static const RegEx e = RegEx(':') + (BlankOrBreak() || RegEx());
return e;
}
inline const RegEx& ValueInFlow() {
static const RegEx e = RegEx(':') + (BlankOrBreak() || RegEx(",}", REGEX_OR));
return e;
}
inline const RegEx& ValueInJSONFlow() {
static const RegEx e = RegEx(':');
return e;
}
inline const RegEx Comment() {
static const RegEx e = RegEx('#');
return e;
}
inline const RegEx& Anchor() {
static const RegEx e = !(RegEx("[]{},", REGEX_OR) || BlankOrBreak());
return e;
}
inline const RegEx& AnchorEnd() {
static const RegEx e = RegEx("?:,]}%@`", REGEX_OR) || BlankOrBreak();
return e;
}
inline const RegEx& URI() {
static const RegEx e = Word() || RegEx("#;/?:@&=+$,_.!~*'()[]", REGEX_OR) || (RegEx('%') + Hex() + Hex());
return e;
}
inline const RegEx& Tag() {
static const RegEx e = Word() || RegEx("#;/?:@&=+$_.~*'", REGEX_OR) || (RegEx('%') + Hex() + Hex());
return e;
}
// Plain scalar rules:
// . Cannot start with a blank.
// . Can never start with any of , [ ] { } # & * ! | > \' \" % @ `
// . In the block context - ? : must be not be followed with a space.
// . In the flow context ? is illegal and : and - must not be followed with a space.
inline const RegEx& PlainScalar() {
static const RegEx e = !(BlankOrBreak() || RegEx(",[]{}#&*!|>\'\"%@`", REGEX_OR) || (RegEx("-?:", REGEX_OR) + (BlankOrBreak() || RegEx())));
return e;
}
inline const RegEx& PlainScalarInFlow() {
static const RegEx e = !(BlankOrBreak() || RegEx("?,[]{}#&*!|>\'\"%@`", REGEX_OR) || (RegEx("-:", REGEX_OR) + Blank()));
return e;
}
inline const RegEx& EndScalar() {
static const RegEx e = RegEx(':') + (BlankOrBreak() || RegEx());
return e;
}
inline const RegEx& EndScalarInFlow() {
static const RegEx e = (RegEx(':') + (BlankOrBreak() || RegEx() || RegEx(",]}", REGEX_OR))) || RegEx(",?[]{}", REGEX_OR);
return e;
}
inline const RegEx& EscSingleQuote() {
static const RegEx e = RegEx("\'\'");
return e;
}
inline const RegEx& EscBreak() {
static const RegEx e = RegEx('\\') + Break();
return e;
}
inline const RegEx& ChompIndicator() {
static const RegEx e = RegEx("+-", REGEX_OR);
return e;
}
inline const RegEx& Chomp() {
static const RegEx e = (ChompIndicator() + Digit()) || (Digit() + ChompIndicator()) || ChompIndicator() || Digit();
return e;
}
// and some functions
std::string Escape(Stream& in);
}
namespace Keys
{
const char Directive = '%';
const char FlowSeqStart = '[';
const char FlowSeqEnd = ']';
const char FlowMapStart = '{';
const char FlowMapEnd = '}';
const char FlowEntry = ',';
const char Alias = '*';
const char Anchor = '&';
const char Tag = '!';
const char LiteralScalar = '|';
const char FoldedScalar = '>';
const char VerbatimTagStart = '<';
const char VerbatimTagEnd = '>';
}
} }
#endif // EXP_H_62B23520_7C8E_11DE_8A39_0800200C9A66 // actual tags
inline const RegEx& DocStart() {
static const RegEx e = RegEx("---") + (BlankOrBreak() || RegEx());
return e;
}
inline const RegEx& DocEnd() {
static const RegEx e = RegEx("...") + (BlankOrBreak() || RegEx());
return e;
}
inline const RegEx& DocIndicator() {
static const RegEx e = DocStart() || DocEnd();
return e;
}
inline const RegEx& BlockEntry() {
static const RegEx e = RegEx('-') + (BlankOrBreak() || RegEx());
return e;
}
inline const RegEx& Key() {
static const RegEx e = RegEx('?') + BlankOrBreak();
return e;
}
inline const RegEx& KeyInFlow() {
static const RegEx e = RegEx('?') + BlankOrBreak();
return e;
}
inline const RegEx& Value() {
static const RegEx e = RegEx(':') + (BlankOrBreak() || RegEx());
return e;
}
inline const RegEx& ValueInFlow() {
static const RegEx e = RegEx(':') + (BlankOrBreak() || RegEx(",}", REGEX_OR));
return e;
}
inline const RegEx& ValueInJSONFlow() {
static const RegEx e = RegEx(':');
return e;
}
inline const RegEx Comment() {
static const RegEx e = RegEx('#');
return e;
}
inline const RegEx& Anchor() {
static const RegEx e = !(RegEx("[]{},", REGEX_OR) || BlankOrBreak());
return e;
}
inline const RegEx& AnchorEnd() {
static const RegEx e = RegEx("?:,]}%@`", REGEX_OR) || BlankOrBreak();
return e;
}
inline const RegEx& URI() {
static const RegEx e = Word() || RegEx("#;/?:@&=+$,_.!~*'()[]", REGEX_OR) ||
(RegEx('%') + Hex() + Hex());
return e;
}
inline const RegEx& Tag() {
static const RegEx e = Word() || RegEx("#;/?:@&=+$_.~*'", REGEX_OR) ||
(RegEx('%') + Hex() + Hex());
return e;
}
// Plain scalar rules:
// . Cannot start with a blank.
// . Can never start with any of , [ ] { } # & * ! | > \' \" % @ `
// . In the block context - ? : must be not be followed with a space.
// . In the flow context ? is illegal and : and - must not be followed with a
// space.
inline const RegEx& PlainScalar() {
static const RegEx e =
!(BlankOrBreak() || RegEx(",[]{}#&*!|>\'\"%@`", REGEX_OR) ||
(RegEx("-?:", REGEX_OR) + (BlankOrBreak() || RegEx())));
return e;
}
inline const RegEx& PlainScalarInFlow() {
static const RegEx e =
!(BlankOrBreak() || RegEx("?,[]{}#&*!|>\'\"%@`", REGEX_OR) ||
(RegEx("-:", REGEX_OR) + Blank()));
return e;
}
inline const RegEx& EndScalar() {
static const RegEx e = RegEx(':') + (BlankOrBreak() || RegEx());
return e;
}
inline const RegEx& EndScalarInFlow() {
static const RegEx e =
(RegEx(':') + (BlankOrBreak() || RegEx() || RegEx(",]}", REGEX_OR))) ||
RegEx(",?[]{}", REGEX_OR);
return e;
}
inline const RegEx& EscSingleQuote() {
static const RegEx e = RegEx("\'\'");
return e;
}
inline const RegEx& EscBreak() {
static const RegEx e = RegEx('\\') + Break();
return e;
}
inline const RegEx& ChompIndicator() {
static const RegEx e = RegEx("+-", REGEX_OR);
return e;
}
inline const RegEx& Chomp() {
static const RegEx e = (ChompIndicator() + Digit()) ||
(Digit() + ChompIndicator()) || ChompIndicator() ||
Digit();
return e;
}
// and some functions
std::string Escape(Stream& in);
}
namespace Keys {
const char Directive = '%';
const char FlowSeqStart = '[';
const char FlowSeqEnd = ']';
const char FlowMapStart = '{';
const char FlowMapEnd = '}';
const char FlowEntry = ',';
const char Alias = '*';
const char Anchor = '&';
const char Tag = '!';
const char LiteralScalar = '|';
const char FoldedScalar = '>';
const char VerbatimTagStart = '<';
const char VerbatimTagEnd = '>';
}
}
#endif // EXP_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@@ -1,38 +1,41 @@
#ifndef INDENTATION_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #ifndef INDENTATION_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define INDENTATION_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #define INDENTATION_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || (defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || (__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4 #if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once #pragma once
#endif #endif
#include <iostream>
#include <cstddef>
#include "yaml-cpp/ostream_wrapper.h" #include "yaml-cpp/ostream_wrapper.h"
#include <iostream>
namespace YAML namespace YAML {
{ struct Indentation {
struct Indentation { Indentation(std::size_t n_) : n(n_) {}
Indentation(unsigned n_): n(n_) {} std::size_t n;
unsigned n; };
};
inline ostream_wrapper& operator << (ostream_wrapper& out, const Indentation& indent) { inline ostream_wrapper& operator<<(ostream_wrapper& out,
for(unsigned i=0;i<indent.n;i++) const Indentation& indent) {
out << ' '; for (std::size_t i = 0; i < indent.n; i++)
return out; out << ' ';
} return out;
struct IndentTo {
IndentTo(unsigned n_): n(n_) {}
unsigned n;
};
inline ostream_wrapper& operator << (ostream_wrapper& out, const IndentTo& indent) {
while(out.col() < indent.n)
out << ' ';
return out;
}
} }
struct IndentTo {
IndentTo(std::size_t n_) : n(n_) {}
std::size_t n;
};
#endif // INDENTATION_H_62B23520_7C8E_11DE_8A39_0800200C9A66 inline ostream_wrapper& operator<<(ostream_wrapper& out,
const IndentTo& indent) {
while (out.col() < indent.n)
out << ' ';
return out;
}
}
#endif // INDENTATION_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@@ -1,29 +1,26 @@
#include "yaml-cpp/node/detail/memory.h" #include "yaml-cpp/node/detail/memory.h"
#include "yaml-cpp/node/detail/node.h" #include "yaml-cpp/node/detail/node.h" // IWYU pragma: keep
#include "yaml-cpp/node/ptr.h"
namespace YAML namespace YAML {
{ namespace detail {
namespace detail
{
void memory_holder::merge(memory_holder& rhs)
{
if(m_pMemory == rhs.m_pMemory)
return;
m_pMemory->merge(*rhs.m_pMemory); void memory_holder::merge(memory_holder& rhs) {
rhs.m_pMemory = m_pMemory; if (m_pMemory == rhs.m_pMemory)
} return;
node& memory::create_node() m_pMemory->merge(*rhs.m_pMemory);
{ rhs.m_pMemory = m_pMemory;
shared_node pNode(new node); }
m_nodes.insert(pNode);
return *pNode; node& memory::create_node() {
} shared_node pNode(new node);
m_nodes.insert(pNode);
void memory::merge(const memory& rhs) return *pNode;
{ }
m_nodes.insert(rhs.m_nodes.begin(), rhs.m_nodes.end());
} void memory::merge(const memory& rhs) {
} m_nodes.insert(rhs.m_nodes.begin(), rhs.m_nodes.end());
}
}
} }

View File

@@ -2,13 +2,11 @@
#include "nodebuilder.h" #include "nodebuilder.h"
#include "nodeevents.h" #include "nodeevents.h"
namespace YAML namespace YAML {
{ Node Clone(const Node& node) {
Node Clone(const Node& node) NodeEvents events(node);
{ NodeBuilder builder;
NodeEvents events(node); events.Emit(builder);
NodeBuilder builder; return builder.Root();
events.Emit(builder); }
return builder.Root();
}
} }

View File

@@ -1,295 +1,301 @@
#include "yaml-cpp/node/detail/node_data.h" #include <assert.h>
#include "yaml-cpp/node/detail/memory.h" #include <boost/smart_ptr/shared_ptr.hpp>
#include "yaml-cpp/node/detail/node.h"
#include "yaml-cpp/exceptions.h"
#include <sstream> #include <sstream>
namespace YAML #include "yaml-cpp/exceptions.h"
{ #include "yaml-cpp/node/detail/memory.h"
namespace detail #include "yaml-cpp/node/detail/node.h" // IWYU pragma: keep
{ #include "yaml-cpp/node/detail/node_data.h"
std::string node_data::empty_scalar; #include "yaml-cpp/node/detail/node_iterator.h"
#include "yaml-cpp/node/ptr.h"
#include "yaml-cpp/node/type.h"
node_data::node_data(): m_isDefined(false), m_type(NodeType::Null), m_seqSize(0) namespace YAML {
{ namespace detail {
}
void node_data::mark_defined() std::string node_data::empty_scalar;
{
if(m_type == NodeType::Undefined)
m_type = NodeType::Null;
m_isDefined = true;
}
void node_data::set_type(NodeType::value type) node_data::node_data()
{ : m_isDefined(false),
if(type == NodeType::Undefined) { m_mark(Mark::null_mark()),
m_type = type; m_type(NodeType::Null),
m_isDefined = false; m_style(EmitterStyle::Default),
return; m_seqSize(0) {}
}
void node_data::mark_defined() {
m_isDefined = true; if (m_type == NodeType::Undefined)
if(type == m_type) m_type = NodeType::Null;
return; m_isDefined = true;
}
m_type = type;
void node_data::set_mark(const Mark& mark) {
switch(m_type) { m_mark = mark;
case NodeType::Null: }
break;
case NodeType::Scalar: void node_data::set_type(NodeType::value type) {
m_scalar.clear(); if (type == NodeType::Undefined) {
break; m_type = type;
case NodeType::Sequence: m_isDefined = false;
reset_sequence(); return;
break; }
case NodeType::Map:
reset_map(); m_isDefined = true;
break; if (type == m_type)
case NodeType::Undefined: return;
assert(false);
break; m_type = type;
}
} switch (m_type) {
case NodeType::Null:
void node_data::set_tag(const std::string& tag) break;
{ case NodeType::Scalar:
m_tag = tag; m_scalar.clear();
} break;
case NodeType::Sequence:
void node_data::set_null() reset_sequence();
{ break;
m_isDefined = true; case NodeType::Map:
m_type = NodeType::Null; reset_map();
} break;
case NodeType::Undefined:
void node_data::set_scalar(const std::string& scalar) assert(false);
{ break;
m_isDefined = true; }
m_type = NodeType::Scalar; }
m_scalar = scalar;
} void node_data::set_tag(const std::string& tag) { m_tag = tag; }
// size/iterator void node_data::set_style(EmitterStyle::value style) { m_style = style; }
std::size_t node_data::size() const
{ void node_data::set_null() {
if(!m_isDefined) m_isDefined = true;
return 0; m_type = NodeType::Null;
}
switch(m_type) {
case NodeType::Sequence: compute_seq_size(); return m_seqSize; void node_data::set_scalar(const std::string& scalar) {
case NodeType::Map: compute_map_size(); return m_map.size() - m_undefinedPairs.size(); m_isDefined = true;
default: m_type = NodeType::Scalar;
return 0; m_scalar = scalar;
} }
return 0;
} // size/iterator
std::size_t node_data::size() const {
void node_data::compute_seq_size() const if (!m_isDefined)
{ return 0;
while(m_seqSize < m_sequence.size() && m_sequence[m_seqSize]->is_defined())
m_seqSize++; switch (m_type) {
} case NodeType::Sequence:
compute_seq_size();
void node_data::compute_map_size() const return m_seqSize;
{ case NodeType::Map:
kv_pairs::iterator it = m_undefinedPairs.begin(); compute_map_size();
while(it != m_undefinedPairs.end()) { return m_map.size() - m_undefinedPairs.size();
kv_pairs::iterator jt = boost::next(it); default:
if(it->first->is_defined() && it->second->is_defined()) return 0;
m_undefinedPairs.erase(it); }
it = jt; return 0;
} }
}
void node_data::compute_seq_size() const {
const_node_iterator node_data::begin() const while (m_seqSize < m_sequence.size() && m_sequence[m_seqSize]->is_defined())
{ m_seqSize++;
if(!m_isDefined) }
return const_node_iterator();
void node_data::compute_map_size() const {
switch(m_type) { kv_pairs::iterator it = m_undefinedPairs.begin();
case NodeType::Sequence: return const_node_iterator(m_sequence.begin()); while (it != m_undefinedPairs.end()) {
case NodeType::Map: return const_node_iterator(m_map.begin(), m_map.end()); kv_pairs::iterator jt = boost::next(it);
default: return const_node_iterator(); if (it->first->is_defined() && it->second->is_defined())
} m_undefinedPairs.erase(it);
} it = jt;
}
node_iterator node_data::begin() }
{
if(!m_isDefined) const_node_iterator node_data::begin() const {
return node_iterator(); if (!m_isDefined)
return const_node_iterator();
switch(m_type) {
case NodeType::Sequence: return node_iterator(m_sequence.begin()); switch (m_type) {
case NodeType::Map: return node_iterator(m_map.begin(), m_map.end()); case NodeType::Sequence:
default: return node_iterator(); return const_node_iterator(m_sequence.begin());
} case NodeType::Map:
} return const_node_iterator(m_map.begin(), m_map.end());
default:
const_node_iterator node_data::end() const return const_node_iterator();
{ }
if(!m_isDefined) }
return const_node_iterator();
node_iterator node_data::begin() {
switch(m_type) { if (!m_isDefined)
case NodeType::Sequence: return const_node_iterator(m_sequence.end()); return node_iterator();
case NodeType::Map: return const_node_iterator(m_map.end(), m_map.end());
default: return const_node_iterator(); switch (m_type) {
} case NodeType::Sequence:
} return node_iterator(m_sequence.begin());
case NodeType::Map:
node_iterator node_data::end() return node_iterator(m_map.begin(), m_map.end());
{ default:
if(!m_isDefined) return node_iterator();
return node_iterator(); }
}
switch(m_type) {
case NodeType::Sequence: return node_iterator(m_sequence.end()); const_node_iterator node_data::end() const {
case NodeType::Map: return node_iterator(m_map.end(), m_map.end()); if (!m_isDefined)
default: return node_iterator(); return const_node_iterator();
}
} switch (m_type) {
case NodeType::Sequence:
// sequence return const_node_iterator(m_sequence.end());
void node_data::push_back(node& node, shared_memory_holder /* pMemory */) case NodeType::Map:
{ return const_node_iterator(m_map.end(), m_map.end());
if(m_type == NodeType::Undefined || m_type == NodeType::Null) { default:
m_type = NodeType::Sequence; return const_node_iterator();
reset_sequence(); }
} }
if(m_type != NodeType::Sequence) node_iterator node_data::end() {
throw BadPushback(); if (!m_isDefined)
return node_iterator();
m_sequence.push_back(&node);
} switch (m_type) {
case NodeType::Sequence:
void node_data::insert(node& key, node& value, shared_memory_holder pMemory) return node_iterator(m_sequence.end());
{ case NodeType::Map:
switch(m_type) { return node_iterator(m_map.end(), m_map.end());
case NodeType::Map: default:
break; return node_iterator();
case NodeType::Undefined: }
case NodeType::Null: }
case NodeType::Sequence:
convert_to_map(pMemory); // sequence
break; void node_data::push_back(node& node, shared_memory_holder /* pMemory */) {
case NodeType::Scalar: if (m_type == NodeType::Undefined || m_type == NodeType::Null) {
throw BadSubscript(); m_type = NodeType::Sequence;
} reset_sequence();
}
insert_map_pair(key, value);
} if (m_type != NodeType::Sequence)
throw BadPushback();
// indexing
node& node_data::get(node& key, shared_memory_holder pMemory) const m_sequence.push_back(&node);
{ }
if(m_type != NodeType::Map)
return pMemory->create_node(); void node_data::insert(node& key, node& value, shared_memory_holder pMemory) {
switch (m_type) {
for(node_map::const_iterator it=m_map.begin();it!=m_map.end();++it) { case NodeType::Map:
if(it->first->is(key)) break;
return *it->second; case NodeType::Undefined:
} case NodeType::Null:
case NodeType::Sequence:
return pMemory->create_node(); convert_to_map(pMemory);
} break;
case NodeType::Scalar:
node& node_data::get(node& key, shared_memory_holder pMemory) throw BadSubscript();
{ }
switch(m_type) {
case NodeType::Map: insert_map_pair(key, value);
break; }
case NodeType::Undefined:
case NodeType::Null: // indexing
case NodeType::Sequence: node* node_data::get(node& key, shared_memory_holder /* pMemory */) const {
convert_to_map(pMemory); if (m_type != NodeType::Map) {
break; return NULL;
case NodeType::Scalar: }
throw BadSubscript();
} for (node_map::const_iterator it = m_map.begin(); it != m_map.end(); ++it) {
if (it->first->is(key))
for(node_map::const_iterator it=m_map.begin();it!=m_map.end();++it) { return it->second;
if(it->first->is(key)) }
return *it->second;
} return NULL;
}
node& value = pMemory->create_node();
insert_map_pair(key, value); node& node_data::get(node& key, shared_memory_holder pMemory) {
return value; switch (m_type) {
} case NodeType::Map:
break;
bool node_data::remove(node& key, shared_memory_holder /* pMemory */) case NodeType::Undefined:
{ case NodeType::Null:
if(m_type != NodeType::Map) case NodeType::Sequence:
return false; convert_to_map(pMemory);
break;
for(node_map::iterator it=m_map.begin();it!=m_map.end();++it) { case NodeType::Scalar:
if(it->first->is(key)) { throw BadSubscript();
m_map.erase(it); }
return true;
} for (node_map::const_iterator it = m_map.begin(); it != m_map.end(); ++it) {
} if (it->first->is(key))
return *it->second;
return false; }
}
node& value = pMemory->create_node();
void node_data::reset_sequence() insert_map_pair(key, value);
{ return value;
m_sequence.clear(); }
m_seqSize = 0;
} bool node_data::remove(node& key, shared_memory_holder /* pMemory */) {
if (m_type != NodeType::Map)
void node_data::reset_map() return false;
{
m_map.clear(); for (node_map::iterator it = m_map.begin(); it != m_map.end(); ++it) {
m_undefinedPairs.clear(); if (it->first->is(key)) {
} m_map.erase(it);
return true;
void node_data::insert_map_pair(node& key, node& value) }
{ }
m_map[&key] = &value;
if(!key.is_defined() || !value.is_defined()) return false;
m_undefinedPairs.push_back(kv_pair(&key, &value)); }
}
void node_data::reset_sequence() {
void node_data::convert_to_map(shared_memory_holder pMemory) m_sequence.clear();
{ m_seqSize = 0;
switch(m_type) { }
case NodeType::Undefined:
case NodeType::Null: void node_data::reset_map() {
reset_map(); m_map.clear();
m_type = NodeType::Map; m_undefinedPairs.clear();
break; }
case NodeType::Sequence:
convert_sequence_to_map(pMemory); void node_data::insert_map_pair(node& key, node& value) {
break; m_map[&key] = &value;
case NodeType::Map: if (!key.is_defined() || !value.is_defined())
break; m_undefinedPairs.push_back(kv_pair(&key, &value));
case NodeType::Scalar: }
assert(false);
break; void node_data::convert_to_map(shared_memory_holder pMemory) {
} switch (m_type) {
} case NodeType::Undefined:
case NodeType::Null:
void node_data::convert_sequence_to_map(shared_memory_holder pMemory) reset_map();
{ m_type = NodeType::Map;
assert(m_type == NodeType::Sequence); break;
case NodeType::Sequence:
reset_map(); convert_sequence_to_map(pMemory);
for(std::size_t i=0;i<m_sequence.size();i++) { break;
std::stringstream stream; case NodeType::Map:
stream << i; break;
case NodeType::Scalar:
node& key = pMemory->create_node(); assert(false);
key.set_scalar(stream.str()); break;
insert_map_pair(key, *m_sequence[i]); }
} }
reset_sequence(); void node_data::convert_sequence_to_map(shared_memory_holder pMemory) {
m_type = NodeType::Map; assert(m_type == NodeType::Sequence);
}
} reset_map();
for (std::size_t i = 0; i < m_sequence.size(); i++) {
std::stringstream stream;
stream << i;
node& key = pMemory->create_node();
key.set_scalar(stream.str());
insert_map_pair(key, *m_sequence[i]);
}
reset_sequence();
m_type = NodeType::Map;
}
}
} }

View File

@@ -1,138 +1,131 @@
#include "nodebuilder.h" #include <assert.h>
#include "yaml-cpp/mark.h"
#include "yaml-cpp/node/node.h"
#include "yaml-cpp/node/impl.h"
#include <cassert> #include <cassert>
namespace YAML #include "nodebuilder.h"
{ #include "yaml-cpp/node/detail/node.h"
NodeBuilder::NodeBuilder(): m_pMemory(new detail::memory_holder), m_pRoot(0), m_mapDepth(0) #include "yaml-cpp/node/impl.h"
{ #include "yaml-cpp/node/node.h"
m_anchors.push_back(0); // since the anchors start at 1 #include "yaml-cpp/node/type.h"
}
NodeBuilder::~NodeBuilder() namespace YAML {
{ struct Mark;
}
Node NodeBuilder::Root() NodeBuilder::NodeBuilder()
{ : m_pMemory(new detail::memory_holder), m_pRoot(0), m_mapDepth(0) {
if(!m_pRoot) m_anchors.push_back(0); // since the anchors start at 1
return Node(); }
return Node(*m_pRoot, m_pMemory); NodeBuilder::~NodeBuilder() {}
}
Node NodeBuilder::Root() {
void NodeBuilder::OnDocumentStart(const Mark&) if (!m_pRoot)
{ return Node();
}
return Node(*m_pRoot, m_pMemory);
void NodeBuilder::OnDocumentEnd() }
{
} void NodeBuilder::OnDocumentStart(const Mark&) {}
void NodeBuilder::OnNull(const Mark& /* mark */, anchor_t anchor) void NodeBuilder::OnDocumentEnd() {}
{
detail::node& node = Push(anchor); void NodeBuilder::OnNull(const Mark& mark, anchor_t anchor) {
node.set_null(); detail::node& node = Push(mark, anchor);
Pop(); node.set_null();
} Pop();
}
void NodeBuilder::OnAlias(const Mark& /* mark */, anchor_t anchor)
{ void NodeBuilder::OnAlias(const Mark& /* mark */, anchor_t anchor) {
detail::node& node = *m_anchors[anchor]; detail::node& node = *m_anchors[anchor];
Push(node); Push(node);
Pop(); Pop();
} }
void NodeBuilder::OnScalar(const Mark& /* mark */, const std::string& tag, anchor_t anchor, const std::string& value) void NodeBuilder::OnScalar(const Mark& mark, const std::string& tag,
{ anchor_t anchor, const std::string& value) {
detail::node& node = Push(anchor); detail::node& node = Push(mark, anchor);
node.set_scalar(value); node.set_scalar(value);
node.set_tag(tag); node.set_tag(tag);
Pop(); Pop();
} }
void NodeBuilder::OnSequenceStart(const Mark& /* mark */, const std::string& tag, anchor_t anchor) void NodeBuilder::OnSequenceStart(const Mark& mark,
{ const std::string& tag, anchor_t anchor,
detail::node& node = Push(anchor); EmitterStyle::value style) {
node.set_tag(tag); detail::node& node = Push(mark, anchor);
node.set_type(NodeType::Sequence); node.set_tag(tag);
} node.set_type(NodeType::Sequence);
node.set_style(style);
void NodeBuilder::OnSequenceEnd() }
{
Pop(); void NodeBuilder::OnSequenceEnd() { Pop(); }
}
void NodeBuilder::OnMapStart(const Mark& mark, const std::string& tag,
void NodeBuilder::OnMapStart(const Mark& /* mark */, const std::string& tag, anchor_t anchor) anchor_t anchor, EmitterStyle::value style) {
{ detail::node& node = Push(mark, anchor);
detail::node& node = Push(anchor); node.set_type(NodeType::Map);
node.set_type(NodeType::Map); node.set_tag(tag);
node.set_tag(tag); node.set_style(style);
m_mapDepth++; m_mapDepth++;
} }
void NodeBuilder::OnMapEnd() void NodeBuilder::OnMapEnd() {
{ assert(m_mapDepth > 0);
assert(m_mapDepth > 0); m_mapDepth--;
m_mapDepth--; Pop();
Pop(); }
}
detail::node& NodeBuilder::Push(const Mark& mark, anchor_t anchor) {
detail::node& NodeBuilder::Push(anchor_t anchor) detail::node& node = m_pMemory->create_node();
{ node.set_mark(mark);
detail::node& node = m_pMemory->create_node(); RegisterAnchor(anchor, node);
RegisterAnchor(anchor, node); Push(node);
Push(node); return node;
return node; }
}
void NodeBuilder::Push(detail::node& node) {
void NodeBuilder::Push(detail::node& node) const bool needsKey =
{ (!m_stack.empty() && m_stack.back()->type() == NodeType::Map &&
const bool needsKey = (!m_stack.empty() && m_stack.back()->type() == NodeType::Map && m_keys.size() < m_mapDepth); m_keys.size() < m_mapDepth);
m_stack.push_back(&node); m_stack.push_back(&node);
if(needsKey) if (needsKey)
m_keys.push_back(PushedKey(&node, false)); m_keys.push_back(PushedKey(&node, false));
} }
void NodeBuilder::Pop() void NodeBuilder::Pop() {
{ assert(!m_stack.empty());
assert(!m_stack.empty()); if (m_stack.size() == 1) {
if(m_stack.size() == 1) { m_pRoot = m_stack[0];
m_pRoot = m_stack[0]; m_stack.pop_back();
m_stack.pop_back(); return;
return; }
}
detail::node& node = *m_stack.back();
detail::node& node = *m_stack.back(); m_stack.pop_back();
m_stack.pop_back();
detail::node& collection = *m_stack.back();
detail::node& collection = *m_stack.back();
if (collection.type() == NodeType::Sequence) {
if(collection.type() == NodeType::Sequence) { collection.push_back(node, m_pMemory);
collection.push_back(node, m_pMemory); } else if (collection.type() == NodeType::Map) {
} else if(collection.type() == NodeType::Map) { assert(!m_keys.empty());
assert(!m_keys.empty()); PushedKey& key = m_keys.back();
PushedKey& key = m_keys.back(); if (key.second) {
if(key.second) { collection.insert(*key.first, node, m_pMemory);
collection.insert(*key.first, node, m_pMemory); m_keys.pop_back();
m_keys.pop_back(); } else {
} else { key.second = true;
key.second = true; }
} } else {
} else { assert(false);
assert(false); m_stack.clear();
m_stack.clear(); }
} }
}
void NodeBuilder::RegisterAnchor(anchor_t anchor, detail::node& node) {
void NodeBuilder::RegisterAnchor(anchor_t anchor, detail::node& node) if (anchor) {
{ assert(anchor == m_anchors.size());
if(anchor) { m_anchors.push_back(&node);
assert(anchor == m_anchors.size()); }
m_anchors.push_back(&node); }
}
}
} }

