Compare commits

...

6 Commits

3 changed files with 693 additions and 47 deletions

View File

@@ -1,11 +1,14 @@
#ifndef THWEAVER_FABRIC_H #ifndef THREADWEAVER_WEAVER_H
#define THWEAVER_FABRIC_H #define THREADWEAVER_WEAVER_H
#include <array> #include <array>
#include <atomic> #include <atomic>
#include <bit>
#include <cstddef> #include <cstddef>
#include <cstdint> #include <cstdint>
#include <limits>
#include <new> #include <new>
#include <utility>
namespace THWeaver { namespace THWeaver {
@@ -23,44 +26,63 @@ enum class FanInFabricRecvTryResult { Ok, ErrTryFailed };
enum class FanInFabricRecvAggrResult { Ok, ErrAggrFailed }; enum class FanInFabricRecvAggrResult { Ok, ErrAggrFailed };
template <typename BitmapType> struct FanOutFabricSendResult {
BitmapType failures;
enum { Ok, ErrPartialSuccess, ErrFullFailure } result;
};
enum class FanOutFabricRecvResult { Ok, ErrEmpty };
enum class FanOutFabricDeallocResult { Ok, ErrReclaimQueueFull };
template <typename MessageType, std::size_t qsize_expt> class EndpointQueue { template <typename MessageType, std::size_t qsize_expt> class EndpointQueue {
public: public:
static constexpr std::size_t QSIZE = 1 << qsize_expt; static constexpr std::size_t QSIZE = 1 << qsize_expt;
static constexpr std::size_t QSIZE_MASK = QSIZE - 1; static constexpr std::size_t QSIZE_MASK = QSIZE - 1;
EndpointQueue() noexcept {}; EndpointQueue() noexcept {};
EndpointQueue(const EndpointQueue<MessageType, qsize_expt> &) = delete; EndpointQueue(const EndpointQueue &) = delete;
EndpointQueue & EndpointQueue &operator=(const EndpointQueue &) = delete;
operator=(const EndpointQueue<MessageType, qsize_expt> &) = delete; EndpointQueue(EndpointQueue &&) = delete;
EndpointQueue(EndpointQueue<MessageType, qsize_expt> &&) = delete; EndpointQueue &operator=(EndpointQueue &&) = delete;
EndpointQueue &
operator=(EndpointQueue<MessageType, qsize_expt> &&) = delete;
void init() noexcept { void init() noexcept {
head.store(0); head.store(0, std::memory_order_release);
tail.store(0); tail.store(0, std::memory_order_release);
} }
void flush() noexcept { void flush() noexcept {
head.store(0); head.store(0, std::memory_order_release);
tail.store(0); tail.store(0, std::memory_order_release);
} }
std::size_t size() const noexcept { std::size_t size() const noexcept {
return ((tail.load() + QSIZE_MASK) - head.load()) & QSIZE_MASK; return ((tail.load(std::memory_order::acquire) + QSIZE_MASK) -
head.load(std::memory_order::acquire)) &
QSIZE_MASK;
} }
bool is_empty() const noexcept { return head.load() == tail.load(); } bool is_empty() const noexcept {
return head.load(std::memory_order::acquire) ==
tail.load(std::memory_order::acquire);
}
bool is_full() const noexcept { bool is_full() const noexcept {
return head.load() == ((tail.load() + 1) & QSIZE_MASK); return head.load(std::memory_order::acquire) ==
((tail.load(std::memory_order::acquire) + 1) &
QSIZE_MASK);
} }
std::size_t get_head() const noexcept { return head.load(); } std::size_t get_head() const noexcept {