View File

@@ -1,58 +1,70 @@
#ifndef NODE_NODEBUILDER_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #ifndef NODE_NODEBUILDER_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define NODE_NODEBUILDER_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #define NODE_NODEBUILDER_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || (defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || (__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4 #if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once #pragma once
#endif #endif
#include "yaml-cpp/eventhandler.h"
#include "yaml-cpp/node/ptr.h"
#include <vector> #include <vector>
namespace YAML #include "yaml-cpp/anchor.h"
{ #include "yaml-cpp/emitterstyle.h"
class Node; #include "yaml-cpp/eventhandler.h"
#include "yaml-cpp/node/ptr.h"
class NodeBuilder: public EventHandler namespace YAML {
{ namespace detail {
public: class node;
NodeBuilder(); } // namespace detail
virtual ~NodeBuilder(); struct Mark;
} // namespace YAML
Node Root(); namespace YAML {
class Node;
virtual void OnDocumentStart(const Mark& mark); class NodeBuilder : public EventHandler {
virtual void OnDocumentEnd(); public:
NodeBuilder();
virtual ~NodeBuilder();
virtual void OnNull(const Mark& mark, anchor_t anchor); Node Root();
virtual void OnAlias(const Mark& mark, anchor_t anchor);
virtual void OnScalar(const Mark& mark, const std::string& tag, anchor_t anchor, const std::string& value);
virtual void OnSequenceStart(const Mark& mark, const std::string& tag, anchor_t anchor); virtual void OnDocumentStart(const Mark& mark);
virtual void OnSequenceEnd(); virtual void OnDocumentEnd();
virtual void OnMapStart(const Mark& mark, const std::string& tag, anchor_t anchor); virtual void OnNull(const Mark& mark, anchor_t anchor);
virtual void OnMapEnd(); virtual void OnAlias(const Mark& mark, anchor_t anchor);
virtual void OnScalar(const Mark& mark, const std::string& tag,
anchor_t anchor, const std::string& value);
private: virtual void OnSequenceStart(const Mark& mark, const std::string& tag,
detail::node& Push(anchor_t anchor); anchor_t anchor, EmitterStyle::value style);
void Push(detail::node& node); virtual void OnSequenceEnd();
void Pop();
void RegisterAnchor(anchor_t anchor, detail::node& node);
private: virtual void OnMapStart(const Mark& mark, const std::string& tag,
detail::shared_memory_holder m_pMemory; anchor_t anchor, EmitterStyle::value style);
detail::node *m_pRoot; virtual void OnMapEnd();
typedef std::vector<detail::node *> Nodes; private:
Nodes m_stack; detail::node& Push(const Mark& mark, anchor_t anchor);
Nodes m_anchors; void Push(detail::node& node);
void Pop();
void RegisterAnchor(anchor_t anchor, detail::node& node);
typedef std::pair<detail::node *, bool> PushedKey; private:
std::vector<PushedKey> m_keys; detail::shared_memory_holder m_pMemory;
std::size_t m_mapDepth; detail::node* m_pRoot;
};
typedef std::vector<detail::node*> Nodes;
Nodes m_stack;
Nodes m_anchors;
typedef std::pair<detail::node*, bool> PushedKey;
std::vector<PushedKey> m_keys;
std::size_t m_mapDepth;
};
} }
#endif // NODE_NODEBUILDER_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #endif // NODE_NODEBUILDER_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@@ -1,99 +1,101 @@
#include "nodeevents.h" #include "nodeevents.h"
#include "yaml-cpp/node/node.h"
#include "yaml-cpp/node/impl.h"
#include "yaml-cpp/eventhandler.h" #include "yaml-cpp/eventhandler.h"
#include "yaml-cpp/mark.h" #include "yaml-cpp/mark.h"
#include "yaml-cpp/node/detail/node.h"
#include "yaml-cpp/node/detail/node_iterator.h"
#include "yaml-cpp/node/node.h"
#include "yaml-cpp/node/type.h"
namespace YAML namespace YAML {
{ void NodeEvents::AliasManager::RegisterReference(const detail::node& node) {
void NodeEvents::AliasManager::RegisterReference(const detail::node& node) m_anchorByIdentity.insert(std::make_pair(node.ref(), _CreateNewAnchor()));
{ }
m_anchorByIdentity.insert(std::make_pair(node.ref(), _CreateNewAnchor()));
} anchor_t NodeEvents::AliasManager::LookupAnchor(
const detail::node& node) const {
anchor_t NodeEvents::AliasManager::LookupAnchor(const detail::node& node) const AnchorByIdentity::const_iterator it = m_anchorByIdentity.find(node.ref());
{ if (it == m_anchorByIdentity.end())
AnchorByIdentity::const_iterator it = m_anchorByIdentity.find(node.ref()); return 0;
if(it == m_anchorByIdentity.end()) return it->second;
return 0; }
return it->second;
} NodeEvents::NodeEvents(const Node& node)
: m_pMemory(node.m_pMemory), m_root(node.m_pNode) {
NodeEvents::NodeEvents(const Node& node): m_pMemory(node.m_pMemory), m_root(*node.m_pNode) if (m_root)
{ Setup(*m_root);
Setup(m_root); }
}
void NodeEvents::Setup(const detail::node& node) {
void NodeEvents::Setup(const detail::node& node) int& refCount = m_refCount[node.ref()];
{ refCount++;
int& refCount = m_refCount[node.ref()]; if (refCount > 1)
refCount++; return;
if(refCount > 1)
return; if (node.type() == NodeType::Sequence) {
for (detail::const_node_iterator it = node.begin(); it != node.end(); ++it)
if(node.type() == NodeType::Sequence) { Setup(**it);
for(detail::const_node_iterator it=node.begin();it!=node.end();++it) } else if (node.type() == NodeType::Map) {
Setup(**it); for (detail::const_node_iterator it = node.begin(); it != node.end();
} else if(node.type() == NodeType::Map) { ++it) {
for(detail::const_node_iterator it=node.begin();it!=node.end();++it) { Setup(*it->first);
Setup(*it->first); Setup(*it->second);
Setup(*it->second); }
} }
} }
}
void NodeEvents::Emit(EventHandler& handler) {
void NodeEvents::Emit(EventHandler& handler) AliasManager am;
{
AliasManager am; handler.OnDocumentStart(Mark());
if (m_root)
handler.OnDocumentStart(Mark()); Emit(*m_root, handler, am);
Emit(m_root, handler, am); handler.OnDocumentEnd();
handler.OnDocumentEnd(); }
}
void NodeEvents::Emit(const detail::node& node, EventHandler& handler,
void NodeEvents::Emit(const detail::node& node, EventHandler& handler, AliasManager& am) const AliasManager& am) const {
{ anchor_t anchor = NullAnchor;
anchor_t anchor = NullAnchor; if (IsAliased(node)) {
if(IsAliased(node)) { anchor = am.LookupAnchor(node);
anchor = am.LookupAnchor(node); if (anchor) {
if(anchor) { handler.OnAlias(Mark(), anchor);
handler.OnAlias(Mark(), anchor); return;
return; }
}
am.RegisterReference(node);
am.RegisterReference(node); anchor = am.LookupAnchor(node);
anchor = am.LookupAnchor(node); }
}
switch (node.type()) {
switch(node.type()) { case NodeType::Undefined:
case NodeType::Undefined: break;
break; case NodeType::Null:
case NodeType::Null: handler.OnNull(Mark(), anchor);
handler.OnNull(Mark(), anchor); break;
break; case NodeType::Scalar:
case NodeType::Scalar: handler.OnScalar(Mark(), node.tag(), anchor, node.scalar());
handler.OnScalar(Mark(), node.tag(), anchor, node.scalar()); break;
break; case NodeType::Sequence:
case NodeType::Sequence: handler.OnSequenceStart(Mark(), node.tag(), anchor, node.style());
handler.OnSequenceStart(Mark(), node.tag(), anchor); for (detail::const_node_iterator it = node.begin(); it != node.end();
for(detail::const_node_iterator it=node.begin();it!=node.end();++it) ++it)
Emit(**it, handler, am); Emit(**it, handler, am);
handler.OnSequenceEnd(); handler.OnSequenceEnd();
break; break;
case NodeType::Map: case NodeType::Map:
handler.OnMapStart(Mark(), node.tag(), anchor); handler.OnMapStart(Mark(), node.tag(), anchor, node.style());
for(detail::const_node_iterator it=node.begin();it!=node.end();++it) { for (detail::const_node_iterator it = node.begin(); it != node.end();
Emit(*it->first, handler, am); ++it) {
Emit(*it->second, handler, am); Emit(*it->first, handler, am);
} Emit(*it->second, handler, am);
handler.OnMapEnd(); }
break; handler.OnMapEnd();
} break;
} }
}
bool NodeEvents::IsAliased(const detail::node& node) const
{ bool NodeEvents::IsAliased(const detail::node& node) const {
RefCount::const_iterator it = m_refCount.find(node.ref()); RefCount::const_iterator it = m_refCount.find(node.ref());
return it != m_refCount.end() && it->second > 1; return it != m_refCount.end() && it->second > 1;
} }
} }

View File

@@ -1,57 +1,64 @@
#ifndef NODE_NODEEVENTS_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #ifndef NODE_NODEEVENTS_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define NODE_NODEEVENTS_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #define NODE_NODEEVENTS_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || (defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || (__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4 #if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once #pragma once
#endif #endif
#include "yaml-cpp/anchor.h"
#include "yaml-cpp/node/ptr.h"
#include <map> #include <map>
#include <vector> #include <vector>
namespace YAML #include "yaml-cpp/anchor.h"
{ #include "yaml-cpp/node/ptr.h"
class EventHandler;
class Node;
class NodeEvents namespace YAML {
{ namespace detail {
public: class node;
explicit NodeEvents(const Node& node); } // namespace detail
} // namespace YAML
void Emit(EventHandler& handler); namespace YAML {
class EventHandler;
class Node;
private: class NodeEvents {
class AliasManager { public:
public: explicit NodeEvents(const Node& node);
AliasManager(): m_curAnchor(0) {}
void RegisterReference(const detail::node& node); void Emit(EventHandler& handler);
anchor_t LookupAnchor(const detail::node& node) const;
private: private:
anchor_t _CreateNewAnchor() { return ++m_curAnchor; } class AliasManager {
public:
AliasManager() : m_curAnchor(0) {}
private: void RegisterReference(const detail::node& node);
typedef std::map<const detail::node_ref*, anchor_t> AnchorByIdentity; anchor_t LookupAnchor(const detail::node& node) const;
AnchorByIdentity m_anchorByIdentity;
anchor_t m_curAnchor; private:
}; anchor_t _CreateNewAnchor() { return ++m_curAnchor; }
void Setup(const detail::node& node); private:
void Emit(const detail::node& node, EventHandler& handler, AliasManager& am) const; typedef std::map<const detail::node_ref*, anchor_t> AnchorByIdentity;
bool IsAliased(const detail::node& node) const; AnchorByIdentity m_anchorByIdentity;
private: anchor_t m_curAnchor;
detail::shared_memory_holder m_pMemory; };
detail::node& m_root;
typedef std::map<const detail::node_ref *, int> RefCount; void Setup(const detail::node& node);
RefCount m_refCount; void Emit(const detail::node& node, EventHandler& handler,
}; AliasManager& am) const;
bool IsAliased(const detail::node& node) const;
private:
detail::shared_memory_holder m_pMemory;
detail::node* m_root;
typedef std::map<const detail::node_ref*, int> RefCount;
RefCount m_refCount;
};
} }
#endif // NODE_NODEEVENTS_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #endif // NODE_NODEEVENTS_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@@ -1,6 +1,5 @@
#include "yaml-cpp/null.h" #include "yaml-cpp/null.h"
namespace YAML namespace YAML {
{ _Null Null;
_Null Null;
} }

View File

@@ -1,56 +1,57 @@
#include "yaml-cpp/ostream_wrapper.h" #include "yaml-cpp/ostream_wrapper.h"
#include <algorithm>
#include <cstring> #include <cstring>
#include <iostream> #include <iostream>
namespace YAML namespace YAML {
{ ostream_wrapper::ostream_wrapper()
ostream_wrapper::ostream_wrapper(): m_pStream(0), m_pos(0), m_row(0), m_col(0), m_comment(false) : m_buffer(1, '\0'),
{ m_pStream(0),
} m_pos(0),
m_row(0),
m_col(0),
m_comment(false) {}
ostream_wrapper::ostream_wrapper(std::ostream& stream): m_pStream(&stream), m_pos(0), m_row(0), m_col(0), m_comment(false) ostream_wrapper::ostream_wrapper(std::ostream& stream)
{ : m_pStream(&stream), m_pos(0), m_row(0), m_col(0), m_comment(false) {}
}
ostream_wrapper::~ostream_wrapper() ostream_wrapper::~ostream_wrapper() {}
{
}
void ostream_wrapper::write(const std::string& str) void ostream_wrapper::write(const std::string& str) {
{ if (m_pStream) {
if(m_pStream) { m_pStream->write(str.c_str(), str.size());
m_pStream->write(str.c_str(), str.size()); } else {
} else { m_buffer.resize(std::max(m_buffer.size(), m_pos + str.size() + 1));
m_buffer.resize(std::max(m_buffer.size(), m_pos + str.size() + 1)); std::copy(str.begin(), str.end(), m_buffer.begin() + m_pos);
std::copy(str.begin(), str.end(), &m_buffer[m_pos]); }
}
for(std::size_t i=0;i<str.size();i++) for (std::size_t i = 0; i < str.size(); i++) {
update_pos(str[i]); update_pos(str[i]);
} }
}
void ostream_wrapper::write(const char *str, std::size_t size)
{ void ostream_wrapper::write(const char* str, std::size_t size) {
if(m_pStream) { if (m_pStream) {
m_pStream->write(str, size); m_pStream->write(str, size);
} else { } else {
m_buffer.resize(std::max(m_buffer.size(), m_pos + size + 1)); m_buffer.resize(std::max(m_buffer.size(), m_pos + size + 1));
std::copy(str, str + size, &m_buffer[m_pos]); std::copy(str, str + size, m_buffer.begin() + m_pos);
} }
for(std::size_t i=0;i<size;i++) for (std::size_t i = 0; i < size; i++) {
update_pos(str[i]); update_pos(str[i]);
} }
}
void ostream_wrapper::update_pos(char ch)
{ void ostream_wrapper::update_pos(char ch) {
m_pos++; m_pos++;
m_col++; m_col++;
if(ch == '\n') { if (ch == '\n') {
m_row++; m_row++;
m_col = 0; m_col = 0;
m_comment = false; m_comment = false;
} }
} }
} }

View File

@@ -1,68 +1,68 @@
#include "yaml-cpp/node/parse.h" #include "yaml-cpp/node/parse.h"
#include <fstream>
#include <sstream>
#include "yaml-cpp/node/node.h" #include "yaml-cpp/node/node.h"
#include "yaml-cpp/node/impl.h" #include "yaml-cpp/node/impl.h"
#include "yaml-cpp/parser.h" #include "yaml-cpp/parser.h"
#include "nodebuilder.h" #include "nodebuilder.h"
#include <fstream> namespace YAML {
#include <sstream> Node Load(const std::string& input) {
std::stringstream stream(input);
namespace YAML return Load(stream);
{ }
Node Load(const std::string& input) {
std::stringstream stream(input); Node Load(const char* input) {
return Load(stream); std::stringstream stream(input);
} return Load(stream);
}
Node Load(const char *input) {
std::stringstream stream(input); Node Load(std::istream& input) {
return Load(stream); Parser parser(input);
} NodeBuilder builder;
if (!parser.HandleNextDocument(builder))
Node Load(std::istream& input) { return Node();
Parser parser(input);
NodeBuilder builder; return builder.Root();
if(!parser.HandleNextDocument(builder)) }
return Node();
Node LoadFile(const std::string& filename) {
return builder.Root(); std::ifstream fin(filename.c_str());
} if (!fin)
throw BadFile();
Node LoadFile(const std::string& filename) { return Load(fin);
std::ifstream fin(filename.c_str()); }
if(!fin)
throw BadFile(); std::vector<Node> LoadAll(const std::string& input) {
return Load(fin); std::stringstream stream(input);
} return LoadAll(stream);
}
std::vector<Node> LoadAll(const std::string& input) {
std::stringstream stream(input); std::vector<Node> LoadAll(const char* input) {
return LoadAll(stream); std::stringstream stream(input);
} return LoadAll(stream);
}
std::vector<Node> LoadAll(const char *input) {
std::stringstream stream(input); std::vector<Node> LoadAll(std::istream& input) {
return LoadAll(stream); std::vector<Node> docs;
}
Parser parser(input);
std::vector<Node> LoadAll(std::istream& input) { while (1) {
std::vector<Node> docs; NodeBuilder builder;
if (!parser.HandleNextDocument(builder))
Parser parser(input); break;
while(1) { docs.push_back(builder.Root());
NodeBuilder builder; }
if(!parser.HandleNextDocument(builder))
break; return docs;
docs.push_back(builder.Root()); }
}
std::vector<Node> LoadAllFromFile(const std::string& filename) {
return docs; std::ifstream fin(filename.c_str());
} if (!fin)
throw BadFile();
std::vector<Node> LoadAllFromFile(const std::string& filename) { return LoadAll(fin);
std::ifstream fin(filename.c_str()); }
if(!fin)
throw BadFile();
return LoadAll(fin);
}
} }

View File

@@ -1,141 +1,128 @@
#include "yaml-cpp/parser.h"
#include "yaml-cpp/eventhandler.h"
#include "yaml-cpp/exceptions.h"
#include "directives.h"
#include "scanner.h"
#include "singledocparser.h"
#include "tag.h"
#include "token.h"
#include <sstream>
#include <cstdio> #include <cstdio>
#include <sstream>
namespace YAML #include "directives.h" // IWYU pragma: keep
{ #include "scanner.h" // IWYU pragma: keep
Parser::Parser() #include "singledocparser.h"
{ #include "token.h"
} #include "yaml-cpp/exceptions.h" // IWYU pragma: keep
#include "yaml-cpp/parser.h"
Parser::Parser(std::istream& in) namespace YAML {
{ class EventHandler;
Load(in);
}
Parser::~Parser() Parser::Parser() {}
{
}
Parser::operator bool() const Parser::Parser(std::istream& in) { Load(in); }
{
return m_pScanner.get() && !m_pScanner->empty();
}
void Parser::Load(std::istream& in) Parser::~Parser() {}
{
m_pScanner.reset(new Scanner(in));
m_pDirectives.reset(new Directives);
}
// HandleNextDocument Parser::operator bool() const {
// . Handles the next document return m_pScanner.get() && !m_pScanner->empty();
// . Throws a ParserException on error. }
// . Returns false if there are no more documents
bool Parser::HandleNextDocument(EventHandler& eventHandler) void Parser::Load(std::istream& in) {
{ m_pScanner.reset(new Scanner(in));
if(!m_pScanner.get()) m_pDirectives.reset(new Directives);
return false; }
ParseDirectives(); // HandleNextDocument
if(m_pScanner->empty()) // . Handles the next document
return false; // . Throws a ParserException on error.
// . Returns false if there are no more documents
SingleDocParser sdp(*m_pScanner, *m_pDirectives); bool Parser::HandleNextDocument(EventHandler& eventHandler) {
sdp.HandleDocument(eventHandler); if (!m_pScanner.get())
return true; return false;
}
ParseDirectives();
// ParseDirectives if (m_pScanner->empty())
// . Reads any directives that are next in the queue. return false;
void Parser::ParseDirectives()
{ SingleDocParser sdp(*m_pScanner, *m_pDirectives);
bool readDirective = false; sdp.HandleDocument(eventHandler);
return true;
while(1) { }
if(m_pScanner->empty())
break; // ParseDirectives
// . Reads any directives that are next in the queue.
Token& token = m_pScanner->peek(); void Parser::ParseDirectives() {
if(token.type != Token::DIRECTIVE) bool readDirective = false;
break;
while (1) {
// we keep the directives from the last document if none are specified; if (m_pScanner->empty())
// but if any directives are specific, then we reset them break;
if(!readDirective)
m_pDirectives.reset(new Directives); Token& token = m_pScanner->peek();
if (token.type != Token::DIRECTIVE)
readDirective = true; break;
HandleDirective(token);
m_pScanner->pop(); // we keep the directives from the last document if none are specified;
} // but if any directives are specific, then we reset them
} if (!readDirective)
m_pDirectives.reset(new Directives);
void Parser::HandleDirective(const Token& token)
{ readDirective = true;
if(token.value == "YAML") HandleDirective(token);
HandleYamlDirective(token); m_pScanner->pop();
else if(token.value == "TAG") }
HandleTagDirective(token); }
}
void Parser::HandleDirective(const Token& token) {
// HandleYamlDirective if (token.value == "YAML")
// . Should be of the form 'major.minor' (like a version number) HandleYamlDirective(token);
void Parser::HandleYamlDirective(const Token& token) else if (token.value == "TAG")
{ HandleTagDirective(token);
if(token.params.size() != 1) }
throw ParserException(token.mark, ErrorMsg::YAML_DIRECTIVE_ARGS);
// HandleYamlDirective
if(!m_pDirectives->version.isDefault) // . Should be of the form 'major.minor' (like a version number)
throw ParserException(token.mark, ErrorMsg::REPEATED_YAML_DIRECTIVE); void Parser::HandleYamlDirective(const Token& token) {
if (token.params.size() != 1)
std::stringstream str(token.params[0]); throw ParserException(token.mark, ErrorMsg::YAML_DIRECTIVE_ARGS);
str >> m_pDirectives->version.major;
str.get(); if (!m_pDirectives->version.isDefault)
str >> m_pDirectives->version.minor; throw ParserException(token.mark, ErrorMsg::REPEATED_YAML_DIRECTIVE);
if(!str || str.peek() != EOF)
throw ParserException(token.mark, std::string(ErrorMsg::YAML_VERSION) + token.params[0]); std::stringstream str(token.params[0]);
str >> m_pDirectives->version.major;
if(m_pDirectives->version.major > 1) str.get();
throw ParserException(token.mark, ErrorMsg::YAML_MAJOR_VERSION); str >> m_pDirectives->version.minor;
if (!str || str.peek() != EOF)
m_pDirectives->version.isDefault = false; throw ParserException(
// TODO: warning on major == 1, minor > 2? token.mark, std::string(ErrorMsg::YAML_VERSION) + token.params[0]);
}
if (m_pDirectives->version.major > 1)
// HandleTagDirective throw ParserException(token.mark, ErrorMsg::YAML_MAJOR_VERSION);
// . Should be of the form 'handle prefix', where 'handle' is converted to 'prefix' in the file.
void Parser::HandleTagDirective(const Token& token) m_pDirectives->version.isDefault = false;
{ // TODO: warning on major == 1, minor > 2?
if(token.params.size() != 2) }
throw ParserException(token.mark, ErrorMsg::TAG_DIRECTIVE_ARGS);
// HandleTagDirective
const std::string& handle = token.params[0]; // . Should be of the form 'handle prefix', where 'handle' is converted to
const std::string& prefix = token.params[1]; // 'prefix' in the file.
if(m_pDirectives->tags.find(handle) != m_pDirectives->tags.end()) void Parser::HandleTagDirective(const Token& token) {
throw ParserException(token.mark, ErrorMsg::REPEATED_TAG_DIRECTIVE); if (token.params.size() != 2)
throw ParserException(token.mark, ErrorMsg::TAG_DIRECTIVE_ARGS);
m_pDirectives->tags[handle] = prefix;
} const std::string& handle = token.params[0];
const std::string& prefix = token.params[1];
void Parser::PrintTokens(std::ostream& out) if (m_pDirectives->tags.find(handle) != m_pDirectives->tags.end())
{ throw ParserException(token.mark, ErrorMsg::REPEATED_TAG_DIRECTIVE);
if(!m_pScanner.get())
return; m_pDirectives->tags[handle] = prefix;
}
while(1) {
if(m_pScanner->empty()) void Parser::PrintTokens(std::ostream& out) {
break; if (!m_pScanner.get())
return;
out << m_pScanner->peek() << "\n";
m_pScanner->pop(); while (1) {
} if (m_pScanner->empty())
} break;
out << m_pScanner->peek() << "\n";
m_pScanner->pop();
}
}
} }

View File

@@ -1,49 +1,53 @@
#ifndef PTR_STACK_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #ifndef PTR_STACK_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define PTR_STACK_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #define PTR_STACK_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || (defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || (__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4 #if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once #pragma once
#endif #endif
#include "yaml-cpp/noncopyable.h"
#include <cstddef> #include <cstddef>
#include <cstdlib> #include <cstdlib>
#include <memory> #include <memory>
#include <vector> #include <vector>
#include "yaml-cpp/noncopyable.h"
template <typename T> template <typename T>
class ptr_stack: private YAML::noncopyable class ptr_stack : private YAML::noncopyable {
{ public:
public: ptr_stack() {}
ptr_stack() {} ~ptr_stack() { clear(); }
~ptr_stack() { clear(); }
void clear() { void clear() {
for(unsigned i=0;i<m_data.size();i++) for (std::size_t i = 0; i < m_data.size(); i++)
delete m_data[i]; delete m_data[i];
m_data.clear(); m_data.clear();
} }
std::size_t size() const { return m_data.size(); } std::size_t size() const { return m_data.size(); }
bool empty() const { return m_data.empty(); } bool empty() const { return m_data.empty(); }
void push(std::auto_ptr<T> t) { void push(std::auto_ptr<T> t) {
m_data.push_back(NULL); m_data.push_back(NULL);
m_data.back() = t.release(); m_data.back() = t.release();
} }
std::auto_ptr<T> pop() { std::auto_ptr<T> pop() {
std::auto_ptr<T> t(m_data.back()); std::auto_ptr<T> t(m_data.back());
m_data.pop_back(); m_data.pop_back();
return t; return t;
} }
T& top() { return *m_data.back(); } T& top() { return *m_data.back(); }
const T& top() const { return *m_data.back(); } const T& top() const { return *m_data.back(); }
T& top(std::ptrdiff_t diff) { return **(m_data.end() - 1 + diff); } T& top(std::ptrdiff_t diff) { return **(m_data.end() - 1 + diff); }
const T& top(std::ptrdiff_t diff) const { return **(m_data.end() - 1 + diff); } const T& top(std::ptrdiff_t diff) const {
return **(m_data.end() - 1 + diff);
}
private: private:
std::vector<T*> m_data; std::vector<T*> m_data;
}; };
#endif // PTR_STACK_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #endif // PTR_STACK_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@@ -1,47 +1,49 @@
#ifndef PTR_VECTOR_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #ifndef PTR_VECTOR_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define PTR_VECTOR_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #define PTR_VECTOR_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || (defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || (__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4 #if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once #pragma once
#endif #endif
#include "yaml-cpp/noncopyable.h"
#include <cstddef> #include <cstddef>
#include <cstdlib> #include <cstdlib>
#include <memory> #include <memory>
#include <vector> #include <vector>
#include "yaml-cpp/noncopyable.h"
namespace YAML { namespace YAML {
template <typename T> template <typename T>
class ptr_vector: private YAML::noncopyable class ptr_vector : private YAML::noncopyable {
{ public:
public: ptr_vector() {}
ptr_vector() {} ~ptr_vector() { clear(); }
~ptr_vector() { clear(); }
void clear() { void clear() {
for(unsigned i=0;i<m_data.size();i++) for (std::size_t i = 0; i < m_data.size(); i++)
delete m_data[i]; delete m_data[i];
m_data.clear(); m_data.clear();
} }
std::size_t size() const { return m_data.size(); } std::size_t size() const { return m_data.size(); }
bool empty() const { return m_data.empty(); } bool empty() const { return m_data.empty(); }
void push_back(std::auto_ptr<T> t) { void push_back(std::auto_ptr<T> t) {
m_data.push_back(NULL); m_data.push_back(NULL);
m_data.back() = t.release(); m_data.back() = t.release();
} }
T& operator[](std::size_t i) { return *m_data[i]; } T& operator[](std::size_t i) { return *m_data[i]; }
const T& operator[](std::size_t i) const { return *m_data[i]; } const T& operator[](std::size_t i) const { return *m_data[i]; }
T& back() { return *m_data.back(); } T& back() { return *m_data.back(); }
const T& back() const { return *m_data.back(); } const T& back() const { return *m_data.back(); }
private: private:
std::vector<T*> m_data; std::vector<T*> m_data;
}; };
} }
#endif // PTR_VECTOR_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #endif // PTR_VECTOR_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@@ -1,60 +0,0 @@
#include "regex.h"
namespace YAML
{
// constructors
RegEx::RegEx(): m_op(REGEX_EMPTY)
{
}
RegEx::RegEx(REGEX_OP op): m_op(op)
{
}
RegEx::RegEx(char ch): m_op(REGEX_MATCH), m_a(ch)
{
}
RegEx::RegEx(char a, char z): m_op(REGEX_RANGE), m_a(a), m_z(z)
{
}
RegEx::RegEx(const std::string& str, REGEX_OP op): m_op(op)
{
for(std::size_t i=0;i<str.size();i++)
m_params.push_back(RegEx(str[i]));
}
// combination constructors
RegEx operator ! (const RegEx& ex)
{
RegEx ret(REGEX_NOT);
ret.m_params.push_back(ex);
return ret;
}
RegEx operator || (const RegEx& ex1, const RegEx& ex2)
{
RegEx ret(REGEX_OR);
ret.m_params.push_back(ex1);
ret.m_params.push_back(ex2);
return ret;
}
RegEx operator && (const RegEx& ex1, const RegEx& ex2)
{
RegEx ret(REGEX_AND);
ret.m_params.push_back(ex1);
ret.m_params.push_back(ex2);
return ret;
}
RegEx operator + (const RegEx& ex1, const RegEx& ex2)
{
RegEx ret(REGEX_SEQ);
ret.m_params.push_back(ex1);
ret.m_params.push_back(ex2);
return ret;
}
}

View File

@@ -1,67 +0,0 @@
#ifndef REGEX_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define REGEX_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || (defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || (__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once
#endif
#include <vector>
#include <string>
namespace YAML
{
class Stream;
enum REGEX_OP { REGEX_EMPTY, REGEX_MATCH, REGEX_RANGE, REGEX_OR, REGEX_AND, REGEX_NOT, REGEX_SEQ };
// simplified regular expressions
// . Only straightforward matches (no repeated characters)
// . Only matches from start of string
class RegEx
{
public:
RegEx();
RegEx(char ch);
RegEx(char a, char z);
RegEx(const std::string& str, REGEX_OP op = REGEX_SEQ);
~RegEx() {}
friend RegEx operator ! (const RegEx& ex);
friend RegEx operator || (const RegEx& ex1, const RegEx& ex2);
friend RegEx operator && (const RegEx& ex1, const RegEx& ex2);
friend RegEx operator + (const RegEx& ex1, const RegEx& ex2);
bool Matches(char ch) const;
bool Matches(const std::string& str) const;
bool Matches(const Stream& in) const;
template <typename Source> bool Matches(const Source& source) const;
int Match(const std::string& str) const;
int Match(const Stream& in) const;
template <typename Source> int Match(const Source& source) const;
private:
RegEx(REGEX_OP op);
template <typename Source> bool IsValidSource(const Source& source) const;
template <typename Source> int MatchUnchecked(const Source& source) const;
template <typename Source> int MatchOpEmpty(const Source& source) const;
template <typename Source> int MatchOpMatch(const Source& source) const;
template <typename Source> int MatchOpRange(const Source& source) const;
template <typename Source> int MatchOpOr(const Source& source) const;
template <typename Source> int MatchOpAnd(const Source& source) const;
template <typename Source> int MatchOpNot(const Source& source) const;
template <typename Source> int MatchOpSeq(const Source& source) const;
private:
REGEX_OP m_op;
char m_a, m_z;
std::vector <RegEx> m_params;
};
}
#include "regeximpl.h"
#endif // REGEX_H_62B23520_7C8E_11DE_8A39_0800200C9A66

45
src/regex_yaml.cpp Normal file
View File

@@ -0,0 +1,45 @@
#include "regex_yaml.h"
namespace YAML {
// constructors
RegEx::RegEx() : m_op(REGEX_EMPTY) {}
RegEx::RegEx(REGEX_OP op) : m_op(op) {}
RegEx::RegEx(char ch) : m_op(REGEX_MATCH), m_a(ch) {}
RegEx::RegEx(char a, char z) : m_op(REGEX_RANGE), m_a(a), m_z(z) {}
RegEx::RegEx(const std::string& str, REGEX_OP op) : m_op(op) {
for (std::size_t i = 0; i < str.size(); i++)
m_params.push_back(RegEx(str[i]));
}
// combination constructors
RegEx operator!(const RegEx& ex) {
RegEx ret(REGEX_NOT);
ret.m_params.push_back(ex);
return ret;
}
RegEx operator||(const RegEx& ex1, const RegEx& ex2) {
RegEx ret(REGEX_OR);
ret.m_params.push_back(ex1);
ret.m_params.push_back(ex2);
return ret;
}
RegEx operator&&(const RegEx& ex1, const RegEx& ex2) {
RegEx ret(REGEX_AND);
ret.m_params.push_back(ex1);
ret.m_params.push_back(ex2);
return ret;
}
RegEx operator+(const RegEx& ex1, const RegEx& ex2) {
RegEx ret(REGEX_SEQ);
ret.m_params.push_back(ex1);
ret.m_params.push_back(ex2);
return ret;
}
}

85
src/regex_yaml.h Normal file
View File

@@ -0,0 +1,85 @@
#ifndef REGEX_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define REGEX_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once
#endif
#include <string>
#include <vector>
namespace YAML {
class Stream;
enum REGEX_OP {
REGEX_EMPTY,
REGEX_MATCH,
REGEX_RANGE,
REGEX_OR,
REGEX_AND,
REGEX_NOT,
REGEX_SEQ
};
// simplified regular expressions
// . Only straightforward matches (no repeated characters)
// . Only matches from start of string
class RegEx {
public:
RegEx();
RegEx(char ch);
RegEx(char a, char z);
RegEx(const std::string& str, REGEX_OP op = REGEX_SEQ);
~RegEx() {}
friend RegEx operator!(const RegEx& ex);
friend RegEx operator||(const RegEx& ex1, const RegEx& ex2);
friend RegEx operator&&(const RegEx& ex1, const RegEx& ex2);
friend RegEx operator+(const RegEx& ex1, const RegEx& ex2);
bool Matches(char ch) const;
bool Matches(const std::string& str) const;
bool Matches(const Stream& in) const;
template <typename Source>
bool Matches(const Source& source) const;
int Match(const std::string& str) const;
int Match(const Stream& in) const;
template <typename Source>
int Match(const Source& source) const;
private:
RegEx(REGEX_OP op);
template <typename Source>
bool IsValidSource(const Source& source) const;
template <typename Source>
int MatchUnchecked(const Source& source) const;
template <typename Source>
int MatchOpEmpty(const Source& source) const;
template <typename Source>
int MatchOpMatch(const Source& source) const;
template <typename Source>
int MatchOpRange(const Source& source) const;
template <typename Source>
int MatchOpOr(const Source& source) const;
template <typename Source>
int MatchOpAnd(const Source& source) const;
template <typename Source>
int MatchOpNot(const Source& source) const;
template <typename Source>
int MatchOpSeq(const Source& source) const;
private:
REGEX_OP m_op;
char m_a, m_z;
std::vector<RegEx> m_params;
};
}
#include "regeximpl.h"
#endif // REGEX_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@@ -1,186 +1,186 @@
#ifndef REGEXIMPL_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #ifndef REGEXIMPL_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define REGEXIMPL_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #define REGEXIMPL_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || (defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || (__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4 #if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once #pragma once
#endif #endif
#include "stream.h" #include "stream.h"
#include "stringsource.h" #include "stringsource.h"
#include "streamcharsource.h" #include "streamcharsource.h"
namespace YAML namespace YAML {
{ // query matches
// query matches inline bool RegEx::Matches(char ch) const {
inline bool RegEx::Matches(char ch) const { std::string str;
std::string str; str += ch;
str += ch; return Matches(str);
return Matches(str);
}
inline bool RegEx::Matches(const std::string& str) const {
return Match(str) >= 0;
}
inline bool RegEx::Matches(const Stream& in) const {
return Match(in) >= 0;
}
template <typename Source>
inline bool RegEx::Matches(const Source& source) const {
return Match(source) >= 0;
}
// Match
// . Matches the given string against this regular expression.
// . Returns the number of characters matched.
// . Returns -1 if no characters were matched (the reason for
// not returning zero is that we may have an empty regex
// which is ALWAYS successful at matching zero characters).
// . REMEMBER that we only match from the start of the buffer!
inline int RegEx::Match(const std::string& str) const
{
StringCharSource source(str.c_str(), str.size());
return Match(source);
}
inline int RegEx::Match(const Stream& in) const
{
StreamCharSource source(in);
return Match(source);
}
template <typename Source>
inline bool RegEx::IsValidSource(const Source& source) const
{
return source;
}
template<>
inline bool RegEx::IsValidSource<StringCharSource>(const StringCharSource&source) const
{
switch(m_op) {
case REGEX_MATCH:
case REGEX_RANGE:
return source;
default:
return true;
}
}
template <typename Source>
inline int RegEx::Match(const Source& source) const
{
return IsValidSource(source) ? MatchUnchecked(source) : -1;
}
template <typename Source>
inline int RegEx::MatchUnchecked(const Source& source) const
{
switch(m_op) {
case REGEX_EMPTY:
return MatchOpEmpty(source);
case REGEX_MATCH:
return MatchOpMatch(source);
case REGEX_RANGE:
return MatchOpRange(source);
case REGEX_OR:
return MatchOpOr(source);
case REGEX_AND:
return MatchOpAnd(source);
case REGEX_NOT:
return MatchOpNot(source);
case REGEX_SEQ:
return MatchOpSeq(source);
}
return -1;
}
//////////////////////////////////////////////////////////////////////////////
// Operators
// Note: the convention MatchOp*<Source> is that we can assume IsSourceValid(source).
// So we do all our checks *before* we call these functions
// EmptyOperator
template <typename Source>
inline int RegEx::MatchOpEmpty(const Source& source) const {
return source[0] == Stream::eof() ? 0 : -1;
}
template <>
inline int RegEx::MatchOpEmpty<StringCharSource>(const StringCharSource& source) const {
return !source ? 0 : -1; // the empty regex only is successful on the empty string
}
// MatchOperator
template <typename Source>
inline int RegEx::MatchOpMatch(const Source& source) const {
if(source[0] != m_a)
return -1;
return 1;
}
// RangeOperator
template <typename Source>
inline int RegEx::MatchOpRange(const Source& source) const {
if(m_a > source[0] || m_z < source[0])
return -1;
return 1;
}
// OrOperator
template <typename Source>
inline int RegEx::MatchOpOr(const Source& source) const {
for(std::size_t i=0;i<m_params.size();i++) {
int n = m_params[i].MatchUnchecked(source);
if(n >= 0)
return n;
}
return -1;
}
// AndOperator
// Note: 'AND' is a little funny, since we may be required to match things
// of different lengths. If we find a match, we return the length of
// the FIRST entry on the list.
template <typename Source>
inline int RegEx::MatchOpAnd(const Source& source) const {
int first = -1;
for(std::size_t i=0;i<m_params.size();i++) {
int n = m_params[i].MatchUnchecked(source);
if(n == -1)
return -1;
if(i == 0)
first = n;
}
return first;
}
// NotOperator
template <typename Source>
inline int RegEx::MatchOpNot(const Source& source) const {
if(m_params.empty())
return -1;
if(m_params[0].MatchUnchecked(source) >= 0)
return -1;
return 1;
}
// SeqOperator
template <typename Source>
inline int RegEx::MatchOpSeq(const Source& source) const {
int offset = 0;
for(std::size_t i=0;i<m_params.size();i++) {
int n = m_params[i].Match(source + offset); // note Match, not MatchUnchecked because we need to check validity after the offset
if(n == -1)
return -1;
offset += n;
}
return offset;
}
} }
#endif // REGEXIMPL_H_62B23520_7C8E_11DE_8A39_0800200C9A66 inline bool RegEx::Matches(const std::string& str) const {
return Match(str) >= 0;
}
inline bool RegEx::Matches(const Stream& in) const { return Match(in) >= 0; }
template <typename Source>
inline bool RegEx::Matches(const Source& source) const {
return Match(source) >= 0;
}
// Match
// . Matches the given string against this regular expression.
// . Returns the number of characters matched.
// . Returns -1 if no characters were matched (the reason for
// not returning zero is that we may have an empty regex
// which is ALWAYS successful at matching zero characters).
// . REMEMBER that we only match from the start of the buffer!
inline int RegEx::Match(const std::string& str) const {
StringCharSource source(str.c_str(), str.size());
return Match(source);
}
inline int RegEx::Match(const Stream& in) const {
StreamCharSource source(in);
return Match(source);
}
template <typename Source>
inline bool RegEx::IsValidSource(const Source& source) const {
return source;
}
template <>
inline bool RegEx::IsValidSource<StringCharSource>(
const StringCharSource& source) const {
switch (m_op) {
case REGEX_MATCH:
case REGEX_RANGE:
return source;
default:
return true;
}
}
template <typename Source>
inline int RegEx::Match(const Source& source) const {
return IsValidSource(source) ? MatchUnchecked(source) : -1;
}
template <typename Source>
inline int RegEx::MatchUnchecked(const Source& source) const {
switch (m_op) {
case REGEX_EMPTY:
return MatchOpEmpty(source);
case REGEX_MATCH:
return MatchOpMatch(source);
case REGEX_RANGE:
return MatchOpRange(source);
case REGEX_OR:
return MatchOpOr(source);
case REGEX_AND:
return MatchOpAnd(source);
case REGEX_NOT:
return MatchOpNot(source);
case REGEX_SEQ:
return MatchOpSeq(source);
}
return -1;
}
//////////////////////////////////////////////////////////////////////////////
// Operators
// Note: the convention MatchOp*<Source> is that we can assume
// IsSourceValid(source).
// So we do all our checks *before* we call these functions
// EmptyOperator
template <typename Source>
inline int RegEx::MatchOpEmpty(const Source& source) const {
return source[0] == Stream::eof() ? 0 : -1;
}
template <>
inline int RegEx::MatchOpEmpty<StringCharSource>(
const StringCharSource& source) const {
return !source
? 0
: -1; // the empty regex only is successful on the empty string
}
// MatchOperator
template <typename Source>
inline int RegEx::MatchOpMatch(const Source& source) const {
if (source[0] != m_a)
return -1;
return 1;
}
// RangeOperator
template <typename Source>
inline int RegEx::MatchOpRange(const Source& source) const {
if (m_a > source[0] || m_z < source[0])
return -1;
return 1;
}
// OrOperator
template <typename Source>
inline int RegEx::MatchOpOr(const Source& source) const {
for (std::size_t i = 0; i < m_params.size(); i++) {
int n = m_params[i].MatchUnchecked(source);
if (n >= 0)
return n;
}
return -1;
}
// AndOperator
// Note: 'AND' is a little funny, since we may be required to match things
// of different lengths. If we find a match, we return the length of
// the FIRST entry on the list.
template <typename Source>
inline int RegEx::MatchOpAnd(const Source& source) const {
int first = -1;
for (std::size_t i = 0; i < m_params.size(); i++) {
int n = m_params[i].MatchUnchecked(source);
if (n == -1)
return -1;
if (i == 0)
first = n;
}
return first;
}
// NotOperator
template <typename Source>
inline int RegEx::MatchOpNot(const Source& source) const {
if (m_params.empty())
return -1;
if (m_params[0].MatchUnchecked(source) >= 0)
return -1;
return 1;
}
// SeqOperator
template <typename Source>
inline int RegEx::MatchOpSeq(const Source& source) const {
int offset = 0;
for (std::size_t i = 0; i < m_params.size(); i++) {
int n = m_params[i].Match(source + offset); // note Match, not
// MatchUnchecked because we
// need to check validity after
// the offset
if (n == -1)
return -1;
offset += n;
}
return offset;
}
}
#endif // REGEXIMPL_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@@ -1,45 +1,43 @@
#include "scanner.h"
#include "token.h"
#include "yaml-cpp/exceptions.h"
#include "exp.h"
#include <cassert> #include <cassert>
#include <memory> #include <memory>
namespace YAML #include "exp.h"
{ #include "scanner.h"
Scanner::Scanner(std::istream& in) #include "token.h"
: INPUT(in), m_startedStream(false), m_endedStream(false), m_simpleKeyAllowed(false), m_canBeJSONFlow(false) #include "yaml-cpp/exceptions.h" // IWYU pragma: keep
{
}
Scanner::~Scanner() namespace YAML {
{ Scanner::Scanner(std::istream& in)
} : INPUT(in),
m_startedStream(false),
m_endedStream(false),
m_simpleKeyAllowed(false),
m_canBeJSONFlow(false) {}
// empty Scanner::~Scanner() {}
// . Returns true if there are no more tokens to be read
bool Scanner::empty()
{
EnsureTokensInQueue();
return m_tokens.empty();
}
// pop // empty
// . Simply removes the next token on the queue. // . Returns true if there are no more tokens to be read
void Scanner::pop() bool Scanner::empty() {
{ EnsureTokensInQueue();
EnsureTokensInQueue(); return m_tokens.empty();
if(!m_tokens.empty()) }
m_tokens.pop();
}
// peek // pop
// . Returns (but does not remove) the next token on the queue. // . Simply removes the next token on the queue.
Token& Scanner::peek() void Scanner::pop() {
{ EnsureTokensInQueue();
EnsureTokensInQueue(); if (!m_tokens.empty())
assert(!m_tokens.empty()); // should we be asserting here? I mean, we really just be checking m_tokens.pop();
// if it's empty before peeking. }
// peek
// . Returns (but does not remove) the next token on the queue.
Token& Scanner::peek() {
EnsureTokensInQueue();
assert(!m_tokens.empty()); // should we be asserting here? I mean, we really
// just be checking
// if it's empty before peeking.
#if 0 #if 0
static Token *pLast = 0; static Token *pLast = 0;
@@ -48,347 +46,341 @@ namespace YAML
pLast = &m_tokens.front(); pLast = &m_tokens.front();
#endif #endif
return m_tokens.front(); return m_tokens.front();
}
// mark
// . Returns the current mark in the stream
Mark Scanner::mark() const
{
return INPUT.mark();
}
// EnsureTokensInQueue
// . Scan until there's a valid token at the front of the queue,
// or we're sure the queue is empty.
void Scanner::EnsureTokensInQueue()
{
while(1) {
if(!m_tokens.empty()) {
Token& token = m_tokens.front();
// if this guy's valid, then we're done
if(token.status == Token::VALID)
return;
// here's where we clean up the impossible tokens
if(token.status == Token::INVALID) {
m_tokens.pop();
continue;
}
// note: what's left are the unverified tokens
}
// no token? maybe we've actually finished
if(m_endedStream)
return;
// no? then scan...
ScanNextToken();
}
}
// ScanNextToken
// . The main scanning function; here we branch out and
// scan whatever the next token should be.
void Scanner::ScanNextToken()
{
if(m_endedStream)
return;
if(!m_startedStream)
return StartStream();
// get rid of whitespace, etc. (in between tokens it should be irrelevent)
ScanToNextToken();
// maybe need to end some blocks
PopIndentToHere();
// *****
// And now branch based on the next few characters!
// *****
// end of stream
if(!INPUT)
return EndStream();
if(INPUT.column() == 0 && INPUT.peek() == Keys::Directive)
return ScanDirective();
// document token
if(INPUT.column() == 0 && Exp::DocStart().Matches(INPUT))
return ScanDocStart();
if(INPUT.column() == 0 && Exp::DocEnd().Matches(INPUT))
return ScanDocEnd();
// flow start/end/entry
if(INPUT.peek() == Keys::FlowSeqStart || INPUT.peek() == Keys::FlowMapStart)
return ScanFlowStart();
if(INPUT.peek() == Keys::FlowSeqEnd || INPUT.peek() == Keys::FlowMapEnd)
return ScanFlowEnd();
if(INPUT.peek() == Keys::FlowEntry)
return ScanFlowEntry();
// block/map stuff
if(Exp::BlockEntry().Matches(INPUT))
return ScanBlockEntry();
if((InBlockContext() ? Exp::Key() : Exp::KeyInFlow()).Matches(INPUT))
return ScanKey();
if(GetValueRegex().Matches(INPUT))
return ScanValue();
// alias/anchor
if(INPUT.peek() == Keys::Alias || INPUT.peek() == Keys::Anchor)
return ScanAnchorOrAlias();
// tag
if(INPUT.peek() == Keys::Tag)
return ScanTag();
// special scalars
if(InBlockContext() && (INPUT.peek() == Keys::LiteralScalar || INPUT.peek() == Keys::FoldedScalar))
return ScanBlockScalar();
if(INPUT.peek() == '\'' || INPUT.peek() == '\"')
return ScanQuotedScalar();
// plain scalars
if((InBlockContext() ? Exp::PlainScalar() : Exp::PlainScalarInFlow()).Matches(INPUT))
return ScanPlainScalar();
// don't know what it is!
throw ParserException(INPUT.mark(), ErrorMsg::UNKNOWN_TOKEN);
}
// ScanToNextToken
// . Eats input until we reach the next token-like thing.
void Scanner::ScanToNextToken()
{
while(1) {
// first eat whitespace
while(INPUT && IsWhitespaceToBeEaten(INPUT.peek())) {
if(InBlockContext() && Exp::Tab().Matches(INPUT))
m_simpleKeyAllowed = false;
INPUT.eat(1);
}
// then eat a comment
if(Exp::Comment().Matches(INPUT)) {
// eat until line break
while(INPUT && !Exp::Break().Matches(INPUT))
INPUT.eat(1);
}
// if it's NOT a line break, then we're done!
if(!Exp::Break().Matches(INPUT))
break;
// otherwise, let's eat the line break and keep going
int n = Exp::Break().Match(INPUT);
INPUT.eat(n);
// oh yeah, and let's get rid of that simple key
InvalidateSimpleKey();
// new line - we may be able to accept a simple key now
if(InBlockContext())
m_simpleKeyAllowed = true;
}
}
///////////////////////////////////////////////////////////////////////
// Misc. helpers
// IsWhitespaceToBeEaten
// . We can eat whitespace if it's a space or tab
// . Note: originally tabs in block context couldn't be eaten
// "where a simple key could be allowed
// (i.e., not at the beginning of a line, or following '-', '?', or ':')"
// I think this is wrong, since tabs can be non-content whitespace; it's just
// that they can't contribute to indentation, so once you've seen a tab in a
// line, you can't start a simple key
bool Scanner::IsWhitespaceToBeEaten(char ch)
{
if(ch == ' ')
return true;
if(ch == '\t')
return true;
return false;
}
// GetValueRegex
// . Get the appropriate regex to check if it's a value token
const RegEx& Scanner::GetValueRegex() const
{
if(InBlockContext())
return Exp::Value();
return m_canBeJSONFlow ? Exp::ValueInJSONFlow() : Exp::ValueInFlow();
}
// StartStream
// . Set the initial conditions for starting a stream.
void Scanner::StartStream()
{
m_startedStream = true;
m_simpleKeyAllowed = true;
std::auto_ptr<IndentMarker> pIndent(new IndentMarker(-1, IndentMarker::NONE));
m_indentRefs.push_back(pIndent);
m_indents.push(&m_indentRefs.back());
}
// EndStream
// . Close out the stream, finish up, etc.
void Scanner::EndStream()
{
// force newline
if(INPUT.column() > 0)
INPUT.ResetColumn();
PopAllIndents();
PopAllSimpleKeys();
m_simpleKeyAllowed = false;
m_endedStream = true;
}
Token *Scanner::PushToken(Token::TYPE type)
{
m_tokens.push(Token(type, INPUT.mark()));
return &m_tokens.back();
}
Token::TYPE Scanner::GetStartTokenFor(IndentMarker::INDENT_TYPE type) const
{
switch(type) {
case IndentMarker::SEQ: return Token::BLOCK_SEQ_START;
case IndentMarker::MAP: return Token::BLOCK_MAP_START;
case IndentMarker::NONE: assert(false); break;
}
assert(false);
throw std::runtime_error("yaml-cpp: internal error, invalid indent type");
}
// PushIndentTo
// . Pushes an indentation onto the stack, and enqueues the
// proper token (sequence start or mapping start).
// . Returns the indent marker it generates (if any).
Scanner::IndentMarker *Scanner::PushIndentTo(int column, IndentMarker::INDENT_TYPE type)
{
// are we in flow?
if(InFlowContext())
return 0;
std::auto_ptr<IndentMarker> pIndent(new IndentMarker(column, type));
IndentMarker& indent = *pIndent;
const IndentMarker& lastIndent = *m_indents.top();
// is this actually an indentation?
if(indent.column < lastIndent.column)
return 0;
if(indent.column == lastIndent.column && !(indent.type == IndentMarker::SEQ && lastIndent.type == IndentMarker::MAP))
return 0;
// push a start token
indent.pStartToken = PushToken(GetStartTokenFor(type));
// and then the indent
m_indents.push(&indent);
m_indentRefs.push_back(pIndent);
return &m_indentRefs.back();
}
// PopIndentToHere
// . Pops indentations off the stack until we reach the current indentation level,
// and enqueues the proper token each time.
// . Then pops all invalid indentations off.
void Scanner::PopIndentToHere()
{
// are we in flow?
if(InFlowContext())
return;
// now pop away
while(!m_indents.empty()) {
const IndentMarker& indent = *m_indents.top();
if(indent.column < INPUT.column())
break;
if(indent.column == INPUT.column() && !(indent.type == IndentMarker::SEQ && !Exp::BlockEntry().Matches(INPUT)))
break;
PopIndent();
}
while(!m_indents.empty() && m_indents.top()->status == IndentMarker::INVALID)
PopIndent();
}
// PopAllIndents
// . Pops all indentations (except for the base empty one) off the stack,
// and enqueues the proper token each time.
void Scanner::PopAllIndents()
{
// are we in flow?
if(InFlowContext())
return;
// now pop away
while(!m_indents.empty()) {
const IndentMarker& indent = *m_indents.top();
if(indent.type == IndentMarker::NONE)
break;
PopIndent();
}
}
// PopIndent
// . Pops a single indent, pushing the proper token
void Scanner::PopIndent()
{
const IndentMarker& indent = *m_indents.top();
m_indents.pop();
if(indent.status != IndentMarker::VALID) {
InvalidateSimpleKey();
return;
}
if(indent.type == IndentMarker::SEQ)
m_tokens.push(Token(Token::BLOCK_SEQ_END, INPUT.mark()));
else if(indent.type == IndentMarker::MAP)
m_tokens.push(Token(Token::BLOCK_MAP_END, INPUT.mark()));
}
// GetTopIndent
int Scanner::GetTopIndent() const
{
if(m_indents.empty())
return 0;
return m_indents.top()->column;
}
// ThrowParserException
// . Throws a ParserException with the current token location
// (if available).
// . Does not parse any more tokens.
void Scanner::ThrowParserException(const std::string& msg) const
{
Mark mark = Mark::null_mark();
if(!m_tokens.empty()) {
const Token& token = m_tokens.front();
mark = token.mark;
}
throw ParserException(mark, msg);
}
} }
// mark
// . Returns the current mark in the stream
Mark Scanner::mark() const { return INPUT.mark(); }
// EnsureTokensInQueue
// . Scan until there's a valid token at the front of the queue,
// or we're sure the queue is empty.
void Scanner::EnsureTokensInQueue() {
while (1) {
if (!m_tokens.empty()) {
Token& token = m_tokens.front();
// if this guy's valid, then we're done
if (token.status == Token::VALID)
return;
// here's where we clean up the impossible tokens
if (token.status == Token::INVALID) {
m_tokens.pop();
continue;
}
// note: what's left are the unverified tokens
}
// no token? maybe we've actually finished
if (m_endedStream)
return;
// no? then scan...
ScanNextToken();
}
}
// ScanNextToken
// . The main scanning function; here we branch out and
// scan whatever the next token should be.
void Scanner::ScanNextToken() {
if (m_endedStream)
return;
if (!m_startedStream)
return StartStream();
// get rid of whitespace, etc. (in between tokens it should be irrelevent)
ScanToNextToken();
// maybe need to end some blocks
PopIndentToHere();
// *****
// And now branch based on the next few characters!
// *****
// end of stream
if (!INPUT)
return EndStream();
if (INPUT.column() == 0 && INPUT.peek() == Keys::Directive)
return ScanDirective();
// document token
if (INPUT.column() == 0 && Exp::DocStart().Matches(INPUT))
return ScanDocStart();
if (INPUT.column() == 0 && Exp::DocEnd().Matches(INPUT))
return ScanDocEnd();
// flow start/end/entry
if (INPUT.peek() == Keys::FlowSeqStart || INPUT.peek() == Keys::FlowMapStart)
return ScanFlowStart();
if (INPUT.peek() == Keys::FlowSeqEnd || INPUT.peek() == Keys::FlowMapEnd)
return ScanFlowEnd();
if (INPUT.peek() == Keys::FlowEntry)
return ScanFlowEntry();
// block/map stuff
if (Exp::BlockEntry().Matches(INPUT))
return ScanBlockEntry();
if ((InBlockContext() ? Exp::Key() : Exp::KeyInFlow()).Matches(INPUT))
return ScanKey();
if (GetValueRegex().Matches(INPUT))
return ScanValue();
// alias/anchor
if (INPUT.peek() == Keys::Alias || INPUT.peek() == Keys::Anchor)
return ScanAnchorOrAlias();
// tag
if (INPUT.peek() == Keys::Tag)
return ScanTag();
// special scalars
if (InBlockContext() && (INPUT.peek() == Keys::LiteralScalar ||
INPUT.peek() == Keys::FoldedScalar))
return ScanBlockScalar();
if (INPUT.peek() == '\'' || INPUT.peek() == '\"')
return ScanQuotedScalar();
// plain scalars
if ((InBlockContext() ? Exp::PlainScalar() : Exp::PlainScalarInFlow())
.Matches(INPUT))
return ScanPlainScalar();
// don't know what it is!
throw ParserException(INPUT.mark(), ErrorMsg::UNKNOWN_TOKEN);
}
// ScanToNextToken
// . Eats input until we reach the next token-like thing.
void Scanner::ScanToNextToken() {
while (1) {
// first eat whitespace
while (INPUT && IsWhitespaceToBeEaten(INPUT.peek())) {
if (InBlockContext() && Exp::Tab().Matches(INPUT))
m_simpleKeyAllowed = false;
INPUT.eat(1);
}
// then eat a comment
if (Exp::Comment().Matches(INPUT)) {
// eat until line break
while (INPUT && !Exp::Break().Matches(INPUT))
INPUT.eat(1);
}
// if it's NOT a line break, then we're done!
if (!Exp::Break().Matches(INPUT))
break;
// otherwise, let's eat the line break and keep going
int n = Exp::Break().Match(INPUT);
INPUT.eat(n);
// oh yeah, and let's get rid of that simple key
InvalidateSimpleKey();
// new line - we may be able to accept a simple key now
if (InBlockContext())
m_simpleKeyAllowed = true;
}
}
///////////////////////////////////////////////////////////////////////
// Misc. helpers
// IsWhitespaceToBeEaten
// . We can eat whitespace if it's a space or tab
// . Note: originally tabs in block context couldn't be eaten
// "where a simple key could be allowed
// (i.e., not at the beginning of a line, or following '-', '?', or
// ':')"
// I think this is wrong, since tabs can be non-content whitespace; it's just
// that they can't contribute to indentation, so once you've seen a tab in a
// line, you can't start a simple key
bool Scanner::IsWhitespaceToBeEaten(char ch) {
if (ch == ' ')
return true;
if (ch == '\t')
return true;
return false;
}
// GetValueRegex
// . Get the appropriate regex to check if it's a value token
const RegEx& Scanner::GetValueRegex() const {
if (InBlockContext())
return Exp::Value();
return m_canBeJSONFlow ? Exp::ValueInJSONFlow() : Exp::ValueInFlow();
}
// StartStream
// . Set the initial conditions for starting a stream.
void Scanner::StartStream() {
m_startedStream = true;
m_simpleKeyAllowed = true;
std::auto_ptr<IndentMarker> pIndent(new IndentMarker(-1, IndentMarker::NONE));
m_indentRefs.push_back(pIndent);
m_indents.push(&m_indentRefs.back());
}
// EndStream
// . Close out the stream, finish up, etc.
void Scanner::EndStream() {
// force newline
if (INPUT.column() > 0)
INPUT.ResetColumn();
PopAllIndents();
PopAllSimpleKeys();
m_simpleKeyAllowed = false;
m_endedStream = true;
}
Token* Scanner::PushToken(Token::TYPE type) {
m_tokens.push(Token(type, INPUT.mark()));
return &m_tokens.back();
}
Token::TYPE Scanner::GetStartTokenFor(IndentMarker::INDENT_TYPE type) const {
switch (type) {
case IndentMarker::SEQ:
return Token::BLOCK_SEQ_START;
case IndentMarker::MAP:
return Token::BLOCK_MAP_START;
case IndentMarker::NONE:
assert(false);
break;
}
assert(false);
throw std::runtime_error("yaml-cpp: internal error, invalid indent type");
}
// PushIndentTo
// . Pushes an indentation onto the stack, and enqueues the
// proper token (sequence start or mapping start).
// . Returns the indent marker it generates (if any).
Scanner::IndentMarker* Scanner::PushIndentTo(int column,
IndentMarker::INDENT_TYPE type) {
// are we in flow?
if (InFlowContext())
return 0;
std::auto_ptr<IndentMarker> pIndent(new IndentMarker(column, type));
IndentMarker& indent = *pIndent;
const IndentMarker& lastIndent = *m_indents.top();
// is this actually an indentation?
if (indent.column < lastIndent.column)
return 0;
if (indent.column == lastIndent.column &&
!(indent.type == IndentMarker::SEQ &&
lastIndent.type == IndentMarker::MAP))
return 0;
// push a start token
indent.pStartToken = PushToken(GetStartTokenFor(type));
// and then the indent
m_indents.push(&indent);
m_indentRefs.push_back(pIndent);
return &m_indentRefs.back();
}
// PopIndentToHere
// . Pops indentations off the stack until we reach the current indentation
// level,
// and enqueues the proper token each time.
// . Then pops all invalid indentations off.
void Scanner::PopIndentToHere() {
// are we in flow?
if (InFlowContext())
return;
// now pop away
while (!m_indents.empty()) {
const IndentMarker& indent = *m_indents.top();
if (indent.column < INPUT.column())
break;
if (indent.column == INPUT.column() &&
!(indent.type == IndentMarker::SEQ &&
!Exp::BlockEntry().Matches(INPUT)))
break;
PopIndent();
}
while (!m_indents.empty() && m_indents.top()->status == IndentMarker::INVALID)
PopIndent();
}
// PopAllIndents
// . Pops all indentations (except for the base empty one) off the stack,
// and enqueues the proper token each time.
void Scanner::PopAllIndents() {
// are we in flow?
if (InFlowContext())
return;
// now pop away
while (!m_indents.empty()) {
const IndentMarker& indent = *m_indents.top();
if (indent.type == IndentMarker::NONE)
break;
PopIndent();
}
}
// PopIndent
// . Pops a single indent, pushing the proper token
void Scanner::PopIndent() {
const IndentMarker& indent = *m_indents.top();
m_indents.pop();
if (indent.status != IndentMarker::VALID) {
InvalidateSimpleKey();
return;
}
if (indent.type == IndentMarker::SEQ)
m_tokens.push(Token(Token::BLOCK_SEQ_END, INPUT.mark()));
else if (indent.type == IndentMarker::MAP)
m_tokens.push(Token(Token::BLOCK_MAP_END, INPUT.mark()));
}
// GetTopIndent
int Scanner::GetTopIndent() const {
if (m_indents.empty())
return 0;
return m_indents.top()->column;
}
// ThrowParserException
// . Throws a ParserException with the current token location
// (if available).
// . Does not parse any more tokens.
void Scanner::ThrowParserException(const std::string& msg) const {
Mark mark = Mark::null_mark();
if (!m_tokens.empty()) {
const Token& token = m_tokens.front();
mark = token.mark;
}
throw ParserException(mark, msg);
}
}