std::size_t get_tail() const noexcept { return tail.load(); } return head.load(std::memory_order::acquire);
}
std::size_t get_tail() const noexcept {
return tail.load(std::memory_order::acquire);
}
std::array<MessageType, QSIZE> &get_buffer() noexcept { return buffer; }
EndpointQueueSendResult send(MessageType &&message) noexcept { EndpointQueueSendResult send(MessageType &&message) noexcept {
std::size_t h = head.load(); std::size_t h = head.load(std::memory_order::acquire);
std::size_t t = tail.load(); std::size_t t = tail.load(std::memory_order::acquire);
if (h == ((t + 1) & QSIZE_MASK)) if (h == ((t + 1) & QSIZE_MASK))
return EndpointQueueSendResult::ErrFull; return EndpointQueueSendResult::ErrFull;
@@ -68,14 +90,14 @@ public:
buffer[t] = std::move(message); buffer[t] = std::move(message);
t = (t + 1) & QSIZE_MASK; t = (t + 1) & QSIZE_MASK;
tail.store(t); tail.store(t, std::memory_order_release);
return EndpointQueueSendResult::Ok; return EndpointQueueSendResult::Ok;
} }
EndpointQueueRecvResult recv(MessageType &buffer) noexcept { EndpointQueueRecvResult recv(MessageType &buffer) noexcept {
std::size_t h = head.load(); std::size_t h = head.load(std::memory_order::acquire);
std::size_t t = tail.load(); std::size_t t = tail.load(std::memory_order::acquire);
if (h == t) if (h == t)
return EndpointQueueRecvResult::ErrEmpty; return EndpointQueueRecvResult::ErrEmpty;
@@ -83,15 +105,16 @@ public:
buffer = std::move(this->buffer[h]); buffer = std::move(this->buffer[h]);
h = (h + 1) & QSIZE_MASK; h = (h + 1) & QSIZE_MASK;
head.store(h); head.store(h, std::memory_order_release);
return EndpointQueueRecvResult::Ok; return EndpointQueueRecvResult::Ok;
} }
void recv_unsafe(MessageType &buffer, std::size_t old_head) noexcept { void recv_unsafe(MessageType &buffer, std::size_t &old_head) noexcept {
buffer = std::move(this->buffer[old_head]); buffer = std::move(this->buffer[old_head]);
old_head = (old_head + 1) & QSIZE_MASK;
head.store((old_head + 1) & QSIZE_MASK); head.store(old_head, std::memory_order_release);
} }
private: private:
@@ -106,7 +129,7 @@ class FanInFabric {
public: public:
using BitmapType = uint64_t; using BitmapType = uint64_t;
static constexpr std::size_t QSIZE = 1 << qsize_expt; static constexpr std::size_t QSIZE = 1ULL << qsize_expt;
static constexpr std::size_t QSIZE_MASK = QSIZE - 1; static constexpr std::size_t QSIZE_MASK = QSIZE - 1;
static constexpr std::size_t BITMAP_SIZE = sizeof(BitmapType) * 8; static constexpr std::size_t BITMAP_SIZE = sizeof(BitmapType) * 8;
static constexpr BitmapType THREAD_BITMAP_MASK = static constexpr BitmapType THREAD_BITMAP_MASK =
@@ -114,22 +137,16 @@ public:
? ~BitmapType(0) ? ~BitmapType(0)
: (BitmapType(1) << IN_THREAD_CNT) - 1; : (BitmapType(1) << IN_THREAD_CNT) - 1;
static_assert(IN_THREAD_CNT <= BITMAP_SIZE, "Producer limit exceeded"); static_assert(IN_THREAD_CNT <= BITMAP_SIZE, "Insufficient bitmap size");
FanInFabric() noexcept {} FanInFabric() noexcept {}
FanInFabric(const FanInFabric<MessageType, qsize_expt, IN_THREAD_CNT> FanInFabric(const FanInFabric &) = delete;