View File

@@ -1,133 +1,135 @@
#ifndef SCANNER_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #ifndef SCANNER_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define SCANNER_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #define SCANNER_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || (defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || (__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4 #if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once #pragma once
#endif #endif
#include <cstddef>
#include <ios> #include <ios>
#include <string>
#include <queue>
#include <stack>
#include <set>
#include <map> #include <map>
#include <queue>
#include <set>
#include <stack>
#include <string>
#include "ptr_vector.h" #include "ptr_vector.h"
#include "stream.h" #include "stream.h"
#include "token.h" #include "token.h"
#include "yaml-cpp/mark.h"
namespace YAML namespace YAML {
{ class Node;
class Node; class RegEx;
class RegEx;
class Scanner class Scanner {
{ public:
public: Scanner(std::istream &in);
Scanner(std::istream& in); ~Scanner();
~Scanner();
// token queue management (hopefully this looks kinda stl-ish) // token queue management (hopefully this looks kinda stl-ish)
bool empty(); bool empty();
void pop(); void pop();
Token& peek(); Token &peek();
Mark mark() const; Mark mark() const;
private: private:
struct IndentMarker { struct IndentMarker {
enum INDENT_TYPE { MAP, SEQ, NONE }; enum INDENT_TYPE { MAP, SEQ, NONE };
enum STATUS { VALID, INVALID, UNKNOWN }; enum STATUS { VALID, INVALID, UNKNOWN };
IndentMarker(int column_, INDENT_TYPE type_): column(column_), type(type_), status(VALID), pStartToken(0) {} IndentMarker(int column_, INDENT_TYPE type_)
: column(column_), type(type_), status(VALID), pStartToken(0) {}
int column; int column;
INDENT_TYPE type; INDENT_TYPE type;
STATUS status; STATUS status;
Token *pStartToken; Token *pStartToken;
}; };
enum FLOW_MARKER { FLOW_MAP, FLOW_SEQ }; enum FLOW_MARKER { FLOW_MAP, FLOW_SEQ };
private: private:
// scanning // scanning
void EnsureTokensInQueue(); void EnsureTokensInQueue();
void ScanNextToken(); void ScanNextToken();
void ScanToNextToken(); void ScanToNextToken();
void StartStream(); void StartStream();
void EndStream(); void EndStream();
Token *PushToken(Token::TYPE type); Token *PushToken(Token::TYPE type);
bool InFlowContext() const { return !m_flows.empty(); } bool InFlowContext() const { return !m_flows.empty(); }
bool InBlockContext() const { return m_flows.empty(); } bool InBlockContext() const { return m_flows.empty(); }
int GetFlowLevel() const { return m_flows.size(); } std::size_t GetFlowLevel() const { return m_flows.size(); }
Token::TYPE GetStartTokenFor(IndentMarker::INDENT_TYPE type) const; Token::TYPE GetStartTokenFor(IndentMarker::INDENT_TYPE type) const;
IndentMarker *PushIndentTo(int column, IndentMarker::INDENT_TYPE type); IndentMarker *PushIndentTo(int column, IndentMarker::INDENT_TYPE type);
void PopIndentToHere(); void PopIndentToHere();
void PopAllIndents(); void PopAllIndents();
void PopIndent(); void PopIndent();
int GetTopIndent() const; int GetTopIndent() const;
// checking input // checking input
bool CanInsertPotentialSimpleKey() const; bool CanInsertPotentialSimpleKey() const;
bool ExistsActiveSimpleKey() const; bool ExistsActiveSimpleKey() const;
void InsertPotentialSimpleKey(); void InsertPotentialSimpleKey();
void InvalidateSimpleKey(); void InvalidateSimpleKey();
bool VerifySimpleKey(); bool VerifySimpleKey();
void PopAllSimpleKeys(); void PopAllSimpleKeys();
void ThrowParserException(const std::string& msg) const; void ThrowParserException(const std::string &msg) const;
bool IsWhitespaceToBeEaten(char ch); bool IsWhitespaceToBeEaten(char ch);
const RegEx& GetValueRegex() const; const RegEx &GetValueRegex() const;
struct SimpleKey { struct SimpleKey {
SimpleKey(const Mark& mark_, int flowLevel_); SimpleKey(const Mark &mark_, std::size_t flowLevel_);
void Validate(); void Validate();
void Invalidate(); void Invalidate();
Mark mark; Mark mark;
int flowLevel; std::size_t flowLevel;
IndentMarker *pIndent; IndentMarker *pIndent;
Token *pMapStart, *pKey; Token *pMapStart, *pKey;
}; };
// and the tokens // and the tokens
void ScanDirective(); void ScanDirective();
void ScanDocStart(); void ScanDocStart();
void ScanDocEnd(); void ScanDocEnd();
void ScanBlockSeqStart(); void ScanBlockSeqStart();
void ScanBlockMapSTart(); void ScanBlockMapSTart();
void ScanBlockEnd(); void ScanBlockEnd();
void ScanBlockEntry(); void ScanBlockEntry();
void ScanFlowStart(); void ScanFlowStart();
void ScanFlowEnd(); void ScanFlowEnd();
void ScanFlowEntry(); void ScanFlowEntry();
void ScanKey(); void ScanKey();
void ScanValue(); void ScanValue();
void ScanAnchorOrAlias(); void ScanAnchorOrAlias();
void ScanTag(); void ScanTag();
void ScanPlainScalar(); void ScanPlainScalar();
void ScanQuotedScalar(); void ScanQuotedScalar();
void ScanBlockScalar(); void ScanBlockScalar();
private: private:
// the stream // the stream
Stream INPUT; Stream INPUT;
// the output (tokens) // the output (tokens)
std::queue<Token> m_tokens; std::queue<Token> m_tokens;
// state info // state info
bool m_startedStream, m_endedStream; bool m_startedStream, m_endedStream;
bool m_simpleKeyAllowed; bool m_simpleKeyAllowed;
bool m_canBeJSONFlow; bool m_canBeJSONFlow;
std::stack<SimpleKey> m_simpleKeys; std::stack<SimpleKey> m_simpleKeys;
std::stack<IndentMarker *> m_indents; std::stack<IndentMarker *> m_indents;
ptr_vector<IndentMarker> m_indentRefs; // for "garbage collection" ptr_vector<IndentMarker> m_indentRefs; // for "garbage collection"
std::stack<FLOW_MARKER> m_flows; std::stack<FLOW_MARKER> m_flows;
}; };
} }
#endif // SCANNER_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #endif // SCANNER_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@@ -1,214 +1,221 @@
#include "scanscalar.h" #include "scanscalar.h"
#include "scanner.h"
#include <algorithm>
#include "exp.h" #include "exp.h"
#include "yaml-cpp/exceptions.h" #include "regeximpl.h"
#include "token.h" #include "stream.h"
#include "yaml-cpp/exceptions.h" // IWYU pragma: keep
namespace YAML namespace YAML {
{ // ScanScalar
// ScanScalar // . This is where the scalar magic happens.
// . This is where the scalar magic happens. //
// // . We do the scanning in three phases:
// . We do the scanning in three phases: // 1. Scan until newline
// 1. Scan until newline // 2. Eat newline
// 2. Eat newline // 3. Scan leading blanks.
// 3. Scan leading blanks. //
// // . Depending on the parameters given, we store or stop
// . Depending on the parameters given, we store or stop // and different places in the above flow.
// and different places in the above flow. std::string ScanScalar(Stream& INPUT, ScanScalarParams& params) {
std::string ScanScalar(Stream& INPUT, ScanScalarParams& params) bool foundNonEmptyLine = false;
{ bool pastOpeningBreak = (params.fold == FOLD_FLOW);
bool foundNonEmptyLine = false; bool emptyLine = false, moreIndented = false;
bool pastOpeningBreak = (params.fold == FOLD_FLOW); int foldedNewlineCount = 0;
bool emptyLine = false, moreIndented = false; bool foldedNewlineStartedMoreIndented = false;
int foldedNewlineCount = 0; std::size_t lastEscapedChar = std::string::npos;
bool foldedNewlineStartedMoreIndented = false; std::string scalar;
std::size_t lastEscapedChar = std::string::npos; params.leadingSpaces = false;
std::string scalar;
params.leadingSpaces = false;
while(INPUT) { while (INPUT) {
// ******************************** // ********************************
// Phase #1: scan until line ending // Phase #1: scan until line ending
std::size_t lastNonWhitespaceChar = scalar.size(); std::size_t lastNonWhitespaceChar = scalar.size();
bool escapedNewline = false; bool escapedNewline = false;
while(!params.end.Matches(INPUT) && !Exp::Break().Matches(INPUT)) { while (!params.end.Matches(INPUT) && !Exp::Break().Matches(INPUT)) {
if(!INPUT) if (!INPUT)
break; break;
// document indicator? // document indicator?
if(INPUT.column() == 0 && Exp::DocIndicator().Matches(INPUT)) { if (INPUT.column() == 0 && Exp::DocIndicator().Matches(INPUT)) {
if(params.onDocIndicator == BREAK) if (params.onDocIndicator == BREAK)
break; break;
else if(params.onDocIndicator == THROW) else if (params.onDocIndicator == THROW)
throw ParserException(INPUT.mark(), ErrorMsg::DOC_IN_SCALAR); throw ParserException(INPUT.mark(), ErrorMsg::DOC_IN_SCALAR);
} }
foundNonEmptyLine = true; foundNonEmptyLine = true;
pastOpeningBreak = true; pastOpeningBreak = true;
// escaped newline? (only if we're escaping on slash) // escaped newline? (only if we're escaping on slash)
if(params.escape == '\\' && Exp::EscBreak().Matches(INPUT)) { if (params.escape == '\\' && Exp::EscBreak().Matches(INPUT)) {
// eat escape character and get out (but preserve trailing whitespace!) // eat escape character and get out (but preserve trailing whitespace!)
INPUT.get(); INPUT.get();
lastNonWhitespaceChar = scalar.size(); lastNonWhitespaceChar = scalar.size();
lastEscapedChar = scalar.size(); lastEscapedChar = scalar.size();
escapedNewline = true; escapedNewline = true;
break; break;
} }
// escape this? // escape this?
if(INPUT.peek() == params.escape) { if (INPUT.peek() == params.escape) {
scalar += Exp::Escape(INPUT); scalar += Exp::Escape(INPUT);
lastNonWhitespaceChar = scalar.size(); lastNonWhitespaceChar = scalar.size();
lastEscapedChar = scalar.size(); lastEscapedChar = scalar.size();
continue; continue;
} }
// otherwise, just add the damn character // otherwise, just add the damn character
char ch = INPUT.get(); char ch = INPUT.get();
scalar += ch; scalar += ch;
if(ch != ' ' && ch != '\t') if (ch != ' ' && ch != '\t')
lastNonWhitespaceChar = scalar.size(); lastNonWhitespaceChar = scalar.size();
} }
// eof? if we're looking to eat something, then we throw // eof? if we're looking to eat something, then we throw
if(!INPUT) { if (!INPUT) {
if(params.eatEnd) if (params.eatEnd)
throw ParserException(INPUT.mark(), ErrorMsg::EOF_IN_SCALAR); throw ParserException(INPUT.mark(), ErrorMsg::EOF_IN_SCALAR);
break; break;
} }
// doc indicator? // doc indicator?
if(params.onDocIndicator == BREAK && INPUT.column() == 0 && Exp::DocIndicator().Matches(INPUT)) if (params.onDocIndicator == BREAK && INPUT.column() == 0 &&
break; Exp::DocIndicator().Matches(INPUT))
break;
// are we done via character match? // are we done via character match?
int n = params.end.Match(INPUT); int n = params.end.Match(INPUT);
if(n >= 0) { if (n >= 0) {
if(params.eatEnd) if (params.eatEnd)
INPUT.eat(n); INPUT.eat(n);
break; break;
} }
// do we remove trailing whitespace? // do we remove trailing whitespace?
if(params.fold == FOLD_FLOW) if (params.fold == FOLD_FLOW)
scalar.erase(lastNonWhitespaceChar); scalar.erase(lastNonWhitespaceChar);
// ******************************** // ********************************
// Phase #2: eat line ending // Phase #2: eat line ending
n = Exp::Break().Match(INPUT); n = Exp::Break().Match(INPUT);
INPUT.eat(n); INPUT.eat(n);
// ******************************** // ********************************
// Phase #3: scan initial spaces // Phase #3: scan initial spaces
// first the required indentation // first the required indentation
while(INPUT.peek() == ' ' && (INPUT.column() < params.indent || (params.detectIndent && !foundNonEmptyLine))) while (INPUT.peek() == ' ' && (INPUT.column() < params.indent ||
INPUT.eat(1); (params.detectIndent && !foundNonEmptyLine)))
INPUT.eat(1);
// update indent if we're auto-detecting // update indent if we're auto-detecting
if(params.detectIndent && !foundNonEmptyLine) if (params.detectIndent && !foundNonEmptyLine)
params.indent = std::max(params.indent, INPUT.column()); params.indent = std::max(params.indent, INPUT.column());
// and then the rest of the whitespace // and then the rest of the whitespace
while(Exp::Blank().Matches(INPUT)) { while (Exp::Blank().Matches(INPUT)) {
// we check for tabs that masquerade as indentation // we check for tabs that masquerade as indentation
if(INPUT.peek() == '\t'&& INPUT.column() < params.indent && params.onTabInIndentation == THROW) if (INPUT.peek() == '\t' && INPUT.column() < params.indent &&
throw ParserException(INPUT.mark(), ErrorMsg::TAB_IN_INDENTATION); params.onTabInIndentation == THROW)
throw ParserException(INPUT.mark(), ErrorMsg::TAB_IN_INDENTATION);
if(!params.eatLeadingWhitespace) if (!params.eatLeadingWhitespace)
break; break;
INPUT.eat(1); INPUT.eat(1);
} }
// was this an empty line? // was this an empty line?
bool nextEmptyLine = Exp::Break().Matches(INPUT); bool nextEmptyLine = Exp::Break().Matches(INPUT);
bool nextMoreIndented = Exp::Blank().Matches(INPUT); bool nextMoreIndented = Exp::Blank().Matches(INPUT);
if(params.fold == FOLD_BLOCK && foldedNewlineCount == 0 && nextEmptyLine) if (params.fold == FOLD_BLOCK && foldedNewlineCount == 0 && nextEmptyLine)
foldedNewlineStartedMoreIndented = moreIndented; foldedNewlineStartedMoreIndented = moreIndented;
// for block scalars, we always start with a newline, so we should ignore it (not fold or keep) // for block scalars, we always start with a newline, so we should ignore it
if(pastOpeningBreak) { // (not fold or keep)
switch(params.fold) { if (pastOpeningBreak) {
case DONT_FOLD: switch (params.fold) {
scalar += "\n"; case DONT_FOLD:
break; scalar += "\n";
case FOLD_BLOCK: break;
if(!emptyLine && !nextEmptyLine && !moreIndented && !nextMoreIndented && INPUT.column() >= params.indent) case FOLD_BLOCK:
scalar += " "; if (!emptyLine && !nextEmptyLine && !moreIndented &&
else if(nextEmptyLine) !nextMoreIndented && INPUT.column() >= params.indent)
foldedNewlineCount++; scalar += " ";
else else if (nextEmptyLine)
scalar += "\n"; foldedNewlineCount++;
else
scalar += "\n";
if(!nextEmptyLine && foldedNewlineCount > 0) { if (!nextEmptyLine && foldedNewlineCount > 0) {
scalar += std::string(foldedNewlineCount - 1, '\n'); scalar += std::string(foldedNewlineCount - 1, '\n');
if(foldedNewlineStartedMoreIndented || nextMoreIndented | !foundNonEmptyLine) if (foldedNewlineStartedMoreIndented ||
scalar += "\n"; nextMoreIndented | !foundNonEmptyLine)
foldedNewlineCount = 0; scalar += "\n";
} foldedNewlineCount = 0;
break; }
case FOLD_FLOW: break;
if(nextEmptyLine) case FOLD_FLOW:
scalar += "\n"; if (nextEmptyLine)
else if(!emptyLine && !nextEmptyLine && !escapedNewline) scalar += "\n";
scalar += " "; else if (!emptyLine && !nextEmptyLine && !escapedNewline)
break; scalar += " ";
} break;
} }
}
emptyLine = nextEmptyLine; emptyLine = nextEmptyLine;
moreIndented = nextMoreIndented; moreIndented = nextMoreIndented;
pastOpeningBreak = true; pastOpeningBreak = true;
// are we done via indentation? // are we done via indentation?
if(!emptyLine && INPUT.column() < params.indent) { if (!emptyLine && INPUT.column() < params.indent) {
params.leadingSpaces = true; params.leadingSpaces = true;
break; break;
} }
} }
// post-processing // post-processing
if(params.trimTrailingSpaces) { if (params.trimTrailingSpaces) {
std::size_t pos = scalar.find_last_not_of(' '); std::size_t pos = scalar.find_last_not_of(' ');
if(lastEscapedChar != std::string::npos) { if (lastEscapedChar != std::string::npos) {
if(pos < lastEscapedChar || pos == std::string::npos) if (pos < lastEscapedChar || pos == std::string::npos)
pos = lastEscapedChar; pos = lastEscapedChar;
} }
if(pos < scalar.size()) if (pos < scalar.size())
scalar.erase(pos + 1); scalar.erase(pos + 1);
} }
switch(params.chomp) { switch (params.chomp) {
case CLIP: { case CLIP: {
std::size_t pos = scalar.find_last_not_of('\n'); std::size_t pos = scalar.find_last_not_of('\n');
if(lastEscapedChar != std::string::npos) { if (lastEscapedChar != std::string::npos) {
if(pos < lastEscapedChar || pos == std::string::npos) if (pos < lastEscapedChar || pos == std::string::npos)
pos = lastEscapedChar; pos = lastEscapedChar;
} }
if(pos == std::string::npos) if (pos == std::string::npos)
scalar.erase(); scalar.erase();
else if(pos + 1 < scalar.size()) else if (pos + 1 < scalar.size())
scalar.erase(pos + 2); scalar.erase(pos + 2);
} break; } break;
case STRIP: { case STRIP: {
std::size_t pos = scalar.find_last_not_of('\n'); std::size_t pos = scalar.find_last_not_of('\n');
if(lastEscapedChar != std::string::npos) { if (lastEscapedChar != std::string::npos) {
if(pos < lastEscapedChar || pos == std::string::npos) if (pos < lastEscapedChar || pos == std::string::npos)
pos = lastEscapedChar; pos = lastEscapedChar;
} }
if(pos == std::string::npos) if (pos == std::string::npos)
scalar.erase(); scalar.erase();
else if(pos < scalar.size()) else if (pos < scalar.size())
scalar.erase(pos + 1); scalar.erase(pos + 1);
} break; } break;
default: default:
break; break;
} }
return scalar; return scalar;
} }
} }