&) = delete; FanInFabric &operator=(const FanInFabric &) = delete;
FanInFabric & FanInFabric(FanInFabric &&) = delete;
operator=(const FanInFabric<MessageType, qsize_expt, IN_THREAD_CNT> &) = FanInFabric &operator=(FanInFabric &&) = delete;
delete;
FanInFabric(FanInFabric<MessageType, qsize_expt, IN_THREAD_CNT> &&) =
delete;
FanInFabric &
operator=(FanInFabric<MessageType, qsize_expt, IN_THREAD_CNT> &&) =
delete;
void init() noexcept { void init() noexcept {
for (int i = 0; i < IN_THREAD_CNT; ++i) for (std::size_t i = 0; i < IN_THREAD_CNT; ++i)
in_queues[i].init(); in_queues[i].init();
hint.store(0); hint.store(0);
dl.init(); dl.init();
@@ -141,7 +158,8 @@ public:
"Thread ID out of bounds"); "Thread ID out of bounds");
in_queues[thread_id].flush(); in_queues[thread_id].flush();
hint.fetch_and(~(1 << thread_id), std::memory_order_relaxed); hint.fetch_and(~(BitmapType(1) << thread_id),
std::memory_order_relaxed);
} }
void flush_all() noexcept { void flush_all() noexcept {
@@ -158,7 +176,7 @@ public:
"Thread ID out of bounds"); "Thread ID out of bounds");
return static_cast<FanInFabricSendResult>(static_cast<uint32_t>( return static_cast<FanInFabricSendResult>(static_cast<uint32_t>(
in_queues[thread_id].send(message))); in_queues[thread_id].send(std::move(message))));
} }
FanInFabricRecvBitmapResult FanInFabricRecvBitmapResult
@@ -178,7 +196,7 @@ public:
std::size_t qsize = ((tail + QSIZE_MASK) - head) & QSIZE_MASK; std::size_t qsize = ((tail + QSIZE_MASK) - head) & QSIZE_MASK;
if (qsize <= 1) if (qsize <= 1)
hint.fetch_and(~(1 << hinted_id), hint.fetch_and(~(BitmapType(1) << hinted_id),
std::memory_order_relaxed); std::memory_order_relaxed);
if (qsize) { if (qsize) {
@@ -205,7 +223,7 @@ public:
((tail + QSIZE_MASK) - head) & QSIZE_MASK; ((tail + QSIZE_MASK) - head) & QSIZE_MASK;
if (qsize <= 1) if (qsize <= 1)
hint.fetch_and(~(1 << hinted_id), hint.fetch_and(~(BitmapType(1) << hinted_id),
std::memory_order_relaxed); std::memory_order_relaxed);
if (qsize) { if (qsize) {
@@ -241,7 +259,7 @@ public:
((tail + QSIZE_MASK) - head) & QSIZE_MASK; ((tail + QSIZE_MASK) - head) & QSIZE_MASK;
if (qsize <= 1) if (qsize <= 1)
hint.fetch_and(~(1 << hinted_id), hint.fetch_and(~(BitmapType(1) << hinted_id),
std::memory_order_relaxed); std::memory_order_relaxed);
if (qsize) { if (qsize) {
@@ -274,15 +292,15 @@ public:
uint8_t curr = dl.first; uint8_t curr = dl.first;
if (in_queues[curr].size()) if (in_queues[curr].size())
bitmap |= 1 << curr; bitmap |= BitmapType(1) << curr;
do { do {
curr = dl.next[curr]; curr = dl.next[curr];
if (in_queues[curr].size()) if (in_queues[curr].size())
bitmap |= 1 << curr; bitmap |= BitmapType(1) << curr;
} while (curr != dl.last); } while (curr != dl.last);
hint.fetch_or(bitmap, std::memory_order_release); hint.fetch_or(bitmap, std::memory_order_relaxed);
} }
template <std::size_t thread_id> std::size_t size() const noexcept { template <std::size_t thread_id> std::size_t size() const noexcept {
@@ -317,7 +335,7 @@ private:
uint8_t first; uint8_t first;
uint8_t last; uint8_t last;
void init() noexcept { void init() noexcept {