View File

@@ -1,45 +1,61 @@
#ifndef SCANSCALAR_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #ifndef SCANSCALAR_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define SCANSCALAR_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #define SCANSCALAR_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || (defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || (__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4 #if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once #pragma once
#endif #endif
#include <string> #include <string>
#include "regex.h"
#include "regex_yaml.h"
#include "stream.h" #include "stream.h"
namespace YAML namespace YAML {
{ enum CHOMP { STRIP = -1, CLIP, KEEP };
enum CHOMP { STRIP = -1, CLIP, KEEP }; enum ACTION { NONE, BREAK, THROW };
enum ACTION { NONE, BREAK, THROW }; enum FOLD { DONT_FOLD, FOLD_BLOCK, FOLD_FLOW };
enum FOLD { DONT_FOLD, FOLD_BLOCK, FOLD_FLOW };
struct ScanScalarParams { struct ScanScalarParams {
ScanScalarParams(): eatEnd(false), indent(0), detectIndent(false), eatLeadingWhitespace(0), escape(0), fold(DONT_FOLD), ScanScalarParams()
trimTrailingSpaces(0), chomp(CLIP), onDocIndicator(NONE), onTabInIndentation(NONE), leadingSpaces(false) {} : eatEnd(false),
indent(0),
detectIndent(false),
eatLeadingWhitespace(0),
escape(0),
fold(DONT_FOLD),
trimTrailingSpaces(0),
chomp(CLIP),
onDocIndicator(NONE),
onTabInIndentation(NONE),
leadingSpaces(false) {}
// input: // input:
RegEx end; // what condition ends this scalar? RegEx end; // what condition ends this scalar?
bool eatEnd; // should we eat that condition when we see it? bool eatEnd; // should we eat that condition when we see it?
int indent; // what level of indentation should be eaten and ignored? int indent; // what level of indentation should be eaten and ignored?
bool detectIndent; // should we try to autodetect the indent? bool detectIndent; // should we try to autodetect the indent?
bool eatLeadingWhitespace; // should we continue eating this delicious indentation after 'indent' spaces? bool eatLeadingWhitespace; // should we continue eating this delicious
char escape; // what character do we escape on (i.e., slash or single quote) (0 for none) // indentation after 'indent' spaces?
FOLD fold; // how do we fold line ends? char escape; // what character do we escape on (i.e., slash or single quote)
bool trimTrailingSpaces; // do we remove all trailing spaces (at the very end) // (0 for none)
CHOMP chomp; // do we strip, clip, or keep trailing newlines (at the very end) FOLD fold; // how do we fold line ends?
// Note: strip means kill all, clip means keep at most one, keep means keep all bool trimTrailingSpaces; // do we remove all trailing spaces (at the very
ACTION onDocIndicator; // what do we do if we see a document indicator? // end)
ACTION onTabInIndentation; // what do we do if we see a tab where we should be seeing indentation spaces CHOMP chomp; // do we strip, clip, or keep trailing newlines (at the very
// end)
// Note: strip means kill all, clip means keep at most one, keep means keep
// all
ACTION onDocIndicator; // what do we do if we see a document indicator?
ACTION onTabInIndentation; // what do we do if we see a tab where we should
// be seeing indentation spaces
// output: // output:
bool leadingSpaces; bool leadingSpaces;
}; };
std::string ScanScalar(Stream& INPUT, ScanScalarParams& info); std::string ScanScalar(Stream& INPUT, ScanScalarParams& info);
} }
#endif // SCANSCALAR_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #endif // SCANSCALAR_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@@ -1,84 +1,81 @@
#include "scanner.h"
#include "regex.h"
#include "exp.h" #include "exp.h"
#include "yaml-cpp/exceptions.h" #include "regex_yaml.h"
#include "regeximpl.h"
#include "stream.h"
#include "yaml-cpp/exceptions.h" // IWYU pragma: keep
#include "yaml-cpp/mark.h"
namespace YAML namespace YAML {
{ const std::string ScanVerbatimTag(Stream& INPUT) {
const std::string ScanVerbatimTag(Stream& INPUT) std::string tag;
{
std::string tag;
// eat the start character // eat the start character
INPUT.get(); INPUT.get();
while(INPUT) { while (INPUT) {
if(INPUT.peek() == Keys::VerbatimTagEnd) { if (INPUT.peek() == Keys::VerbatimTagEnd) {
// eat the end character // eat the end character
INPUT.get(); INPUT.get();
return tag; return tag;
} }
int n = Exp::URI().Match(INPUT); int n = Exp::URI().Match(INPUT);
if(n <= 0) if (n <= 0)
break; break;
tag += INPUT.get(n); tag += INPUT.get(n);
} }
throw ParserException(INPUT.mark(), ErrorMsg::END_OF_VERBATIM_TAG); throw ParserException(INPUT.mark(), ErrorMsg::END_OF_VERBATIM_TAG);
}
const std::string ScanTagHandle(Stream& INPUT, bool& canBeHandle)
{
std::string tag;
canBeHandle = true;
Mark firstNonWordChar;
while(INPUT) {
if(INPUT.peek() == Keys::Tag) {
if(!canBeHandle)
throw ParserException(firstNonWordChar, ErrorMsg::CHAR_IN_TAG_HANDLE);
break;
}
int n = 0;
if(canBeHandle) {
n = Exp::Word().Match(INPUT);
if(n <= 0) {
canBeHandle = false;
firstNonWordChar = INPUT.mark();
}
}
if(!canBeHandle)
n = Exp::Tag().Match(INPUT);
if(n <= 0)
break;
tag += INPUT.get(n);
}
return tag;
}
const std::string ScanTagSuffix(Stream& INPUT)
{
std::string tag;
while(INPUT) {
int n = Exp::Tag().Match(INPUT);
if(n <= 0)
break;
tag += INPUT.get(n);
}
if(tag.empty())
throw ParserException(INPUT.mark(), ErrorMsg::TAG_WITH_NO_SUFFIX);
return tag;
}
} }
const std::string ScanTagHandle(Stream& INPUT, bool& canBeHandle) {
std::string tag;
canBeHandle = true;
Mark firstNonWordChar;
while (INPUT) {
if (INPUT.peek() == Keys::Tag) {
if (!canBeHandle)
throw ParserException(firstNonWordChar, ErrorMsg::CHAR_IN_TAG_HANDLE);
break;
}
int n = 0;
if (canBeHandle) {
n = Exp::Word().Match(INPUT);
if (n <= 0) {
canBeHandle = false;
firstNonWordChar = INPUT.mark();
}
}
if (!canBeHandle)
n = Exp::Tag().Match(INPUT);
if (n <= 0)
break;
tag += INPUT.get(n);
}
return tag;
}
const std::string ScanTagSuffix(Stream& INPUT) {
std::string tag;
while (INPUT) {
int n = Exp::Tag().Match(INPUT);
if (n <= 0)
break;
tag += INPUT.get(n);
}
if (tag.empty())
throw ParserException(INPUT.mark(), ErrorMsg::TAG_WITH_NO_SUFFIX);
return tag;
}
}

View File

@@ -1,20 +1,19 @@
#ifndef SCANTAG_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #ifndef SCANTAG_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define SCANTAG_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #define SCANTAG_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || (defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || (__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4 #if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once #pragma once
#endif #endif
#include <string> #include <string>
#include "stream.h" #include "stream.h"
namespace YAML namespace YAML {
{ const std::string ScanVerbatimTag(Stream& INPUT);
const std::string ScanVerbatimTag(Stream& INPUT); const std::string ScanTagHandle(Stream& INPUT, bool& canBeHandle);
const std::string ScanTagHandle(Stream& INPUT, bool& canBeHandle); const std::string ScanTagSuffix(Stream& INPUT);
const std::string ScanTagSuffix(Stream& INPUT);
} }
#endif // SCANTAG_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #endif // SCANTAG_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@@ -1,439 +1,436 @@
#include "scanner.h"
#include "token.h"
#include "yaml-cpp/exceptions.h"
#include "exp.h"
#include "scanscalar.h"
#include "scantag.h"
#include "tag.h"
#include <sstream> #include <sstream>
namespace YAML #include "exp.h"
{ #include "regex_yaml.h"
/////////////////////////////////////////////////////////////////////// #include "regeximpl.h"
// Specialization for scanning specific tokens #include "scanner.h"
#include "scanscalar.h"
// Directive #include "scantag.h" // IWYU pragma: keep
// . Note: no semantic checking is done here (that's for the parser to do) #include "tag.h" // IWYU pragma: keep
void Scanner::ScanDirective() #include "token.h"
{ #include "yaml-cpp/exceptions.h" // IWYU pragma: keep
std::string name; #include "yaml-cpp/mark.h"
std::vector <std::string> params;
namespace YAML {
// pop indents and simple keys ///////////////////////////////////////////////////////////////////////
PopAllIndents(); // Specialization for scanning specific tokens
PopAllSimpleKeys();
// Directive
m_simpleKeyAllowed = false; // . Note: no semantic checking is done here (that's for the parser to do)
m_canBeJSONFlow = false; void Scanner::ScanDirective() {
std::string name;
// store pos and eat indicator std::vector<std::string> params;
Token token(Token::DIRECTIVE, INPUT.mark());
INPUT.eat(1); // pop indents and simple keys
PopAllIndents();
// read name PopAllSimpleKeys();
while(INPUT && !Exp::BlankOrBreak().Matches(INPUT))
token.value += INPUT.get(); m_simpleKeyAllowed = false;
m_canBeJSONFlow = false;
// read parameters
while(1) { // store pos and eat indicator
// first get rid of whitespace Token token(Token::DIRECTIVE, INPUT.mark());
while(Exp::Blank().Matches(INPUT)) INPUT.eat(1);
INPUT.eat(1);
// read name
// break on newline or comment while (INPUT && !Exp::BlankOrBreak().Matches(INPUT))
if(!INPUT || Exp::Break().Matches(INPUT) || Exp::Comment().Matches(INPUT)) token.value += INPUT.get();
break;
// read parameters
// now read parameter while (1) {
std::string param; // first get rid of whitespace
while(INPUT && !Exp::BlankOrBreak().Matches(INPUT)) while (Exp::Blank().Matches(INPUT))
param += INPUT.get(); INPUT.eat(1);
token.params.push_back(param); // break on newline or comment
} if (!INPUT || Exp::Break().Matches(INPUT) || Exp::Comment().Matches(INPUT))
break;
m_tokens.push(token);
} // now read parameter
std::string param;
// DocStart while (INPUT && !Exp::BlankOrBreak().Matches(INPUT))
void Scanner::ScanDocStart() param += INPUT.get();
{
PopAllIndents(); token.params.push_back(param);
PopAllSimpleKeys(); }
m_simpleKeyAllowed = false;
m_canBeJSONFlow = false; m_tokens.push(token);
}
// eat
Mark mark = INPUT.mark(); // DocStart
INPUT.eat(3); void Scanner::ScanDocStart() {
m_tokens.push(Token(Token::DOC_START, mark)); PopAllIndents();
} PopAllSimpleKeys();
m_simpleKeyAllowed = false;
// DocEnd m_canBeJSONFlow = false;
void Scanner::ScanDocEnd()
{ // eat
PopAllIndents(); Mark mark = INPUT.mark();
PopAllSimpleKeys(); INPUT.eat(3);
m_simpleKeyAllowed = false; m_tokens.push(Token(Token::DOC_START, mark));
m_canBeJSONFlow = false; }
// eat // DocEnd
Mark mark = INPUT.mark(); void Scanner::ScanDocEnd() {
INPUT.eat(3); PopAllIndents();
m_tokens.push(Token(Token::DOC_END, mark)); PopAllSimpleKeys();
} m_simpleKeyAllowed = false;
m_canBeJSONFlow = false;
// FlowStart
void Scanner::ScanFlowStart() // eat
{ Mark mark = INPUT.mark();
// flows can be simple keys INPUT.eat(3);
InsertPotentialSimpleKey(); m_tokens.push(Token(Token::DOC_END, mark));
m_simpleKeyAllowed = true; }
m_canBeJSONFlow = false;
// FlowStart
// eat void Scanner::ScanFlowStart() {
Mark mark = INPUT.mark(); // flows can be simple keys
char ch = INPUT.get(); InsertPotentialSimpleKey();
FLOW_MARKER flowType = (ch == Keys::FlowSeqStart ? FLOW_SEQ : FLOW_MAP); m_simpleKeyAllowed = true;
m_flows.push(flowType); m_canBeJSONFlow = false;
Token::TYPE type = (flowType == FLOW_SEQ ? Token::FLOW_SEQ_START : Token::FLOW_MAP_START);
m_tokens.push(Token(type, mark)); // eat
} Mark mark = INPUT.mark();
char ch = INPUT.get();
// FlowEnd FLOW_MARKER flowType = (ch == Keys::FlowSeqStart ? FLOW_SEQ : FLOW_MAP);
void Scanner::ScanFlowEnd() m_flows.push(flowType);
{ Token::TYPE type =
if(InBlockContext()) (flowType == FLOW_SEQ ? Token::FLOW_SEQ_START : Token::FLOW_MAP_START);
throw ParserException(INPUT.mark(), ErrorMsg::FLOW_END); m_tokens.push(Token(type, mark));
}
// we might have a solo entry in the flow context
if(InFlowContext()) { // FlowEnd
if(m_flows.top() == FLOW_MAP && VerifySimpleKey()) void Scanner::ScanFlowEnd() {
m_tokens.push(Token(Token::VALUE, INPUT.mark())); if (InBlockContext())
else if(m_flows.top() == FLOW_SEQ) throw ParserException(INPUT.mark(), ErrorMsg::FLOW_END);
InvalidateSimpleKey();
} // we might have a solo entry in the flow context
if (InFlowContext()) {
m_simpleKeyAllowed = false; if (m_flows.top() == FLOW_MAP && VerifySimpleKey())
m_canBeJSONFlow = true; m_tokens.push(Token(Token::VALUE, INPUT.mark()));
else if (m_flows.top() == FLOW_SEQ)
// eat InvalidateSimpleKey();
Mark mark = INPUT.mark(); }
char ch = INPUT.get();
m_simpleKeyAllowed = false;
// check that it matches the start m_canBeJSONFlow = true;
FLOW_MARKER flowType = (ch == Keys::FlowSeqEnd ? FLOW_SEQ : FLOW_MAP);
if(m_flows.top() != flowType) // eat
throw ParserException(mark, ErrorMsg::FLOW_END); Mark mark = INPUT.mark();
m_flows.pop(); char ch = INPUT.get();
Token::TYPE type = (flowType ? Token::FLOW_SEQ_END : Token::FLOW_MAP_END); // check that it matches the start
m_tokens.push(Token(type, mark)); FLOW_MARKER flowType = (ch == Keys::FlowSeqEnd ? FLOW_SEQ : FLOW_MAP);
} if (m_flows.top() != flowType)
throw ParserException(mark, ErrorMsg::FLOW_END);
// FlowEntry m_flows.pop();
void Scanner::ScanFlowEntry()
{ Token::TYPE type = (flowType ? Token::FLOW_SEQ_END : Token::FLOW_MAP_END);
// we might have a solo entry in the flow context m_tokens.push(Token(type, mark));
if(InFlowContext()) { }
if(m_flows.top() == FLOW_MAP && VerifySimpleKey())
m_tokens.push(Token(Token::VALUE, INPUT.mark())); // FlowEntry
else if(m_flows.top() == FLOW_SEQ) void Scanner::ScanFlowEntry() {
InvalidateSimpleKey(); // we might have a solo entry in the flow context
} if (InFlowContext()) {
if (m_flows.top() == FLOW_MAP && VerifySimpleKey())
m_simpleKeyAllowed = true; m_tokens.push(Token(Token::VALUE, INPUT.mark()));
m_canBeJSONFlow = false; else if (m_flows.top() == FLOW_SEQ)
InvalidateSimpleKey();
// eat }
Mark mark = INPUT.mark();
INPUT.eat(1); m_simpleKeyAllowed = true;
m_tokens.push(Token(Token::FLOW_ENTRY, mark)); m_canBeJSONFlow = false;
}
// eat
// BlockEntry Mark mark = INPUT.mark();
void Scanner::ScanBlockEntry() INPUT.eat(1);
{ m_tokens.push(Token(Token::FLOW_ENTRY, mark));
// we better be in the block context! }
if(InFlowContext())
throw ParserException(INPUT.mark(), ErrorMsg::BLOCK_ENTRY); // BlockEntry
void Scanner::ScanBlockEntry() {
// can we put it here? // we better be in the block context!
if(!m_simpleKeyAllowed) if (InFlowContext())
throw ParserException(INPUT.mark(), ErrorMsg::BLOCK_ENTRY); throw ParserException(INPUT.mark(), ErrorMsg::BLOCK_ENTRY);
PushIndentTo(INPUT.column(), IndentMarker::SEQ); // can we put it here?
m_simpleKeyAllowed = true; if (!m_simpleKeyAllowed)
m_canBeJSONFlow = false; throw ParserException(INPUT.mark(), ErrorMsg::BLOCK_ENTRY);
// eat PushIndentTo(INPUT.column(), IndentMarker::SEQ);
Mark mark = INPUT.mark(); m_simpleKeyAllowed = true;
INPUT.eat(1); m_canBeJSONFlow = false;
m_tokens.push(Token(Token::BLOCK_ENTRY, mark));
} // eat
Mark mark = INPUT.mark();
// Key INPUT.eat(1);
void Scanner::ScanKey() m_tokens.push(Token(Token::BLOCK_ENTRY, mark));
{ }
// handle keys diffently in the block context (and manage indents)
if(InBlockContext()) { // Key
if(!m_simpleKeyAllowed) void Scanner::ScanKey() {
throw ParserException(INPUT.mark(), ErrorMsg::MAP_KEY); // handle keys diffently in the block context (and manage indents)
if (InBlockContext()) {
PushIndentTo(INPUT.column(), IndentMarker::MAP); if (!m_simpleKeyAllowed)
} throw ParserException(INPUT.mark(), ErrorMsg::MAP_KEY);
// can only put a simple key here if we're in block context PushIndentTo(INPUT.column(), IndentMarker::MAP);
m_simpleKeyAllowed = InBlockContext(); }
// eat // can only put a simple key here if we're in block context
Mark mark = INPUT.mark(); m_simpleKeyAllowed = InBlockContext();
INPUT.eat(1);
m_tokens.push(Token(Token::KEY, mark)); // eat
} Mark mark = INPUT.mark();
INPUT.eat(1);
// Value m_tokens.push(Token(Token::KEY, mark));
void Scanner::ScanValue() }
{
// and check that simple key // Value
bool isSimpleKey = VerifySimpleKey(); void Scanner::ScanValue() {
m_canBeJSONFlow = false; // and check that simple key
bool isSimpleKey = VerifySimpleKey();
if(isSimpleKey) { m_canBeJSONFlow = false;
// can't follow a simple key with another simple key (dunno why, though - it seems fine)
m_simpleKeyAllowed = false; if (isSimpleKey) {
} else { // can't follow a simple key with another simple key (dunno why, though - it
// handle values diffently in the block context (and manage indents) // seems fine)
if(InBlockContext()) { m_simpleKeyAllowed = false;
if(!m_simpleKeyAllowed) } else {
throw ParserException(INPUT.mark(), ErrorMsg::MAP_VALUE); // handle values diffently in the block context (and manage indents)
if (InBlockContext()) {
PushIndentTo(INPUT.column(), IndentMarker::MAP); if (!m_simpleKeyAllowed)
} throw ParserException(INPUT.mark(), ErrorMsg::MAP_VALUE);
// can only put a simple key here if we're in block context PushIndentTo(INPUT.column(), IndentMarker::MAP);
m_simpleKeyAllowed = InBlockContext(); }
}
// can only put a simple key here if we're in block context
// eat m_simpleKeyAllowed = InBlockContext();
Mark mark = INPUT.mark(); }
INPUT.eat(1);
m_tokens.push(Token(Token::VALUE, mark)); // eat
} Mark mark = INPUT.mark();
INPUT.eat(1);
// AnchorOrAlias m_tokens.push(Token(Token::VALUE, mark));
void Scanner::ScanAnchorOrAlias() }
{
bool alias; // AnchorOrAlias
std::string name; void Scanner::ScanAnchorOrAlias() {
bool alias;
// insert a potential simple key std::string name;
InsertPotentialSimpleKey();
m_simpleKeyAllowed = false; // insert a potential simple key
m_canBeJSONFlow = false; InsertPotentialSimpleKey();
m_simpleKeyAllowed = false;
// eat the indicator m_canBeJSONFlow = false;
Mark mark = INPUT.mark();
char indicator = INPUT.get(); // eat the indicator
alias = (indicator == Keys::Alias); Mark mark = INPUT.mark();
char indicator = INPUT.get();
// now eat the content alias = (indicator == Keys::Alias);
while(INPUT && Exp::Anchor().Matches(INPUT))
name += INPUT.get(); // now eat the content
while (INPUT && Exp::Anchor().Matches(INPUT))
// we need to have read SOMETHING! name += INPUT.get();
if(name.empty())
throw ParserException(INPUT.mark(), alias ? ErrorMsg::ALIAS_NOT_FOUND : ErrorMsg::ANCHOR_NOT_FOUND); // we need to have read SOMETHING!
if (name.empty())
// and needs to end correctly throw ParserException(INPUT.mark(), alias ? ErrorMsg::ALIAS_NOT_FOUND
if(INPUT && !Exp::AnchorEnd().Matches(INPUT)) : ErrorMsg::ANCHOR_NOT_FOUND);
throw ParserException(INPUT.mark(), alias ? ErrorMsg::CHAR_IN_ALIAS : ErrorMsg::CHAR_IN_ANCHOR);
// and needs to end correctly
// and we're done if (INPUT && !Exp::AnchorEnd().Matches(INPUT))
Token token(alias ? Token::ALIAS : Token::ANCHOR, mark); throw ParserException(INPUT.mark(), alias ? ErrorMsg::CHAR_IN_ALIAS
token.value = name; : ErrorMsg::CHAR_IN_ANCHOR);
m_tokens.push(token);
} // and we're done
Token token(alias ? Token::ALIAS : Token::ANCHOR, mark);
// Tag token.value = name;
void Scanner::ScanTag() m_tokens.push(token);
{ }
// insert a potential simple key
InsertPotentialSimpleKey(); // Tag
m_simpleKeyAllowed = false; void Scanner::ScanTag() {
m_canBeJSONFlow = false; // insert a potential simple key
InsertPotentialSimpleKey();
Token token(Token::TAG, INPUT.mark()); m_simpleKeyAllowed = false;
m_canBeJSONFlow = false;
// eat the indicator
INPUT.get(); Token token(Token::TAG, INPUT.mark());
if(INPUT && INPUT.peek() == Keys::VerbatimTagStart){ // eat the indicator
std::string tag = ScanVerbatimTag(INPUT); INPUT.get();
token.value = tag; if (INPUT && INPUT.peek() == Keys::VerbatimTagStart) {
token.data = Tag::VERBATIM; std::string tag = ScanVerbatimTag(INPUT);
} else {
bool canBeHandle; token.value = tag;
token.value = ScanTagHandle(INPUT, canBeHandle); token.data = Tag::VERBATIM;
if(!canBeHandle && token.value.empty()) } else {
token.data = Tag::NON_SPECIFIC; bool canBeHandle;
else if(token.value.empty()) token.value = ScanTagHandle(INPUT, canBeHandle);
token.data = Tag::SECONDARY_HANDLE; if (!canBeHandle && token.value.empty())
else token.data = Tag::NON_SPECIFIC;
token.data = Tag::PRIMARY_HANDLE; else if (token.value.empty())
token.data = Tag::SECONDARY_HANDLE;
// is there a suffix? else
if(canBeHandle && INPUT.peek() == Keys::Tag) { token.data = Tag::PRIMARY_HANDLE;
// eat the indicator
INPUT.get(); // is there a suffix?
token.params.push_back(ScanTagSuffix(INPUT)); if (canBeHandle && INPUT.peek() == Keys::Tag) {
token.data = Tag::NAMED_HANDLE; // eat the indicator
} INPUT.get();
} token.params.push_back(ScanTagSuffix(INPUT));
token.data = Tag::NAMED_HANDLE;
m_tokens.push(token); }
} }
// PlainScalar m_tokens.push(token);
void Scanner::ScanPlainScalar() }
{
std::string scalar; // PlainScalar
void Scanner::ScanPlainScalar() {
// set up the scanning parameters std::string scalar;
ScanScalarParams params;
params.end = (InFlowContext() ? Exp::EndScalarInFlow() : Exp::EndScalar()) || (Exp::BlankOrBreak() + Exp::Comment()); // set up the scanning parameters
params.eatEnd = false; ScanScalarParams params;
params.indent = (InFlowContext() ? 0 : GetTopIndent() + 1); params.end = (InFlowContext() ? Exp::EndScalarInFlow() : Exp::EndScalar()) ||
params.fold = FOLD_FLOW; (Exp::BlankOrBreak() + Exp::Comment());
params.eatLeadingWhitespace = true; params.eatEnd = false;
params.trimTrailingSpaces = true; params.indent = (InFlowContext() ? 0 : GetTopIndent() + 1);
params.chomp = STRIP; params.fold = FOLD_FLOW;
params.onDocIndicator = BREAK; params.eatLeadingWhitespace = true;
params.onTabInIndentation = THROW; params.trimTrailingSpaces = true;
params.chomp = STRIP;
// insert a potential simple key params.onDocIndicator = BREAK;
InsertPotentialSimpleKey(); params.onTabInIndentation = THROW;
Mark mark = INPUT.mark(); // insert a potential simple key
scalar = ScanScalar(INPUT, params); InsertPotentialSimpleKey();
// can have a simple key only if we ended the scalar by starting a new line Mark mark = INPUT.mark();
m_simpleKeyAllowed = params.leadingSpaces; scalar = ScanScalar(INPUT, params);
m_canBeJSONFlow = false;
// can have a simple key only if we ended the scalar by starting a new line
// finally, check and see if we ended on an illegal character m_simpleKeyAllowed = params.leadingSpaces;
//if(Exp::IllegalCharInScalar.Matches(INPUT)) m_canBeJSONFlow = false;
// throw ParserException(INPUT.mark(), ErrorMsg::CHAR_IN_SCALAR);
// finally, check and see if we ended on an illegal character
Token token(Token::PLAIN_SCALAR, mark); // if(Exp::IllegalCharInScalar.Matches(INPUT))
token.value = scalar; // throw ParserException(INPUT.mark(), ErrorMsg::CHAR_IN_SCALAR);
m_tokens.push(token);
} Token token(Token::PLAIN_SCALAR, mark);
token.value = scalar;
// QuotedScalar m_tokens.push(token);
void Scanner::ScanQuotedScalar() }
{
std::string scalar; // QuotedScalar
void Scanner::ScanQuotedScalar() {
// peek at single or double quote (don't eat because we need to preserve (for the time being) the input position) std::string scalar;
char quote = INPUT.peek();
bool single = (quote == '\''); // peek at single or double quote (don't eat because we need to preserve (for
// the time being) the input position)
// setup the scanning parameters char quote = INPUT.peek();
ScanScalarParams params; bool single = (quote == '\'');
params.end = (single ? RegEx(quote) && !Exp::EscSingleQuote() : RegEx(quote));
params.eatEnd = true; // setup the scanning parameters
params.escape = (single ? '\'' : '\\'); ScanScalarParams params;
params.indent = 0; params.end = (single ? RegEx(quote) && !Exp::EscSingleQuote() : RegEx(quote));
params.fold = FOLD_FLOW; params.eatEnd = true;
params.eatLeadingWhitespace = true; params.escape = (single ? '\'' : '\\');
params.trimTrailingSpaces = false; params.indent = 0;
params.chomp = CLIP; params.fold = FOLD_FLOW;
params.onDocIndicator = THROW; params.eatLeadingWhitespace = true;
params.trimTrailingSpaces = false;
// insert a potential simple key params.chomp = CLIP;
InsertPotentialSimpleKey(); params.onDocIndicator = THROW;
Mark mark = INPUT.mark(); // insert a potential simple key
InsertPotentialSimpleKey();
// now eat that opening quote
INPUT.get(); Mark mark = INPUT.mark();
// and scan // now eat that opening quote
scalar = ScanScalar(INPUT, params); INPUT.get();
m_simpleKeyAllowed = false;
m_canBeJSONFlow = true; // and scan
scalar = ScanScalar(INPUT, params);
Token token(Token::NON_PLAIN_SCALAR, mark); m_simpleKeyAllowed = false;
token.value = scalar; m_canBeJSONFlow = true;
m_tokens.push(token);
} Token token(Token::NON_PLAIN_SCALAR, mark);
token.value = scalar;
// BlockScalarToken m_tokens.push(token);
// . These need a little extra processing beforehand. }
// . We need to scan the line where the indicator is (this doesn't count as part of the scalar),
// and then we need to figure out what level of indentation we'll be using. // BlockScalarToken
void Scanner::ScanBlockScalar() // . These need a little extra processing beforehand.
{ // . We need to scan the line where the indicator is (this doesn't count as part
std::string scalar; // of the scalar),
// and then we need to figure out what level of indentation we'll be using.
ScanScalarParams params; void Scanner::ScanBlockScalar() {
params.indent = 1; std::string scalar;
params.detectIndent = true;
ScanScalarParams params;
// eat block indicator ('|' or '>') params.indent = 1;
Mark mark = INPUT.mark(); params.detectIndent = true;
char indicator = INPUT.get();
params.fold = (indicator == Keys::FoldedScalar ? FOLD_BLOCK : DONT_FOLD); // eat block indicator ('|' or '>')
Mark mark = INPUT.mark();
// eat chomping/indentation indicators char indicator = INPUT.get();
params.chomp = CLIP; params.fold = (indicator == Keys::FoldedScalar ? FOLD_BLOCK : DONT_FOLD);
int n = Exp::Chomp().Match(INPUT);
for(int i=0;i<n;i++) { // eat chomping/indentation indicators
char ch = INPUT.get(); params.chomp = CLIP;
if(ch == '+') int n = Exp::Chomp().Match(INPUT);
params.chomp = KEEP; for (int i = 0; i < n; i++) {
else if(ch == '-') char ch = INPUT.get();
params.chomp = STRIP; if (ch == '+')
else if(Exp::Digit().Matches(ch)) { params.chomp = KEEP;
if(ch == '0') else if (ch == '-')
throw ParserException(INPUT.mark(), ErrorMsg::ZERO_INDENT_IN_BLOCK); params.chomp = STRIP;
else if (Exp::Digit().Matches(ch)) {
params.indent = ch - '0'; if (ch == '0')
params.detectIndent = false; throw ParserException(INPUT.mark(), ErrorMsg::ZERO_INDENT_IN_BLOCK);
}
} params.indent = ch - '0';
params.detectIndent = false;
// now eat whitespace }
while(Exp::Blank().Matches(INPUT)) }
INPUT.eat(1);
// now eat whitespace
// and comments to the end of the line while (Exp::Blank().Matches(INPUT))
if(Exp::Comment().Matches(INPUT)) INPUT.eat(1);
while(INPUT && !Exp::Break().Matches(INPUT))
INPUT.eat(1); // and comments to the end of the line
if (Exp::Comment().Matches(INPUT))
// if it's not a line break, then we ran into a bad character inline while (INPUT && !Exp::Break().Matches(INPUT))
if(INPUT && !Exp::Break().Matches(INPUT)) INPUT.eat(1);
throw ParserException(INPUT.mark(), ErrorMsg::CHAR_IN_BLOCK);
// if it's not a line break, then we ran into a bad character inline
// set the initial indentation if (INPUT && !Exp::Break().Matches(INPUT))
if(GetTopIndent() >= 0) throw ParserException(INPUT.mark(), ErrorMsg::CHAR_IN_BLOCK);
params.indent += GetTopIndent();
// set the initial indentation
params.eatLeadingWhitespace = false; if (GetTopIndent() >= 0)
params.trimTrailingSpaces = false; params.indent += GetTopIndent();
params.onTabInIndentation = THROW;
params.eatLeadingWhitespace = false;
scalar = ScanScalar(INPUT, params); params.trimTrailingSpaces = false;
params.onTabInIndentation = THROW;
// simple keys always ok after block scalars (since we're gonna start a new line anyways)
m_simpleKeyAllowed = true; scalar = ScanScalar(INPUT, params);
m_canBeJSONFlow = false;
// simple keys always ok after block scalars (since we're gonna start a new
Token token(Token::NON_PLAIN_SCALAR, mark); // line anyways)
token.value = scalar; m_simpleKeyAllowed = true;
m_tokens.push(token); m_canBeJSONFlow = false;
}
Token token(Token::NON_PLAIN_SCALAR, mark);
token.value = scalar;
m_tokens.push(token);
}
} }

View File

@@ -1,105 +1,99 @@
#ifndef SETTING_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #ifndef SETTING_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define SETTING_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #define SETTING_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || (defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || (__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4 #if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once #pragma once
#endif #endif
#include <memory> #include <memory>
#include <vector> #include <vector>
#include "yaml-cpp/noncopyable.h" #include "yaml-cpp/noncopyable.h"
namespace YAML namespace YAML {
{ class SettingChangeBase;
class SettingChangeBase;
template <typename T> template <typename T>
class Setting class Setting {
{ public:
public: Setting() : m_value() {}
Setting(): m_value() {}
const T get() const { return m_value; } const T get() const { return m_value; }
std::auto_ptr <SettingChangeBase> set(const T& value); std::auto_ptr<SettingChangeBase> set(const T& value);
void restore(const Setting<T>& oldSetting) { void restore(const Setting<T>& oldSetting) { m_value = oldSetting.get(); }
m_value = oldSetting.get();
}
private: private:
T m_value; T m_value;
}; };
class SettingChangeBase class SettingChangeBase {
{ public:
public: virtual ~SettingChangeBase() {}
virtual ~SettingChangeBase() {} virtual void pop() = 0;
virtual void pop() = 0; };
};
template <typename T> template <typename T>
class SettingChange: public SettingChangeBase class SettingChange : public SettingChangeBase {
{ public:
public: SettingChange(Setting<T>* pSetting) : m_pCurSetting(pSetting) {
SettingChange(Setting<T> *pSetting): m_pCurSetting(pSetting) { // copy old setting to save its state
// copy old setting to save its state m_oldSetting = *pSetting;
m_oldSetting = *pSetting; }
}
virtual void pop() { virtual void pop() { m_pCurSetting->restore(m_oldSetting); }
m_pCurSetting->restore(m_oldSetting);
}
private: private:
Setting<T> *m_pCurSetting; Setting<T>* m_pCurSetting;
Setting<T> m_oldSetting; Setting<T> m_oldSetting;
}; };
template <typename T> template <typename T>
inline std::auto_ptr <SettingChangeBase> Setting<T>::set(const T& value) { inline std::auto_ptr<SettingChangeBase> Setting<T>::set(const T& value) {
std::auto_ptr <SettingChangeBase> pChange(new SettingChange<T> (this)); std::auto_ptr<SettingChangeBase> pChange(new SettingChange<T>(this));
m_value = value; m_value = value;
return pChange; return pChange;
}
class SettingChanges: private noncopyable
{
public:
SettingChanges() {}
~SettingChanges() { clear(); }
void clear() {
restore();
for(setting_changes::const_iterator it=m_settingChanges.begin();it!=m_settingChanges.end();++it)
delete *it;
m_settingChanges.clear();
}
void restore() {
for(setting_changes::const_iterator it=m_settingChanges.begin();it!=m_settingChanges.end();++it)
(*it)->pop();
}
void push(std::auto_ptr <SettingChangeBase> pSettingChange) {
m_settingChanges.push_back(pSettingChange.release());
}
// like std::auto_ptr - assignment is transfer of ownership
SettingChanges& operator = (SettingChanges& rhs) {
if(this == &rhs)
return *this;
clear();
m_settingChanges = rhs.m_settingChanges;
rhs.m_settingChanges.clear();
return *this;
}
private:
typedef std::vector <SettingChangeBase *> setting_changes;
setting_changes m_settingChanges;
};
} }
#endif // SETTING_H_62B23520_7C8E_11DE_8A39_0800200C9A66 class SettingChanges : private noncopyable {
public:
SettingChanges() {}
~SettingChanges() { clear(); }
void clear() {
restore();
for (setting_changes::const_iterator it = m_settingChanges.begin();
it != m_settingChanges.end(); ++it)
delete *it;
m_settingChanges.clear();
}
void restore() {
for (setting_changes::const_iterator it = m_settingChanges.begin();
it != m_settingChanges.end(); ++it)
(*it)->pop();
}
void push(std::auto_ptr<SettingChangeBase> pSettingChange) {
m_settingChanges.push_back(pSettingChange.release());
}
// like std::auto_ptr - assignment is transfer of ownership
SettingChanges& operator=(SettingChanges& rhs) {
if (this == &rhs)
return *this;
clear();
m_settingChanges = rhs.m_settingChanges;
rhs.m_settingChanges.clear();
return *this;
}
private:
typedef std::vector<SettingChangeBase*> setting_changes;
setting_changes m_settingChanges;
};
}
#endif // SETTING_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@@ -1,139 +1,128 @@
#include "scanner.h" #include "scanner.h"
#include "token.h" #include "token.h"
#include "yaml-cpp/exceptions.h"
#include "exp.h"
namespace YAML namespace YAML {
{ struct Mark;
Scanner::SimpleKey::SimpleKey(const Mark& mark_, int flowLevel_)
: mark(mark_), flowLevel(flowLevel_), pIndent(0), pMapStart(0), pKey(0)
{
}
void Scanner::SimpleKey::Validate() Scanner::SimpleKey::SimpleKey(const Mark& mark_, std::size_t flowLevel_)
{ : mark(mark_), flowLevel(flowLevel_), pIndent(0), pMapStart(0), pKey(0) {}
// Note: pIndent will *not* be garbage here;
// we "garbage collect" them so we can
// always refer to them
if(pIndent)
pIndent->status = IndentMarker::VALID;
if(pMapStart)
pMapStart->status = Token::VALID;
if(pKey)
pKey->status = Token::VALID;
}
void Scanner::SimpleKey::Invalidate() void Scanner::SimpleKey::Validate() {
{ // Note: pIndent will *not* be garbage here;
if(pIndent) // we "garbage collect" them so we can
pIndent->status = IndentMarker::INVALID; // always refer to them
if(pMapStart) if (pIndent)
pMapStart->status = Token::INVALID; pIndent->status = IndentMarker::VALID;
if(pKey) if (pMapStart)
pKey->status = Token::INVALID; pMapStart->status = Token::VALID;
} if (pKey)
pKey->status = Token::VALID;
// CanInsertPotentialSimpleKey
bool Scanner::CanInsertPotentialSimpleKey() const
{
if(!m_simpleKeyAllowed)
return false;
return !ExistsActiveSimpleKey();
}
// ExistsActiveSimpleKey
// . Returns true if there's a potential simple key at our flow level
// (there's allowed at most one per flow level, i.e., at the start of the flow start token)
bool Scanner::ExistsActiveSimpleKey() const
{
if(m_simpleKeys.empty())
return false;
const SimpleKey& key = m_simpleKeys.top();
return key.flowLevel == GetFlowLevel();
}
// InsertPotentialSimpleKey
// . If we can, add a potential simple key to the queue,
// and save it on a stack.
void Scanner::InsertPotentialSimpleKey()
{
if(!CanInsertPotentialSimpleKey())
return;
SimpleKey key(INPUT.mark(), GetFlowLevel());
// first add a map start, if necessary
if(InBlockContext()) {
key.pIndent = PushIndentTo(INPUT.column(), IndentMarker::MAP);
if(key.pIndent) {
key.pIndent->status = IndentMarker::UNKNOWN;
key.pMapStart = key.pIndent->pStartToken;
key.pMapStart->status = Token::UNVERIFIED;
}
}
// then add the (now unverified) key
m_tokens.push(Token(Token::KEY, INPUT.mark()));
key.pKey = &m_tokens.back();
key.pKey->status = Token::UNVERIFIED;
m_simpleKeys.push(key);
}
// InvalidateSimpleKey
// . Automatically invalidate the simple key in our flow level
void Scanner::InvalidateSimpleKey()
{
if(m_simpleKeys.empty())
return;
// grab top key
SimpleKey& key = m_simpleKeys.top();
if(key.flowLevel != GetFlowLevel())
return;
key.Invalidate();
m_simpleKeys.pop();
}
// VerifySimpleKey
// . Determines whether the latest simple key to be added is valid,
// and if so, makes it valid.
bool Scanner::VerifySimpleKey()
{
if(m_simpleKeys.empty())
return false;
// grab top key
SimpleKey key = m_simpleKeys.top();
// only validate if we're in the correct flow level
if(key.flowLevel != GetFlowLevel())
return false;
m_simpleKeys.pop();
bool isValid = true;
// needs to be less than 1024 characters and inline
if(INPUT.line() != key.mark.line || INPUT.pos() - key.mark.pos > 1024)
isValid = false;
// invalidate key
if(isValid)
key.Validate();
else
key.Invalidate();
return isValid;
}
void Scanner::PopAllSimpleKeys()
{
while(!m_simpleKeys.empty())
m_simpleKeys.pop();
}
} }
void Scanner::SimpleKey::Invalidate() {
if (pIndent)
pIndent->status = IndentMarker::INVALID;
if (pMapStart)
pMapStart->status = Token::INVALID;
if (pKey)
pKey->status = Token::INVALID;
}
// CanInsertPotentialSimpleKey
bool Scanner::CanInsertPotentialSimpleKey() const {
if (!m_simpleKeyAllowed)
return false;
return !ExistsActiveSimpleKey();
}
// ExistsActiveSimpleKey
// . Returns true if there's a potential simple key at our flow level
// (there's allowed at most one per flow level, i.e., at the start of the flow
// start token)
bool Scanner::ExistsActiveSimpleKey() const {
if (m_simpleKeys.empty())
return false;
const SimpleKey& key = m_simpleKeys.top();
return key.flowLevel == GetFlowLevel();
}
// InsertPotentialSimpleKey
// . If we can, add a potential simple key to the queue,
// and save it on a stack.
void Scanner::InsertPotentialSimpleKey() {
if (!CanInsertPotentialSimpleKey())
return;
SimpleKey key(INPUT.mark(), GetFlowLevel());
// first add a map start, if necessary
if (InBlockContext()) {
key.pIndent = PushIndentTo(INPUT.column(), IndentMarker::MAP);
if (key.pIndent) {
key.pIndent->status = IndentMarker::UNKNOWN;
key.pMapStart = key.pIndent->pStartToken;
key.pMapStart->status = Token::UNVERIFIED;
}
}
// then add the (now unverified) key
m_tokens.push(Token(Token::KEY, INPUT.mark()));
key.pKey = &m_tokens.back();
key.pKey->status = Token::UNVERIFIED;
m_simpleKeys.push(key);
}
// InvalidateSimpleKey
// . Automatically invalidate the simple key in our flow level
void Scanner::InvalidateSimpleKey() {
if (m_simpleKeys.empty())
return;
// grab top key
SimpleKey& key = m_simpleKeys.top();
if (key.flowLevel != GetFlowLevel())
return;
key.Invalidate();
m_simpleKeys.pop();
}
// VerifySimpleKey
// . Determines whether the latest simple key to be added is valid,
// and if so, makes it valid.
bool Scanner::VerifySimpleKey() {
if (m_simpleKeys.empty())
return false;
// grab top key
SimpleKey key = m_simpleKeys.top();
// only validate if we're in the correct flow level
if (key.flowLevel != GetFlowLevel())
return false;
m_simpleKeys.pop();
bool isValid = true;
// needs to be less than 1024 characters and inline
if (INPUT.line() != key.mark.line || INPUT.pos() - key.mark.pos > 1024)
isValid = false;
// invalidate key
if (isValid)
key.Validate();
else
key.Invalidate();
return isValid;
}
void Scanner::PopAllSimpleKeys() {
while (!m_simpleKeys.empty())
m_simpleKeys.pop();
}
}

View File

@@ -1,394 +1,413 @@
#include "singledocparser.h" #include <algorithm>
#include "collectionstack.h" #include <cstdio>
#include "directives.h" #include <sstream>
#include "yaml-cpp/eventhandler.h"
#include "yaml-cpp/exceptions.h" #include "collectionstack.h" // IWYU pragma: keep
#include "scanner.h" #include "scanner.h"
#include "singledocparser.h"
#include "tag.h" #include "tag.h"
#include "token.h" #include "token.h"
#include <sstream> #include "yaml-cpp/emitterstyle.h"
#include <cstdio> #include "yaml-cpp/eventhandler.h"
#include <algorithm> #include "yaml-cpp/exceptions.h" // IWYU pragma: keep
#include "yaml-cpp/mark.h"
namespace YAML namespace YAML {
{ SingleDocParser::SingleDocParser(Scanner& scanner, const Directives& directives)
SingleDocParser::SingleDocParser(Scanner& scanner, const Directives& directives): m_scanner(scanner), m_directives(directives), m_pCollectionStack(new CollectionStack), m_curAnchor(0) : m_scanner(scanner),
{ m_directives(directives),
} m_pCollectionStack(new CollectionStack),
m_curAnchor(0) {}
SingleDocParser::~SingleDocParser() SingleDocParser::~SingleDocParser() {}
{
}
// HandleDocument // HandleDocument
// . Handles the next document // . Handles the next document
// . Throws a ParserException on error. // . Throws a ParserException on error.
void SingleDocParser::HandleDocument(EventHandler& eventHandler) void SingleDocParser::HandleDocument(EventHandler& eventHandler) {
{ assert(!m_scanner.empty()); // guaranteed that there are tokens
assert(!m_scanner.empty()); // guaranteed that there are tokens assert(!m_curAnchor);
assert(!m_curAnchor);
eventHandler.OnDocumentStart(m_scanner.peek().mark); eventHandler.OnDocumentStart(m_scanner.peek().mark);
// eat doc start // eat doc start
if(m_scanner.peek().type == Token::DOC_START) if (m_scanner.peek().type == Token::DOC_START)
m_scanner.pop(); m_scanner.pop();
// recurse! // recurse!
HandleNode(eventHandler); HandleNode(eventHandler);
eventHandler.OnDocumentEnd(); eventHandler.OnDocumentEnd();
// and finally eat any doc ends we see // and finally eat any doc ends we see
while(!m_scanner.empty() && m_scanner.peek().type == Token::DOC_END) while (!m_scanner.empty() && m_scanner.peek().type == Token::DOC_END)
m_scanner.pop(); m_scanner.pop();
} }
void SingleDocParser::HandleNode(EventHandler& eventHandler) void SingleDocParser::HandleNode(EventHandler& eventHandler) {
{ // an empty node *is* a possibility
// an empty node *is* a possibility if (m_scanner.empty()) {
if(m_scanner.empty()) { eventHandler.OnNull(m_scanner.mark(), NullAnchor);
eventHandler.OnNull(m_scanner.mark(), NullAnchor); return;
return; }
}
// save location
// save location Mark mark = m_scanner.peek().mark;
Mark mark = m_scanner.peek().mark;
// special case: a value node by itself must be a map, with no header
// special case: a value node by itself must be a map, with no header if (m_scanner.peek().type == Token::VALUE) {
if(m_scanner.peek().type == Token::VALUE) { eventHandler.OnMapStart(mark, "?", NullAnchor, EmitterStyle::Default);
eventHandler.OnMapStart(mark, "?", NullAnchor); HandleMap(eventHandler);
HandleMap(eventHandler); eventHandler.OnMapEnd();
eventHandler.OnMapEnd(); return;
return; }
}
// special case: an alias node
// special case: an alias node if (m_scanner.peek().type == Token::ALIAS) {
if(m_scanner.peek().type == Token::ALIAS) { eventHandler.OnAlias(mark, LookupAnchor(mark, m_scanner.peek().value));
eventHandler.OnAlias(mark, LookupAnchor(mark, m_scanner.peek().value)); m_scanner.pop();
m_scanner.pop(); return;
return; }
}
std::string tag;
std::string tag; anchor_t anchor;
anchor_t anchor; ParseProperties(tag, anchor);
ParseProperties(tag, anchor);
const Token& token = m_scanner.peek();
const Token& token = m_scanner.peek();
if (token.type == Token::PLAIN_SCALAR && token.value == "null") {
if(token.type == Token::PLAIN_SCALAR && token.value == "null") { eventHandler.OnNull(mark, anchor);
eventHandler.OnNull(mark, anchor); m_scanner.pop();
m_scanner.pop(); return;
return; }
}
// add non-specific tags
// add non-specific tags if (tag.empty())
if(tag.empty()) tag = (token.type == Token::NON_PLAIN_SCALAR ? "!" : "?");
tag = (token.type == Token::NON_PLAIN_SCALAR ? "!" : "?");
// now split based on what kind of node we should be
// now split based on what kind of node we should be switch (token.type) {
switch(token.type) { case Token::PLAIN_SCALAR:
case Token::PLAIN_SCALAR: case Token::NON_PLAIN_SCALAR:
case Token::NON_PLAIN_SCALAR: eventHandler.OnScalar(mark, tag, anchor, token.value);
eventHandler.OnScalar(mark, tag, anchor, token.value); m_scanner.pop();
m_scanner.pop(); return;
return; case Token::FLOW_SEQ_START:
case Token::FLOW_SEQ_START: eventHandler.OnSequenceStart(mark, tag, anchor, EmitterStyle::Flow);
case Token::BLOCK_SEQ_START: HandleSequence(eventHandler);
eventHandler.OnSequenceStart(mark, tag, anchor); eventHandler.OnSequenceEnd();
HandleSequence(eventHandler); return;
eventHandler.OnSequenceEnd(); case Token::BLOCK_SEQ_START:
return; eventHandler.OnSequenceStart(mark, tag, anchor, EmitterStyle::Block);
case Token::FLOW_MAP_START: HandleSequence(eventHandler);
case Token::BLOCK_MAP_START: eventHandler.OnSequenceEnd();
eventHandler.OnMapStart(mark, tag, anchor); return;
HandleMap(eventHandler); case Token::FLOW_MAP_START:
eventHandler.OnMapEnd(); eventHandler.OnMapStart(mark, tag, anchor, EmitterStyle::Flow);
return; HandleMap(eventHandler);
case Token::KEY: eventHandler.OnMapEnd();
// compact maps can only go in a flow sequence return;
if(m_pCollectionStack->GetCurCollectionType() == CollectionType::FlowSeq) { case Token::BLOCK_MAP_START:
eventHandler.OnMapStart(mark, tag, anchor); eventHandler.OnMapStart(mark, tag, anchor, EmitterStyle::Block);
HandleMap(eventHandler); HandleMap(eventHandler);
eventHandler.OnMapEnd(); eventHandler.OnMapEnd();
return; return;
} case Token::KEY:
break; // compact maps can only go in a flow sequence
default: if (m_pCollectionStack->GetCurCollectionType() ==
break; CollectionType::FlowSeq) {
} eventHandler.OnMapStart(mark, tag, anchor, EmitterStyle::Flow);
HandleMap(eventHandler);
if(tag == "?") eventHandler.OnMapEnd();
eventHandler.OnNull(mark, anchor); return;
else }
eventHandler.OnScalar(mark, tag, anchor, ""); break;
} default:
break;
void SingleDocParser::HandleSequence(EventHandler& eventHandler) }
{
// split based on start token if (tag == "?")
switch(m_scanner.peek().type) { eventHandler.OnNull(mark, anchor);
case Token::BLOCK_SEQ_START: HandleBlockSequence(eventHandler); break; else
case Token::FLOW_SEQ_START: HandleFlowSequence(eventHandler); break; eventHandler.OnScalar(mark, tag, anchor, "");
default: break; }
}
} void SingleDocParser::HandleSequence(EventHandler& eventHandler) {
// split based on start token
void SingleDocParser::HandleBlockSequence(EventHandler& eventHandler) switch (m_scanner.peek().type) {
{ case Token::BLOCK_SEQ_START:
// eat start token HandleBlockSequence(eventHandler);
m_scanner.pop(); break;
m_pCollectionStack->PushCollectionType(CollectionType::BlockSeq); case Token::FLOW_SEQ_START:
HandleFlowSequence(eventHandler);
while(1) { break;
if(m_scanner.empty()) default:
throw ParserException(m_scanner.mark(), ErrorMsg::END_OF_SEQ); break;
}
Token token = m_scanner.peek(); }
if(token.type != Token::BLOCK_ENTRY && token.type != Token::BLOCK_SEQ_END)
throw ParserException(token.mark, ErrorMsg::END_OF_SEQ); void SingleDocParser::HandleBlockSequence(EventHandler& eventHandler) {
// eat start token
m_scanner.pop(); m_scanner.pop();
if(token.type == Token::BLOCK_SEQ_END) m_pCollectionStack->PushCollectionType(CollectionType::BlockSeq);
break;
while (1) {
// check for null if (m_scanner.empty())
if(!m_scanner.empty()) { throw ParserException(m_scanner.mark(), ErrorMsg::END_OF_SEQ);
const Token& token = m_scanner.peek();
if(token.type == Token::BLOCK_ENTRY || token.type == Token::BLOCK_SEQ_END) { Token token = m_scanner.peek();
eventHandler.OnNull(token.mark, NullAnchor); if (token.type != Token::BLOCK_ENTRY && token.type != Token::BLOCK_SEQ_END)
continue; throw ParserException(token.mark, ErrorMsg::END_OF_SEQ);
}
} m_scanner.pop();
if (token.type == Token::BLOCK_SEQ_END)
HandleNode(eventHandler); break;
}
// check for null
m_pCollectionStack->PopCollectionType(CollectionType::BlockSeq); if (!m_scanner.empty()) {
} const Token& token = m_scanner.peek();
if (token.type == Token::BLOCK_ENTRY ||
void SingleDocParser::HandleFlowSequence(EventHandler& eventHandler) token.type == Token::BLOCK_SEQ_END) {
{ eventHandler.OnNull(token.mark, NullAnchor);
// eat start token continue;
m_scanner.pop(); }
m_pCollectionStack->PushCollectionType(CollectionType::FlowSeq); }
while(1) { HandleNode(eventHandler);
if(m_scanner.empty()) }
throw ParserException(m_scanner.mark(), ErrorMsg::END_OF_SEQ_FLOW);
m_pCollectionStack->PopCollectionType(CollectionType::BlockSeq);
// first check for end }
if(m_scanner.peek().type == Token::FLOW_SEQ_END) {
m_scanner.pop(); void SingleDocParser::HandleFlowSequence(EventHandler& eventHandler) {
break; // eat start token
} m_scanner.pop();
m_pCollectionStack->PushCollectionType(CollectionType::FlowSeq);
// then read the node
HandleNode(eventHandler); while (1) {
if (m_scanner.empty())
if(m_scanner.empty()) throw ParserException(m_scanner.mark(), ErrorMsg::END_OF_SEQ_FLOW);
throw ParserException(m_scanner.mark(), ErrorMsg::END_OF_SEQ_FLOW);
// first check for end
// now eat the separator (or could be a sequence end, which we ignore - but if it's neither, then it's a bad node) if (m_scanner.peek().type == Token::FLOW_SEQ_END) {
Token& token = m_scanner.peek(); m_scanner.pop();
if(token.type == Token::FLOW_ENTRY) break;
m_scanner.pop(); }
else if(token.type != Token::FLOW_SEQ_END)
throw ParserException(token.mark, ErrorMsg::END_OF_SEQ_FLOW); // then read the node
} HandleNode(eventHandler);
m_pCollectionStack->PopCollectionType(CollectionType::FlowSeq); if (m_scanner.empty())
} throw ParserException(m_scanner.mark(), ErrorMsg::END_OF_SEQ_FLOW);
void SingleDocParser::HandleMap(EventHandler& eventHandler) // now eat the separator (or could be a sequence end, which we ignore - but
{ // if it's neither, then it's a bad node)
// split based on start token Token& token = m_scanner.peek();
switch(m_scanner.peek().type) { if (token.type == Token::FLOW_ENTRY)
case Token::BLOCK_MAP_START: HandleBlockMap(eventHandler); break; m_scanner.pop();
case Token::FLOW_MAP_START: HandleFlowMap(eventHandler); break; else if (token.type != Token::FLOW_SEQ_END)
case Token::KEY: HandleCompactMap(eventHandler); break; throw ParserException(token.mark, ErrorMsg::END_OF_SEQ_FLOW);
case Token::VALUE: HandleCompactMapWithNoKey(eventHandler); break; }
default: break;
} m_pCollectionStack->PopCollectionType(CollectionType::FlowSeq);
} }
void SingleDocParser::HandleBlockMap(EventHandler& eventHandler) void SingleDocParser::HandleMap(EventHandler& eventHandler) {
{ // split based on start token
// eat start token switch (m_scanner.peek().type) {
m_scanner.pop(); case Token::BLOCK_MAP_START:
m_pCollectionStack->PushCollectionType(CollectionType::BlockMap); HandleBlockMap(eventHandler);
break;
while(1) { case Token::FLOW_MAP_START:
if(m_scanner.empty()) HandleFlowMap(eventHandler);
throw ParserException(m_scanner.mark(), ErrorMsg::END_OF_MAP); break;
case Token::KEY:
Token token = m_scanner.peek(); HandleCompactMap(eventHandler);
if(token.type != Token::KEY && token.type != Token::VALUE && token.type != Token::BLOCK_MAP_END) break;
throw ParserException(token.mark, ErrorMsg::END_OF_MAP); case Token::VALUE:
HandleCompactMapWithNoKey(eventHandler);
if(token.type == Token::BLOCK_MAP_END) { break;
m_scanner.pop(); default:
break; break;
} }
}
// grab key (if non-null)
if(token.type == Token::KEY) { void SingleDocParser::HandleBlockMap(EventHandler& eventHandler) {
m_scanner.pop(); // eat start token
HandleNode(eventHandler); m_scanner.pop();
} else { m_pCollectionStack->PushCollectionType(CollectionType::BlockMap);
eventHandler.OnNull(token.mark, NullAnchor);
} while (1) {
if (m_scanner.empty())
// now grab value (optional) throw ParserException(m_scanner.mark(), ErrorMsg::END_OF_MAP);
if(!m_scanner.empty() && m_scanner.peek().type == Token::VALUE) {
m_scanner.pop(); Token token = m_scanner.peek();
HandleNode(eventHandler); if (token.type != Token::KEY && token.type != Token::VALUE &&
} else { token.type != Token::BLOCK_MAP_END)
eventHandler.OnNull(token.mark, NullAnchor); throw ParserException(token.mark, ErrorMsg::END_OF_MAP);
}
} if (token.type == Token::BLOCK_MAP_END) {
m_scanner.pop();
m_pCollectionStack->PopCollectionType(CollectionType::BlockMap); break;
} }
void SingleDocParser::HandleFlowMap(EventHandler& eventHandler) // grab key (if non-null)
{ if (token.type == Token::KEY) {
// eat start token m_scanner.pop();
m_scanner.pop(); HandleNode(eventHandler);
m_pCollectionStack->PushCollectionType(CollectionType::FlowMap); } else {
eventHandler.OnNull(token.mark, NullAnchor);
while(1) { }
if(m_scanner.empty())
throw ParserException(m_scanner.mark(), ErrorMsg::END_OF_MAP_FLOW); // now grab value (optional)
if (!m_scanner.empty() && m_scanner.peek().type == Token::VALUE) {
Token& token = m_scanner.peek(); m_scanner.pop();
const Mark mark = token.mark; HandleNode(eventHandler);
// first check for end } else {
if(token.type == Token::FLOW_MAP_END) { eventHandler.OnNull(token.mark, NullAnchor);
m_scanner.pop(); }
break; }
}
m_pCollectionStack->PopCollectionType(CollectionType::BlockMap);
// grab key (if non-null) }
if(token.type == Token::KEY) {
m_scanner.pop(); void SingleDocParser::HandleFlowMap(EventHandler& eventHandler) {
HandleNode(eventHandler); // eat start token
} else { m_scanner.pop();
eventHandler.OnNull(mark, NullAnchor); m_pCollectionStack->PushCollectionType(CollectionType::FlowMap);
}
while (1) {
// now grab value (optional) if (m_scanner.empty())
if(!m_scanner.empty() && m_scanner.peek().type == Token::VALUE) { throw ParserException(m_scanner.mark(), ErrorMsg::END_OF_MAP_FLOW);
m_scanner.pop();
HandleNode(eventHandler); Token& token = m_scanner.peek();
} else { const Mark mark = token.mark;
eventHandler.OnNull(mark, NullAnchor); // first check for end
} if (token.type == Token::FLOW_MAP_END) {
m_scanner.pop();
if(m_scanner.empty()) break;
throw ParserException(m_scanner.mark(), ErrorMsg::END_OF_MAP_FLOW); }
// now eat the separator (or could be a map end, which we ignore - but if it's neither, then it's a bad node) // grab key (if non-null)
Token& nextToken = m_scanner.peek(); if (token.type == Token::KEY) {
if(nextToken.type == Token::FLOW_ENTRY) m_scanner.pop();
m_scanner.pop(); HandleNode(eventHandler);
else if(nextToken.type != Token::FLOW_MAP_END) } else {
throw ParserException(nextToken.mark, ErrorMsg::END_OF_MAP_FLOW); eventHandler.OnNull(mark, NullAnchor);
} }
m_pCollectionStack->PopCollectionType(CollectionType::FlowMap); // now grab value (optional)
} if (!m_scanner.empty() && m_scanner.peek().type == Token::VALUE) {
m_scanner.pop();
// . Single "key: value" pair in a flow sequence HandleNode(eventHandler);
void SingleDocParser::HandleCompactMap(EventHandler& eventHandler) } else {
{ eventHandler.OnNull(mark, NullAnchor);
m_pCollectionStack->PushCollectionType(CollectionType::CompactMap); }
// grab key if (m_scanner.empty())
Mark mark = m_scanner.peek().mark; throw ParserException(m_scanner.mark(), ErrorMsg::END_OF_MAP_FLOW);
m_scanner.pop();
HandleNode(eventHandler); // now eat the separator (or could be a map end, which we ignore - but if
// it's neither, then it's a bad node)
// now grab value (optional) Token& nextToken = m_scanner.peek();
if(!m_scanner.empty() && m_scanner.peek().type == Token::VALUE) { if (nextToken.type == Token::FLOW_ENTRY)
m_scanner.pop(); m_scanner.pop();
HandleNode(eventHandler); else if (nextToken.type != Token::FLOW_MAP_END)
} else { throw ParserException(nextToken.mark, ErrorMsg::END_OF_MAP_FLOW);
eventHandler.OnNull(mark, NullAnchor); }
}
m_pCollectionStack->PopCollectionType(CollectionType::FlowMap);
m_pCollectionStack->PopCollectionType(CollectionType::CompactMap); }
}
// . Single "key: value" pair in a flow sequence
// . Single ": value" pair in a flow sequence void SingleDocParser::HandleCompactMap(EventHandler& eventHandler) {
void SingleDocParser::HandleCompactMapWithNoKey(EventHandler& eventHandler) m_pCollectionStack->PushCollectionType(CollectionType::CompactMap);
{
m_pCollectionStack->PushCollectionType(CollectionType::CompactMap); // grab key
Mark mark = m_scanner.peek().mark;
// null key m_scanner.pop();
eventHandler.OnNull(m_scanner.peek().mark, NullAnchor); HandleNode(eventHandler);
// grab value // now grab value (optional)
m_scanner.pop(); if (!m_scanner.empty() && m_scanner.peek().type == Token::VALUE) {
HandleNode(eventHandler); m_scanner.pop();
HandleNode(eventHandler);
m_pCollectionStack->PopCollectionType(CollectionType::CompactMap); } else {
} eventHandler.OnNull(mark, NullAnchor);
}
// ParseProperties
// . Grabs any tag or anchor tokens and deals with them. m_pCollectionStack->PopCollectionType(CollectionType::CompactMap);
void SingleDocParser::ParseProperties(std::string& tag, anchor_t& anchor) }
{
tag.clear(); // . Single ": value" pair in a flow sequence
anchor = NullAnchor; void SingleDocParser::HandleCompactMapWithNoKey(EventHandler& eventHandler) {
m_pCollectionStack->PushCollectionType(CollectionType::CompactMap);
while(1) {
if(m_scanner.empty()) // null key
return; eventHandler.OnNull(m_scanner.peek().mark, NullAnchor);
switch(m_scanner.peek().type) { // grab value
case Token::TAG: ParseTag(tag); break; m_scanner.pop();
case Token::ANCHOR: ParseAnchor(anchor); break; HandleNode(eventHandler);
default: return;
} m_pCollectionStack->PopCollectionType(CollectionType::CompactMap);
} }
}
// ParseProperties
void SingleDocParser::ParseTag(std::string& tag) // . Grabs any tag or anchor tokens and deals with them.
{ void SingleDocParser::ParseProperties(std::string& tag, anchor_t& anchor) {
Token& token = m_scanner.peek(); tag.clear();
if(!tag.empty()) anchor = NullAnchor;
throw ParserException(token.mark, ErrorMsg::MULTIPLE_TAGS);
while (1) {
Tag tagInfo(token); if (m_scanner.empty())
tag = tagInfo.Translate(m_directives); return;
m_scanner.pop();
} switch (m_scanner.peek().type) {
case Token::TAG:
void SingleDocParser::ParseAnchor(anchor_t& anchor) ParseTag(tag);
{ break;
Token& token = m_scanner.peek(); case Token::ANCHOR:
if(anchor) ParseAnchor(anchor);
throw ParserException(token.mark, ErrorMsg::MULTIPLE_ANCHORS); break;
default:
anchor = RegisterAnchor(token.value); return;
m_scanner.pop(); }
} }
}
anchor_t SingleDocParser::RegisterAnchor(const std::string& name)
{ void SingleDocParser::ParseTag(std::string& tag) {
if(name.empty()) Token& token = m_scanner.peek();
return NullAnchor; if (!tag.empty())
throw ParserException(token.mark, ErrorMsg::MULTIPLE_TAGS);
return m_anchors[name] = ++m_curAnchor;
} Tag tagInfo(token);
tag = tagInfo.Translate(m_directives);
anchor_t SingleDocParser::LookupAnchor(const Mark& mark, const std::string& name) const m_scanner.pop();
{ }
Anchors::const_iterator it = m_anchors.find(name);
if(it == m_anchors.end()) void SingleDocParser::ParseAnchor(anchor_t& anchor) {
throw ParserException(mark, ErrorMsg::UNKNOWN_ANCHOR); Token& token = m_scanner.peek();
if (anchor)
return it->second; throw ParserException(token.mark, ErrorMsg::MULTIPLE_ANCHORS);
}
anchor = RegisterAnchor(token.value);
m_scanner.pop();
}
anchor_t SingleDocParser::RegisterAnchor(const std::string& name) {
if (name.empty())
return NullAnchor;
return m_anchors[name] = ++m_curAnchor;
}
anchor_t SingleDocParser::LookupAnchor(const Mark& mark,
const std::string& name) const {
Anchors::const_iterator it = m_anchors.find(name);
if (it == m_anchors.end())
throw ParserException(mark, ErrorMsg::UNKNOWN_ANCHOR);
return it->second;
}
} }

View File

@@ -1,65 +1,65 @@
#ifndef SINGLEDOCPARSER_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #ifndef SINGLEDOCPARSER_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define SINGLEDOCPARSER_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #define SINGLEDOCPARSER_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || (defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || (__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4 #if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once #pragma once
#endif #endif
#include <map>
#include <memory>
#include <string>
#include "yaml-cpp/anchor.h" #include "yaml-cpp/anchor.h"
#include "yaml-cpp/noncopyable.h" #include "yaml-cpp/noncopyable.h"
#include <string>
#include <map>
#include <memory>
namespace YAML namespace YAML {
{ class CollectionStack;
struct Directives; class EventHandler;
struct Mark; class Node;
struct Token; class Scanner;
class CollectionStack; struct Directives;
class EventHandler; struct Mark;
class Node; struct Token;
class Scanner;
class SingleDocParser: private noncopyable class SingleDocParser : private noncopyable {
{ public:
public: SingleDocParser(Scanner& scanner, const Directives& directives);
SingleDocParser(Scanner& scanner, const Directives& directives); ~SingleDocParser();
~SingleDocParser();
void HandleDocument(EventHandler& eventHandler); void HandleDocument(EventHandler& eventHandler);
private: private:
void HandleNode(EventHandler& eventHandler); void HandleNode(EventHandler& eventHandler);
void HandleSequence(EventHandler& eventHandler); void HandleSequence(EventHandler& eventHandler);
void HandleBlockSequence(EventHandler& eventHandler); void HandleBlockSequence(EventHandler& eventHandler);
void HandleFlowSequence(EventHandler& eventHandler); void HandleFlowSequence(EventHandler& eventHandler);
void HandleMap(EventHandler& eventHandler); void HandleMap(EventHandler& eventHandler);
void HandleBlockMap(EventHandler& eventHandler); void HandleBlockMap(EventHandler& eventHandler);
void HandleFlowMap(EventHandler& eventHandler); void HandleFlowMap(EventHandler& eventHandler);
void HandleCompactMap(EventHandler& eventHandler); void HandleCompactMap(EventHandler& eventHandler);
void HandleCompactMapWithNoKey(EventHandler& eventHandler); void HandleCompactMapWithNoKey(EventHandler& eventHandler);
void ParseProperties(std::string& tag, anchor_t& anchor); void ParseProperties(std::string& tag, anchor_t& anchor);
void ParseTag(std::string& tag); void ParseTag(std::string& tag);
void ParseAnchor(anchor_t& anchor); void ParseAnchor(anchor_t& anchor);
anchor_t RegisterAnchor(const std::string& name); anchor_t RegisterAnchor(const std::string& name);
anchor_t LookupAnchor(const Mark& mark, const std::string& name) const; anchor_t LookupAnchor(const Mark& mark, const std::string& name) const;
private: private:
Scanner& m_scanner; Scanner& m_scanner;
const Directives& m_directives; const Directives& m_directives;
std::auto_ptr<CollectionStack> m_pCollectionStack; std::auto_ptr<CollectionStack> m_pCollectionStack;
typedef std::map<std::string, anchor_t> Anchors; typedef std::map<std::string, anchor_t> Anchors;
Anchors m_anchors; Anchors m_anchors;
anchor_t m_curAnchor; anchor_t m_curAnchor;
}; };
} }
#endif // SINGLEDOCPARSER_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #endif // SINGLEDOCPARSER_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@@ -1,447 +1,448 @@
#include "stream.h"
#include <iostream> #include <iostream>
#include "exp.h"
#include "stream.h"
#ifndef YAML_PREFETCH_SIZE #ifndef YAML_PREFETCH_SIZE
#define YAML_PREFETCH_SIZE 2048 #define YAML_PREFETCH_SIZE 2048
#endif #endif
#define S_ARRAY_SIZE( A ) (sizeof(A)/sizeof(*(A))) #define S_ARRAY_SIZE(A) (sizeof(A) / sizeof(*(A)))
#define S_ARRAY_END( A ) ((A) + S_ARRAY_SIZE(A)) #define S_ARRAY_END(A) ((A) + S_ARRAY_SIZE(A))
#define CP_REPLACEMENT_CHARACTER (0xFFFD) #define CP_REPLACEMENT_CHARACTER (0xFFFD)
namespace YAML namespace YAML {
{ enum UtfIntroState {
enum UtfIntroState { uis_start,
uis_start, uis_utfbe_b1,
uis_utfbe_b1, uis_utf32be_b2,
uis_utf32be_b2, uis_utf32be_bom3,
uis_utf32be_bom3, uis_utf32be,
uis_utf32be, uis_utf16be,
uis_utf16be, uis_utf16be_bom1,
uis_utf16be_bom1, uis_utfle_bom1,
uis_utfle_bom1, uis_utf16le_bom2,
uis_utf16le_bom2, uis_utf32le_bom3,
uis_utf32le_bom3, uis_utf16le,
uis_utf16le, uis_utf32le,
uis_utf32le, uis_utf8_imp,
uis_utf8_imp, uis_utf16le_imp,
uis_utf16le_imp, uis_utf32le_imp3,
uis_utf32le_imp3, uis_utf8_bom1,
uis_utf8_bom1, uis_utf8_bom2,
uis_utf8_bom2, uis_utf8,
uis_utf8, uis_error
uis_error };
};
enum UtfIntroCharType { enum UtfIntroCharType {
uict00, uict00,
uictBB, uictBB,
uictBF, uictBF,
uictEF, uictEF,
uictFE, uictFE,
uictFF, uictFF,
uictAscii, uictAscii,
uictOther, uictOther,
uictMax uictMax
}; };
static bool s_introFinalState[] = { static bool s_introFinalState[] = {
false, //uis_start false, // uis_start
false, //uis_utfbe_b1 false, // uis_utfbe_b1
false, //uis_utf32be_b2 false, // uis_utf32be_b2
false, //uis_utf32be_bom3 false, // uis_utf32be_bom3
true, //uis_utf32be true, // uis_utf32be
true, //uis_utf16be true, // uis_utf16be
false, //uis_utf16be_bom1 false, // uis_utf16be_bom1
false, //uis_utfle_bom1 false, // uis_utfle_bom1
false, //uis_utf16le_bom2 false, // uis_utf16le_bom2
false, //uis_utf32le_bom3 false, // uis_utf32le_bom3
true, //uis_utf16le true, // uis_utf16le
true, //uis_utf32le true, // uis_utf32le
false, //uis_utf8_imp false, // uis_utf8_imp
false, //uis_utf16le_imp false, // uis_utf16le_imp
false, //uis_utf32le_imp3 false, // uis_utf32le_imp3
false, //uis_utf8_bom1 false, // uis_utf8_bom1
false, //uis_utf8_bom2 false, // uis_utf8_bom2
true, //uis_utf8 true, // uis_utf8
true, //uis_error true, // uis_error
}; };
static UtfIntroState s_introTransitions[][uictMax] = { static UtfIntroState s_introTransitions[][uictMax] = {
// uict00, uictBB, uictBF, uictEF, uictFE, uictFF, uictAscii, uictOther // uict00, uictBB, uictBF, uictEF,
{uis_utfbe_b1, uis_utf8, uis_utf8, uis_utf8_bom1, uis_utf16be_bom1, uis_utfle_bom1, uis_utf8_imp, uis_utf8}, // uictFE, uictFF, uictAscii, uictOther
{uis_utf32be_b2, uis_utf8, uis_utf8, uis_utf8, uis_utf8, uis_utf8, uis_utf16be, uis_utf8}, {uis_utfbe_b1, uis_utf8, uis_utf8, uis_utf8_bom1, uis_utf16be_bom1,
{uis_utf32be, uis_utf8, uis_utf8, uis_utf8, uis_utf32be_bom3, uis_utf8, uis_utf8, uis_utf8}, uis_utfle_bom1, uis_utf8_imp, uis_utf8},
{uis_utf8, uis_utf8, uis_utf8, uis_utf8, uis_utf8, uis_utf32be, uis_utf8, uis_utf8}, {uis_utf32be_b2, uis_utf8, uis_utf8, uis_utf8, uis_utf8, uis_utf8,
{uis_utf32be, uis_utf32be, uis_utf32be, uis_utf32be, uis_utf32be, uis_utf32be, uis_utf32be, uis_utf32be}, uis_utf16be, uis_utf8},
{uis_utf16be, uis_utf16be, uis_utf16be, uis_utf16be, uis_utf16be, uis_utf16be, uis_utf16be, uis_utf16be}, {uis_utf32be, uis_utf8, uis_utf8, uis_utf8, uis_utf32be_bom3, uis_utf8,
{uis_utf8, uis_utf8, uis_utf8, uis_utf8, uis_utf8, uis_utf16be, uis_utf8, uis_utf8}, uis_utf8, uis_utf8},
{uis_utf8, uis_utf8, uis_utf8, uis_utf8, uis_utf16le_bom2, uis_utf8, uis_utf8, uis_utf8}, {uis_utf8, uis_utf8, uis_utf8, uis_utf8, uis_utf8, uis_utf32be, uis_utf8,
{uis_utf32le_bom3, uis_utf16le, uis_utf16le, uis_utf16le, uis_utf16le, uis_utf16le, uis_utf16le, uis_utf16le}, uis_utf8},
{uis_utf32le, uis_utf16le, uis_utf16le, uis_utf16le, uis_utf16le, uis_utf16le, uis_utf16le, uis_utf16le}, {uis_utf32be, uis_utf32be, uis_utf32be, uis_utf32be, uis_utf32be,
{uis_utf16le, uis_utf16le, uis_utf16le, uis_utf16le, uis_utf16le, uis_utf16le, uis_utf16le, uis_utf16le}, uis_utf32be, uis_utf32be, uis_utf32be},
{uis_utf32le, uis_utf32le, uis_utf32le, uis_utf32le, uis_utf32le, uis_utf32le, uis_utf32le, uis_utf32le}, {uis_utf16be, uis_utf16be, uis_utf16be, uis_utf16be, uis_utf16be,
{uis_utf16le_imp, uis_utf8, uis_utf8, uis_utf8, uis_utf8, uis_utf8, uis_utf8, uis_utf8}, uis_utf16be, uis_utf16be, uis_utf16be},
{uis_utf32le_imp3, uis_utf16le, uis_utf16le, uis_utf16le, uis_utf16le, uis_utf16le, uis_utf16le, uis_utf16le}, {uis_utf8, uis_utf8, uis_utf8, uis_utf8, uis_utf8, uis_utf16be, uis_utf8,
{uis_utf32le, uis_utf16le, uis_utf16le, uis_utf16le, uis_utf16le, uis_utf16le, uis_utf16le, uis_utf16le}, uis_utf8},
{uis_utf8, uis_utf8_bom2, uis_utf8, uis_utf8, uis_utf8, uis_utf8, uis_utf8, uis_utf8}, {uis_utf8, uis_utf8, uis_utf8, uis_utf8, uis_utf16le_bom2, uis_utf8,
{uis_utf8, uis_utf8, uis_utf8, uis_utf8, uis_utf8, uis_utf8, uis_utf8, uis_utf8}, uis_utf8, uis_utf8},
{uis_utf8, uis_utf8, uis_utf8, uis_utf8, uis_utf8, uis_utf8, uis_utf8, uis_utf8}, {uis_utf32le_bom3, uis_utf16le, uis_utf16le, uis_utf16le, uis_utf16le,
}; uis_utf16le, uis_utf16le, uis_utf16le},
{uis_utf32le, uis_utf16le, uis_utf16le, uis_utf16le, uis_utf16le,
uis_utf16le, uis_utf16le, uis_utf16le},
{uis_utf16le, uis_utf16le, uis_utf16le, uis_utf16le, uis_utf16le,
uis_utf16le, uis_utf16le, uis_utf16le},
{uis_utf32le, uis_utf32le, uis_utf32le, uis_utf32le, uis_utf32le,
uis_utf32le, uis_utf32le, uis_utf32le},
{uis_utf16le_imp, uis_utf8, uis_utf8, uis_utf8, uis_utf8, uis_utf8,
uis_utf8, uis_utf8},
{uis_utf32le_imp3, uis_utf16le, uis_utf16le, uis_utf16le, uis_utf16le,
uis_utf16le, uis_utf16le, uis_utf16le},
{uis_utf32le, uis_utf16le, uis_utf16le, uis_utf16le, uis_utf16le,
uis_utf16le, uis_utf16le, uis_utf16le},
{uis_utf8, uis_utf8_bom2, uis_utf8, uis_utf8, uis_utf8, uis_utf8, uis_utf8,
uis_utf8},
{uis_utf8, uis_utf8, uis_utf8, uis_utf8, uis_utf8, uis_utf8, uis_utf8,
uis_utf8},
{uis_utf8, uis_utf8, uis_utf8, uis_utf8, uis_utf8, uis_utf8, uis_utf8,
uis_utf8},
};
static char s_introUngetCount[][uictMax] = { static char s_introUngetCount[][uictMax] = {
// uict00, uictBB, uictBF, uictEF, uictFE, uictFF, uictAscii, uictOther // uict00, uictBB, uictBF, uictEF, uictFE, uictFF, uictAscii, uictOther
{0, 1, 1, 0, 0, 0, 0, 1}, {0, 1, 1, 0, 0, 0, 0, 1},
{0, 2, 2, 2, 2, 2, 2, 2}, {0, 2, 2, 2, 2, 2, 2, 2},
{3, 3, 3, 3, 0, 3, 3, 3}, {3, 3, 3, 3, 0, 3, 3, 3},
{4, 4, 4, 4, 4, 0, 4, 4}, {4, 4, 4, 4, 4, 0, 4, 4},
{1, 1, 1, 1, 1, 1, 1, 1}, {1, 1, 1, 1, 1, 1, 1, 1},
{1, 1, 1, 1, 1, 1, 1, 1}, {1, 1, 1, 1, 1, 1, 1, 1},
{2, 2, 2, 2, 2, 0, 2, 2}, {2, 2, 2, 2, 2, 0, 2, 2},
{2, 2, 2, 2, 0, 2, 2, 2}, {2, 2, 2, 2, 0, 2, 2, 2},
{0, 1, 1, 1, 1, 1, 1, 1}, {0, 1, 1, 1, 1, 1, 1, 1},
{0, 2, 2, 2, 2, 2, 2, 2}, {0, 2, 2, 2, 2, 2, 2, 2},
{1, 1, 1, 1, 1, 1, 1, 1}, {1, 1, 1, 1, 1, 1, 1, 1},
{1, 1, 1, 1, 1, 1, 1, 1}, {1, 1, 1, 1, 1, 1, 1, 1},
{0, 2, 2, 2, 2, 2, 2, 2}, {0, 2, 2, 2, 2, 2, 2, 2},
{0, 3, 3, 3, 3, 3, 3, 3}, {0, 3, 3, 3, 3, 3, 3, 3},
{4, 4, 4, 4, 4, 4, 4, 4}, {4, 4, 4, 4, 4, 4, 4, 4},
{2, 0, 2, 2, 2, 2, 2, 2}, {2, 0, 2, 2, 2, 2, 2, 2},
{3, 3, 0, 3, 3, 3, 3, 3}, {3, 3, 0, 3, 3, 3, 3, 3},
{1, 1, 1, 1, 1, 1, 1, 1}, {1, 1, 1, 1, 1, 1, 1, 1},
}; };
inline UtfIntroCharType IntroCharTypeOf(std::istream::int_type ch) inline UtfIntroCharType IntroCharTypeOf(std::istream::int_type ch) {
{ if (std::istream::traits_type::eof() == ch) {
if (std::istream::traits_type::eof() == ch) { return uictOther;
return uictOther; }
}
switch (ch) { switch (ch) {
case 0: return uict00; case 0:
case 0xBB: return uictBB; return uict00;
case 0xBF: return uictBF; case 0xBB:
case 0xEF: return uictEF; return uictBB;
case 0xFE: return uictFE; case 0xBF:
case 0xFF: return uictFF; return uictBF;
} case 0xEF:
return uictEF;
case 0xFE:
return uictFE;
case 0xFF:
return uictFF;
}
if ((ch > 0) && (ch < 0xFF)) { if ((ch > 0) && (ch < 0xFF)) {
return uictAscii; return uictAscii;
} }
return uictOther; return uictOther;
} }
inline char Utf8Adjust(unsigned long ch, unsigned char lead_bits, unsigned char rshift) inline char Utf8Adjust(unsigned long ch, unsigned char lead_bits,
{ unsigned char rshift) {
const unsigned char header = ((1 << lead_bits) - 1) << (8 - lead_bits); const unsigned char header = ((1 << lead_bits) - 1) << (8 - lead_bits);
const unsigned char mask = (0xFF >> (lead_bits + 1)); const unsigned char mask = (0xFF >> (lead_bits + 1));
return static_cast<char>(static_cast<unsigned char>( return static_cast<char>(
header | ((ch >> rshift) & mask) static_cast<unsigned char>(header | ((ch >> rshift) & mask)));
)); }
}
inline void QueueUnicodeCodepoint(std::deque<char>& q, unsigned long ch) {
inline void QueueUnicodeCodepoint(std::deque<char>& q, unsigned long ch) // We are not allowed to queue the Stream::eof() codepoint, so
{ // replace it with CP_REPLACEMENT_CHARACTER
// We are not allowed to queue the Stream::eof() codepoint, so if (static_cast<unsigned long>(Stream::eof()) == ch) {
// replace it with CP_REPLACEMENT_CHARACTER ch = CP_REPLACEMENT_CHARACTER;
if (static_cast<unsigned long>(Stream::eof()) == ch) }
{
ch = CP_REPLACEMENT_CHARACTER; if (ch < 0x80) {
} q.push_back(Utf8Adjust(ch, 0, 0));
} else if (ch < 0x800) {
if (ch < 0x80) q.push_back(Utf8Adjust(ch, 2, 6));
{ q.push_back(Utf8Adjust(ch, 1, 0));
q.push_back(Utf8Adjust(ch, 0, 0)); } else if (ch < 0x10000) {
} q.push_back(Utf8Adjust(ch, 3, 12));
else if (ch < 0x800) q.push_back(Utf8Adjust(ch, 1, 6));
{ q.push_back(Utf8Adjust(ch, 1, 0));
q.push_back(Utf8Adjust(ch, 2, 6)); } else {
q.push_back(Utf8Adjust(ch, 1, 0)); q.push_back(Utf8Adjust(ch, 4, 18));
} q.push_back(Utf8Adjust(ch, 1, 12));
else if (ch < 0x10000) q.push_back(Utf8Adjust(ch, 1, 6));
{ q.push_back(Utf8Adjust(ch, 1, 0));
q.push_back(Utf8Adjust(ch, 3, 12)); }
q.push_back(Utf8Adjust(ch, 1, 6)); }
q.push_back(Utf8Adjust(ch, 1, 0));
} Stream::Stream(std::istream& input)
else : m_input(input),
{ m_pPrefetched(new unsigned char[YAML_PREFETCH_SIZE]),
q.push_back(Utf8Adjust(ch, 4, 18)); m_nPrefetchedAvailable(0),
q.push_back(Utf8Adjust(ch, 1, 12)); m_nPrefetchedUsed(0) {
q.push_back(Utf8Adjust(ch, 1, 6)); typedef std::istream::traits_type char_traits;
q.push_back(Utf8Adjust(ch, 1, 0));
} if (!input)
} return;
Stream::Stream(std::istream& input) // Determine (or guess) the character-set by reading the BOM, if any. See
: m_input(input), // the YAML specification for the determination algorithm.
m_pPrefetched(new unsigned char[YAML_PREFETCH_SIZE]), char_traits::int_type intro[4];
m_nPrefetchedAvailable(0), m_nPrefetchedUsed(0) int nIntroUsed = 0;
{ UtfIntroState state = uis_start;
typedef std::istream::traits_type char_traits; for (; !s_introFinalState[state];) {
std::istream::int_type ch = input.get();
if(!input) intro[nIntroUsed++] = ch;
return; UtfIntroCharType charType = IntroCharTypeOf(ch);
UtfIntroState newState = s_introTransitions[state][charType];
// Determine (or guess) the character-set by reading the BOM, if any. See int nUngets = s_introUngetCount[state][charType];
// the YAML specification for the determination algorithm. if (nUngets > 0) {
char_traits::int_type intro[4]; input.clear();
int nIntroUsed = 0; for (; nUngets > 0; --nUngets) {
UtfIntroState state = uis_start; if (char_traits::eof() != intro[--nIntroUsed])
for(; !s_introFinalState[state]; ) { input.putback(char_traits::to_char_type(intro[nIntroUsed]));
std::istream::int_type ch = input.get(); }
intro[nIntroUsed++] = ch; }
UtfIntroCharType charType = IntroCharTypeOf(ch); state = newState;
UtfIntroState newState = s_introTransitions[state][charType]; }
int nUngets = s_introUngetCount[state][charType];
if(nUngets > 0) { switch (state) {
input.clear(); case uis_utf8:
for(; nUngets > 0; --nUngets) { m_charSet = utf8;
if(char_traits::eof() != intro[--nIntroUsed]) break;
input.putback(char_traits::to_char_type(intro[nIntroUsed])); case uis_utf16le:
} m_charSet = utf16le;
} break;
state = newState; case uis_utf16be:
} m_charSet = utf16be;
break;
switch (state) { case uis_utf32le:
case uis_utf8: m_charSet = utf8; break; m_charSet = utf32le;
case uis_utf16le: m_charSet = utf16le; break; break;
case uis_utf16be: m_charSet = utf16be; break; case uis_utf32be:
case uis_utf32le: m_charSet = utf32le; break; m_charSet = utf32be;
case uis_utf32be: m_charSet = utf32be; break; break;
default: m_charSet = utf8; break; default:
} m_charSet = utf8;
break;
ReadAheadTo(0); }
}
ReadAheadTo(0);
Stream::~Stream() }
{
delete[] m_pPrefetched; Stream::~Stream() { delete[] m_pPrefetched; }
}
char Stream::peek() const {
char Stream::peek() const if (m_readahead.empty()) {
{ return Stream::eof();
if (m_readahead.empty()) }
{
return Stream::eof(); return m_readahead[0];
} }
return m_readahead[0]; Stream::operator bool() const {
} return m_input.good() ||
(!m_readahead.empty() && m_readahead[0] != Stream::eof());
Stream::operator bool() const }
{
return m_input.good() || (!m_readahead.empty() && m_readahead[0] != Stream::eof()); // get
} // . Extracts a character from the stream and updates our position
char Stream::get() {
// get char ch = peek();
// . Extracts a character from the stream and updates our position AdvanceCurrent();
char Stream::get() m_mark.column++;
{
char ch = peek(); if (ch == '\n') {
AdvanceCurrent(); m_mark.column = 0;
m_mark.column++; m_mark.line++;
}
if(ch == '\n') {
m_mark.column = 0; return ch;
m_mark.line++; }
}
// get
return ch; // . Extracts 'n' characters from the stream and updates our position
} std::string Stream::get(int n) {
std::string ret;
// get ret.reserve(n);
// . Extracts 'n' characters from the stream and updates our position for (int i = 0; i < n; i++)
std::string Stream::get(int n) ret += get();
{ return ret;
std::string ret; }
ret.reserve(n);
for(int i=0;i<n;i++) // eat
ret += get(); // . Eats 'n' characters and updates our position.
return ret; void Stream::eat(int n) {
} for (int i = 0; i < n; i++)
get();
// eat }
// . Eats 'n' characters and updates our position.
void Stream::eat(int n) void Stream::AdvanceCurrent() {
{ if (!m_readahead.empty()) {
for(int i=0;i<n;i++) m_readahead.pop_front();
get(); m_mark.pos++;
} }
void Stream::AdvanceCurrent() ReadAheadTo(0);
{ }
if (!m_readahead.empty())
{ bool Stream::_ReadAheadTo(size_t i) const {
m_readahead.pop_front(); while (m_input.good() && (m_readahead.size() <= i)) {
m_mark.pos++; switch (m_charSet) {
} case utf8:
StreamInUtf8();
ReadAheadTo(0); break;
} case utf16le:
StreamInUtf16();
bool Stream::_ReadAheadTo(size_t i) const break;
{ case utf16be:
while (m_input.good() && (m_readahead.size() <= i)) StreamInUtf16();
{ break;
switch (m_charSet) case utf32le:
{ StreamInUtf32();
case utf8: StreamInUtf8(); break; break;
case utf16le: StreamInUtf16(); break; case utf32be:
case utf16be: StreamInUtf16(); break; StreamInUtf32();
case utf32le: StreamInUtf32(); break; break;
case utf32be: StreamInUtf32(); break; }
} }
}
// signal end of stream
// signal end of stream if (!m_input.good())
if(!m_input.good()) m_readahead.push_back(Stream::eof());
m_readahead.push_back(Stream::eof());
return m_readahead.size() > i;
return m_readahead.size() > i; }
}
void Stream::StreamInUtf8() const {
void Stream::StreamInUtf8() const unsigned char b = GetNextByte();
{ if (m_input.good()) {
unsigned char b = GetNextByte(); m_readahead.push_back(b);
if (m_input.good()) }
{ }
m_readahead.push_back(b);
} void Stream::StreamInUtf16() const {
} unsigned long ch = 0;
unsigned char bytes[2];
void Stream::StreamInUtf16() const int nBigEnd = (m_charSet == utf16be) ? 0 : 1;
{
unsigned long ch = 0; bytes[0] = GetNextByte();
unsigned char bytes[2]; bytes[1] = GetNextByte();
int nBigEnd = (m_charSet == utf16be) ? 0 : 1; if (!m_input.good()) {
return;
bytes[0] = GetNextByte(); }
bytes[1] = GetNextByte(); ch = (static_cast<unsigned long>(bytes[nBigEnd]) << 8) |
if (!m_input.good()) static_cast<unsigned long>(bytes[1 ^ nBigEnd]);
{
return; if (ch >= 0xDC00 && ch < 0xE000) {
} // Trailing (low) surrogate...ugh, wrong order
ch = (static_cast<unsigned long>(bytes[nBigEnd]) << 8) | QueueUnicodeCodepoint(m_readahead, CP_REPLACEMENT_CHARACTER);
static_cast<unsigned long>(bytes[1 ^ nBigEnd]); return;
} else if (ch >= 0xD800 && ch < 0xDC00) {
if (ch >= 0xDC00 && ch < 0xE000) // ch is a leading (high) surrogate
{
// Trailing (low) surrogate...ugh, wrong order // Four byte UTF-8 code point
QueueUnicodeCodepoint(m_readahead, CP_REPLACEMENT_CHARACTER);
return; // Read the trailing (low) surrogate
} for (;;) {
else if (ch >= 0xD800 && ch < 0xDC00) bytes[0] = GetNextByte();
{ bytes[1] = GetNextByte();
// ch is a leading (high) surrogate if (!m_input.good()) {
QueueUnicodeCodepoint(m_readahead, CP_REPLACEMENT_CHARACTER);
// Four byte UTF-8 code point return;
}
// Read the trailing (low) surrogate unsigned long chLow = (static_cast<unsigned long>(bytes[nBigEnd]) << 8) |
for (;;) static_cast<unsigned long>(bytes[1 ^ nBigEnd]);
{ if (chLow < 0xDC00 || chLow >= 0xE000) {
bytes[0] = GetNextByte(); // Trouble...not a low surrogate. Dump a REPLACEMENT CHARACTER into the
bytes[1] = GetNextByte(); // stream.
if (!m_input.good()) QueueUnicodeCodepoint(m_readahead, CP_REPLACEMENT_CHARACTER);
{
QueueUnicodeCodepoint(m_readahead, CP_REPLACEMENT_CHARACTER); // Deal with the next UTF-16 unit
return; if (chLow < 0xD800 || chLow >= 0xE000) {
} // Easiest case: queue the codepoint and return
unsigned long chLow = (static_cast<unsigned long>(bytes[nBigEnd]) << 8) | QueueUnicodeCodepoint(m_readahead, ch);
static_cast<unsigned long>(bytes[1 ^ nBigEnd]); return;
if (chLow < 0xDC00 || ch >= 0xE000) } else {
{ // Start the loop over with the new high surrogate
// Trouble...not a low surrogate. Dump a REPLACEMENT CHARACTER into the stream. ch = chLow;
QueueUnicodeCodepoint(m_readahead, CP_REPLACEMENT_CHARACTER); continue;
}
// Deal with the next UTF-16 unit }
if (chLow < 0xD800 || ch >= 0xE000)
{ // Select the payload bits from the high surrogate
// Easiest case: queue the codepoint and return ch &= 0x3FF;
QueueUnicodeCodepoint(m_readahead, ch); ch <<= 10;
return;
} // Include bits from low surrogate
else ch |= (chLow & 0x3FF);
{
// Start the loop over with the new high surrogate // Add the surrogacy offset
ch = chLow; ch += 0x10000;
continue; break;
} }
} }
// Select the payload bits from the high surrogate QueueUnicodeCodepoint(m_readahead, ch);
ch &= 0x3FF; }
ch <<= 10;
inline char* ReadBuffer(unsigned char* pBuffer) {
// Include bits from low surrogate return reinterpret_cast<char*>(pBuffer);
ch |= (chLow & 0x3FF); }
// Add the surrogacy offset unsigned char Stream::GetNextByte() const {
ch += 0x10000; if (m_nPrefetchedUsed >= m_nPrefetchedAvailable) {
} std::streambuf* pBuf = m_input.rdbuf();
} m_nPrefetchedAvailable = static_cast<std::size_t>(
pBuf->sgetn(ReadBuffer(m_pPrefetched), YAML_PREFETCH_SIZE));
QueueUnicodeCodepoint(m_readahead, ch); m_nPrefetchedUsed = 0;
} if (!m_nPrefetchedAvailable) {
m_input.setstate(std::ios_base::eofbit);
inline char* ReadBuffer(unsigned char* pBuffer) }
{
return reinterpret_cast<char*>(pBuffer); if (0 == m_nPrefetchedAvailable) {
} return 0;
}
unsigned char Stream::GetNextByte() const }
{
if (m_nPrefetchedUsed >= m_nPrefetchedAvailable) return m_pPrefetched[m_nPrefetchedUsed++];
{ }
std::streambuf *pBuf = m_input.rdbuf();
m_nPrefetchedAvailable = static_cast<std::size_t>(pBuf->sgetn(ReadBuffer(m_pPrefetched), YAML_PREFETCH_SIZE)); void Stream::StreamInUtf32() const {
m_nPrefetchedUsed = 0; static int indexes[2][4] = {{3, 2, 1, 0}, {0, 1, 2, 3}};
if (!m_nPrefetchedAvailable)
{ unsigned long ch = 0;
m_input.setstate(std::ios_base::eofbit); unsigned char bytes[4];
} int* pIndexes = (m_charSet == utf32be) ? indexes[1] : indexes[0];
if (0 == m_nPrefetchedAvailable) bytes[0] = GetNextByte();
{ bytes[1] = GetNextByte();
return 0; bytes[2] = GetNextByte();
} bytes[3] = GetNextByte();
} if (!m_input.good()) {
return;
return m_pPrefetched[m_nPrefetchedUsed++]; }
}
for (int i = 0; i < 4; ++i) {
void Stream::StreamInUtf32() const ch <<= 8;
{ ch |= bytes[pIndexes[i]];
static int indexes[2][4] = { }
{3, 2, 1, 0},
{0, 1, 2, 3} QueueUnicodeCodepoint(m_readahead, ch);
}; }
unsigned long ch = 0;
unsigned char bytes[4];
int* pIndexes = (m_charSet == utf32be) ? indexes[1] : indexes[0];
bytes[0] = GetNextByte();
bytes[1] = GetNextByte();
bytes[2] = GetNextByte();
bytes[3] = GetNextByte();
if (!m_input.good())
{
return;
}
for (int i = 0; i < 4; ++i)
{
ch <<= 8;
ch |= bytes[pIndexes[i]];
}
QueueUnicodeCodepoint(m_readahead, ch);
}
} }

View File

@@ -1,11 +1,12 @@
#ifndef STREAM_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #ifndef STREAM_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define STREAM_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #define STREAM_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || (defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || (__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4 #if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once #pragma once
#endif #endif
#include "yaml-cpp/noncopyable.h" #include "yaml-cpp/noncopyable.h"
#include "yaml-cpp/mark.h" #include "yaml-cpp/mark.h"
#include <cstddef> #include <cstddef>
@@ -15,65 +16,61 @@
#include <set> #include <set>
#include <string> #include <string>
namespace YAML namespace YAML {
{ class Stream : private noncopyable {
class Stream: private noncopyable public:
{ friend class StreamCharSource;
public:
friend class StreamCharSource;
Stream(std::istream& input); Stream(std::istream& input);
~Stream(); ~Stream();
operator bool() const; operator bool() const;
bool operator !() const { return !static_cast <bool>(*this); } bool operator!() const { return !static_cast<bool>(*this); }
char peek() const; char peek() const;
char get(); char get();
std::string get(int n); std::string get(int n);
void eat(int n = 1); void eat(int n = 1);
static char eof() { return 0x04; } static char eof() { return 0x04; }
const Mark mark() const { return m_mark; } const Mark mark() const { return m_mark; }
int pos() const { return m_mark.pos; } int pos() const { return m_mark.pos; }
int line() const { return m_mark.line; } int line() const { return m_mark.line; }
int column() const { return m_mark.column; } int column() const { return m_mark.column; }
void ResetColumn() { m_mark.column = 0; } void ResetColumn() { m_mark.column = 0; }
private: private:
enum CharacterSet {utf8, utf16le, utf16be, utf32le, utf32be}; enum CharacterSet { utf8, utf16le, utf16be, utf32le, utf32be };
std::istream& m_input; std::istream& m_input;
Mark m_mark; Mark m_mark;
CharacterSet m_charSet; CharacterSet m_charSet;
mutable std::deque<char> m_readahead; mutable std::deque<char> m_readahead;
unsigned char* const m_pPrefetched; unsigned char* const m_pPrefetched;
mutable size_t m_nPrefetchedAvailable; mutable size_t m_nPrefetchedAvailable;
mutable size_t m_nPrefetchedUsed; mutable size_t m_nPrefetchedUsed;
void AdvanceCurrent(); void AdvanceCurrent();
char CharAt(size_t i) const; char CharAt(size_t i) const;
bool ReadAheadTo(size_t i) const; bool ReadAheadTo(size_t i) const;
bool _ReadAheadTo(size_t i) const; bool _ReadAheadTo(size_t i) const;
void StreamInUtf8() const; void StreamInUtf8() const;
void StreamInUtf16() const; void StreamInUtf16() const;
void StreamInUtf32() const; void StreamInUtf32() const;
unsigned char GetNextByte() const; unsigned char GetNextByte() const;
}; };
// CharAt // CharAt
// . Unchecked access // . Unchecked access
inline char Stream::CharAt(size_t i) const { inline char Stream::CharAt(size_t i) const { return m_readahead[i]; }
return m_readahead[i];
}
inline bool Stream::ReadAheadTo(size_t i) const { inline bool Stream::ReadAheadTo(size_t i) const {
if(m_readahead.size() > i) if (m_readahead.size() > i)
return true; return true;
return _ReadAheadTo(i); return _ReadAheadTo(i);
} }
} }
#endif // STREAM_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #endif // STREAM_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@@ -1,48 +1,48 @@
#ifndef STREAMCHARSOURCE_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #ifndef STREAMCHARSOURCE_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define STREAMCHARSOURCE_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #define STREAMCHARSOURCE_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || (defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || (__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4 #if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once #pragma once
#endif #endif
#include "yaml-cpp/noncopyable.h" #include "yaml-cpp/noncopyable.h"
#include <cstddef> #include <cstddef>
namespace YAML namespace YAML {
{ class StreamCharSource {
class StreamCharSource public:
{ StreamCharSource(const Stream& stream) : m_offset(0), m_stream(stream) {}
public: StreamCharSource(const StreamCharSource& source)
StreamCharSource(const Stream& stream): m_offset(0), m_stream(stream) {} : m_offset(source.m_offset), m_stream(source.m_stream) {}
StreamCharSource(const StreamCharSource& source): m_offset(source.m_offset), m_stream(source.m_stream) {} ~StreamCharSource() {}
~StreamCharSource() {}
operator bool() const; operator bool() const;
char operator [] (std::size_t i) const { return m_stream.CharAt(m_offset + i); } char operator[](std::size_t i) const { return m_stream.CharAt(m_offset + i); }
bool operator !() const { return !static_cast<bool>(*this); } bool operator!() const { return !static_cast<bool>(*this); }
const StreamCharSource operator + (int i) const; const StreamCharSource operator+(int i) const;
private: private:
std::size_t m_offset; std::size_t m_offset;
const Stream& m_stream; const Stream& m_stream;
StreamCharSource& operator = (const StreamCharSource&); // non-assignable StreamCharSource& operator=(const StreamCharSource&); // non-assignable
}; };
inline StreamCharSource::operator bool() const { inline StreamCharSource::operator bool() const {
return m_stream.ReadAheadTo(m_offset); return m_stream.ReadAheadTo(m_offset);
}
inline const StreamCharSource StreamCharSource::operator + (int i) const {
StreamCharSource source(*this);
if(static_cast<int> (source.m_offset) + i >= 0)
source.m_offset += i;
else
source.m_offset = 0;
return source;
}
} }
#endif // STREAMCHARSOURCE_H_62B23520_7C8E_11DE_8A39_0800200C9A66 inline const StreamCharSource StreamCharSource::operator+(int i) const {
StreamCharSource source(*this);
if (static_cast<int>(source.m_offset) + i >= 0)
source.m_offset += i;
else
source.m_offset = 0;
return source;
}
}
#endif // STREAMCHARSOURCE_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@@ -1,47 +1,48 @@
#ifndef STRINGSOURCE_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #ifndef STRINGSOURCE_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define STRINGSOURCE_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #define STRINGSOURCE_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || (defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || (__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4 #if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once #pragma once
#endif #endif
#include <cstddef> #include <cstddef>
namespace YAML namespace YAML {
{ class StringCharSource {
class StringCharSource public:
{ StringCharSource(const char* str, std::size_t size)
public: : m_str(str), m_size(size), m_offset(0) {}
StringCharSource(const char *str, std::size_t size): m_str(str), m_size(size), m_offset(0) {}
operator bool() const { return m_offset < m_size; } operator bool() const { return m_offset < m_size; }
char operator [] (std::size_t i) const { return m_str[m_offset + i]; } char operator[](std::size_t i) const { return m_str[m_offset + i]; }
bool operator !() const { return !static_cast<bool>(*this); } bool operator!() const { return !static_cast<bool>(*this); }
const StringCharSource operator + (int i) const { const StringCharSource operator+(int i) const {
StringCharSource source(*this); StringCharSource source(*this);
if(static_cast<int> (source.m_offset) + i >= 0) if (static_cast<int>(source.m_offset) + i >= 0)
source.m_offset += i; source.m_offset += i;
else else
source.m_offset = 0; source.m_offset = 0;
return source; return source;
} }
StringCharSource& operator ++ () { StringCharSource& operator++() {
++m_offset; ++m_offset;
return *this; return *this;
} }
StringCharSource& operator += (std::size_t offset) { StringCharSource& operator+=(std::size_t offset) {
m_offset += offset; m_offset += offset;
return *this; return *this;
} }
private:
const char *m_str; private:
std::size_t m_size; const char* m_str;
std::size_t m_offset; std::size_t m_size;
}; std::size_t m_offset;
};
} }
#endif // STRINGSOURCE_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #endif // STRINGSOURCE_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@@ -1,52 +1,49 @@
#include "tag.h"
#include "directives.h"
#include "token.h"
#include <cassert> #include <cassert>
#include <stdexcept> #include <stdexcept>
namespace YAML #include "directives.h" // IWYU pragma: keep
{ #include "tag.h"
Tag::Tag(const Token& token): type(static_cast<TYPE>(token.data)) #include "token.h"
{
switch(type) {
case VERBATIM:
value = token.value;
break;
case PRIMARY_HANDLE:
value = token.value;
break;
case SECONDARY_HANDLE:
value = token.value;
break;
case NAMED_HANDLE:
handle = token.value;
value = token.params[0];
break;
case NON_SPECIFIC:
break;
default:
assert(false);
}
}
const std::string Tag::Translate(const Directives& directives) namespace YAML {
{ Tag::Tag(const Token& token) : type(static_cast<TYPE>(token.data)) {
switch(type) { switch (type) {
case VERBATIM: case VERBATIM:
return value; value = token.value;
case PRIMARY_HANDLE: break;
return directives.TranslateTagHandle("!") + value; case PRIMARY_HANDLE:
case SECONDARY_HANDLE: value = token.value;
return directives.TranslateTagHandle("!!") + value; break;
case NAMED_HANDLE: case SECONDARY_HANDLE:
return directives.TranslateTagHandle("!" + handle + "!") + value; value = token.value;
case NON_SPECIFIC: break;
// TODO: case NAMED_HANDLE:
return "!"; handle = token.value;
default: value = token.params[0];
assert(false); break;
} case NON_SPECIFIC:
throw std::runtime_error("yaml-cpp: internal error, bad tag type"); break;
} default:
assert(false);
}
} }
const std::string Tag::Translate(const Directives& directives) {
switch (type) {
case VERBATIM:
return value;
case PRIMARY_HANDLE:
return directives.TranslateTagHandle("!") + value;
case SECONDARY_HANDLE:
return directives.TranslateTagHandle("!!") + value;
case NAMED_HANDLE:
return directives.TranslateTagHandle("!" + handle + "!") + value;
case NON_SPECIFIC:
// TODO:
return "!";
default:
assert(false);
}
throw std::runtime_error("yaml-cpp: internal error, bad tag type");
}
}

View File

@@ -1,28 +1,33 @@
#ifndef TAG_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #ifndef TAG_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define TAG_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #define TAG_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || (defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || (__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4 #if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once #pragma once
#endif #endif
#include <string> #include <string>
namespace YAML namespace YAML {
{ struct Directives;
struct Token; struct Token;
struct Directives;
struct Tag { struct Tag {
enum TYPE { enum TYPE {
VERBATIM, PRIMARY_HANDLE, SECONDARY_HANDLE, NAMED_HANDLE, NON_SPECIFIC VERBATIM,
}; PRIMARY_HANDLE,
SECONDARY_HANDLE,
NAMED_HANDLE,
NON_SPECIFIC
};
Tag(const Token& token); Tag(const Token& token);
const std::string Translate(const Directives& directives); const std::string Translate(const Directives& directives);
TYPE type; TYPE type;
std::string handle, value; std::string handle, value;
}; };
} }
#endif // TAG_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #endif // TAG_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@@ -1,85 +1,69 @@
#ifndef TOKEN_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #ifndef TOKEN_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#define TOKEN_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #define TOKEN_H_62B23520_7C8E_11DE_8A39_0800200C9A66
#if defined(_MSC_VER) || (defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || (__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4 #if defined(_MSC_VER) || \
(defined(__GNUC__) && (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || \
(__GNUC__ >= 4)) // GCC supports "pragma once" correctly since 3.4
#pragma once #pragma once
#endif #endif
#include "yaml-cpp/mark.h" #include "yaml-cpp/mark.h"
#include <iostream> #include <iostream>
#include <string> #include <string>
#include <vector> #include <vector>
namespace YAML namespace YAML {
{ const std::string TokenNames[] = {
const std::string TokenNames[] = { "DIRECTIVE", "DOC_START", "DOC_END", "BLOCK_SEQ_START", "BLOCK_MAP_START",
"DIRECTIVE", "BLOCK_SEQ_END", "BLOCK_MAP_END", "BLOCK_ENTRY", "FLOW_SEQ_START",
"DOC_START", "FLOW_MAP_START", "FLOW_SEQ_END", "FLOW_MAP_END", "FLOW_MAP_COMPACT",
"DOC_END", "FLOW_ENTRY", "KEY", "VALUE", "ANCHOR", "ALIAS", "TAG", "SCALAR"};
"BLOCK_SEQ_START",
"BLOCK_MAP_START",
"BLOCK_SEQ_END",
"BLOCK_MAP_END",
"BLOCK_ENTRY",
"FLOW_SEQ_START",
"FLOW_MAP_START",
"FLOW_SEQ_END",
"FLOW_MAP_END",
"FLOW_MAP_COMPACT",
"FLOW_ENTRY",
"KEY",
"VALUE",
"ANCHOR",
"ALIAS",
"TAG",
"SCALAR"
};
struct Token { struct Token {
// enums // enums
enum STATUS { VALID, INVALID, UNVERIFIED }; enum STATUS { VALID, INVALID, UNVERIFIED };
enum TYPE { enum TYPE {
DIRECTIVE, DIRECTIVE,
DOC_START, DOC_START,
DOC_END, DOC_END,
BLOCK_SEQ_START, BLOCK_SEQ_START,
BLOCK_MAP_START, BLOCK_MAP_START,
BLOCK_SEQ_END, BLOCK_SEQ_END,
BLOCK_MAP_END, BLOCK_MAP_END,
BLOCK_ENTRY, BLOCK_ENTRY,
FLOW_SEQ_START, FLOW_SEQ_START,
FLOW_MAP_START, FLOW_MAP_START,
FLOW_SEQ_END, FLOW_SEQ_END,
FLOW_MAP_END, FLOW_MAP_END,
FLOW_MAP_COMPACT, FLOW_MAP_COMPACT,
FLOW_ENTRY, FLOW_ENTRY,
KEY, KEY,
VALUE, VALUE,
ANCHOR, ANCHOR,
ALIAS, ALIAS,
TAG, TAG,
PLAIN_SCALAR, PLAIN_SCALAR,
NON_PLAIN_SCALAR NON_PLAIN_SCALAR
}; };
// data // data
Token(TYPE type_, const Mark& mark_): status(VALID), type(type_), mark(mark_), data(0) {} Token(TYPE type_, const Mark& mark_)
: status(VALID), type(type_), mark(mark_), data(0) {}
friend std::ostream& operator << (std::ostream& out, const Token& token) { friend std::ostream& operator<<(std::ostream& out, const Token& token) {
out << TokenNames[token.type] << std::string(": ") << token.value; out << TokenNames[token.type] << std::string(": ") << token.value;
for(std::size_t i=0;i<token.params.size();i++) for (std::size_t i = 0; i < token.params.size(); i++)
out << std::string(" ") << token.params[i]; out << std::string(" ") << token.params[i];
return out; return out;
} }
STATUS status; STATUS status;
TYPE type; TYPE type;
Mark mark; Mark mark;
std::string value; std::string value;
std::vector <std::string> params; std::vector<std::string> params;
int data; int data;
}; };
} }
#endif // TOKEN_H_62B23520_7C8E_11DE_8A39_0800200C9A66 #endif // TOKEN_H_62B23520_7C8E_11DE_8A39_0800200C9A66

View File

@@ -1,8 +1,24 @@
file(GLOB test_headers [a-z]*.h) set(gtest_force_shared_crt ${MSVC_SHARED_RT} CACHE BOOL
file(GLOB test_sources [a-z]*.cpp) "Use shared (DLL) run-time lib even when Google Test built as a static lib.")
add_subdirectory(gmock-1.7.0)
include_directories(SYSTEM gmock-1.7.0/gtest/include)
include_directories(SYSTEM gmock-1.7.0/include)
if(WIN32 AND BUILD_SHARED_LIBS)
add_definitions("-DGTEST_LINKED_AS_SHARED_LIBRARY")
endif()
if("${CMAKE_CXX_COMPILER_ID}" MATCHES "GNU" OR
"${CMAKE_CXX_COMPILER_ID}" MATCHES "Clang")
set(yaml_test_flags "-Wno-c99-extensions -Wno-variadic-macros -Wno-sign-compare")
endif()
file(GLOB test_headers [a-z_]*.h)
file(GLOB test_sources [a-z_]*.cpp integration/[a-z_]*.cpp node/[a-z_]*.cpp)
file(GLOB test_new_api_sources new-api/[a-z]*.cpp) file(GLOB test_new_api_sources new-api/[a-z]*.cpp)
list(APPEND test_sources ${test_new_api_sources}) list(APPEND test_sources ${test_new_api_sources})
add_sources(${test_sources} ${test_headers})
include_directories(${YAML_CPP_SOURCE_DIR}/test) include_directories(${YAML_CPP_SOURCE_DIR}/test)
@@ -10,6 +26,9 @@ add_executable(run-tests
${test_sources} ${test_sources}
${test_headers} ${test_headers}
) )
target_link_libraries(run-tests yaml-cpp) set_target_properties(run-tests PROPERTIES
COMPILE_FLAGS "${yaml_c_flags} ${yaml_cxx_flags} ${yaml_test_flags}"
)
target_link_libraries(run-tests yaml-cpp gmock)
add_test(yaml-reader-test run-tests) add_test(yaml-test ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/run-tests)

Some files were not shown because too many files have changed in this diff Show More