for (int i = 0; i < IN_THREAD_CNT; ++i) { for (std::size_t i = 0; i < IN_THREAD_CNT; ++i) {
next[i] = (i + 1) % IN_THREAD_CNT; next[i] = (i + 1) % IN_THREAD_CNT;
prev[i] = prev[i] =
(i + IN_THREAD_CNT - 1) % IN_THREAD_CNT; (i + IN_THREAD_CNT - 1) % IN_THREAD_CNT;
@@ -347,7 +365,9 @@ private:
} }
} }
} dl; } dl;
std::size_t rotation; std::size_t rotation;
BitmapType rotate(BitmapType bitmap) const noexcept { BitmapType rotate(BitmapType bitmap) const noexcept {
bitmap &= THREAD_BITMAP_MASK; bitmap &= THREAD_BITMAP_MASK;
@@ -360,6 +380,337 @@ private:
} }
}; };
template <typename MessageType, std::size_t consumer_qsize_expt,
std::size_t BUFFER_SIZE, std::size_t reclaim_qsize_expt,
std::size_t OUT_THREAD_CNT>
class FanOutFabric {
public:
using BitmapType = uint64_t;
using RefCountType = uint32_t;
using IndexType = uint16_t;
static constexpr std::size_t CONSUMER_QSIZE = 1ULL
<< consumer_qsize_expt;
static constexpr std::size_t CONSUMER_QSIZE_MASK = CONSUMER_QSIZE - 1;
static constexpr std::size_t RECLAIM_QSIZE = 1ULL << reclaim_qsize_expt;
static constexpr std::size_t BITMAP_SIZE = sizeof(BitmapType) * 8;
static constexpr BitmapType THREAD_BITMAP_MASK =
OUT_THREAD_CNT == BITMAP_SIZE
? ~BitmapType(0)
: (BitmapType(1) << OUT_THREAD_CNT) - 1;
static_assert(OUT_THREAD_CNT <= BITMAP_SIZE,
"Insufficient bitmap size");
static_assert(std::numeric_limits<IndexType>::max() >= BUFFER_SIZE,
"Insuffiently large IndexType");
FanOutFabric() noexcept {}
FanOutFabric(const FanOutFabric &) = delete;
FanOutFabric &operator=(const FanOutFabric &) = delete;
FanOutFabric(FanOutFabric &&) = delete;
FanOutFabric &operator=(FanOutFabric &&) = delete;
template <std::size_t thread_id> class BorrowedRef {
public:
static_assert(thread_id < OUT_THREAD_CNT,
"Thread ID out of bounds");
BorrowedRef() noexcept
: parent(nullptr), slot(BUFFER_SIZE), payload(nullptr),
released(true) {}
BorrowedRef(const BorrowedRef &) = delete;
BorrowedRef &operator=(const BorrowedRef &) = delete;
BorrowedRef(BorrowedRef &&) = delete;
BorrowedRef &operator=(BorrowedRef &&) = delete;
~BorrowedRef() noexcept {
if (is_valid())
release();
}
void init(FanOutFabric *parent, IndexType slot,
const MessageType *payload) noexcept {
this->parent = parent;
this->slot = slot;
this->payload = payload;
released = false;
}
FanOutFabricDeallocResult release() noexcept {
released = true;
payload = nullptr;
return parent->dealloc_try<thread_id>(slot);
}
bool is_valid() const noexcept {
return !released && payload != nullptr &&
parent != nullptr;
}
bool is_released() const noexcept {
return released || payload == nullptr;
}
const MessageType &get() const noexcept { return *payload; }
IndexType get_slot() const noexcept { return slot; }
private:
FanOutFabric *parent;
IndexType slot;
const MessageType *payload;
bool released;
};
void init() noexcept {
for (std::size_t i = 0; i < OUT_THREAD_CNT; ++i) {
reclaim_queues[i].init();
consumer_queues[i].init();
}
reclaim_hint.store(0, std::memory_order_release);
fs.init();
reclaim_rot = 0;
}
// Prohibitively expensive
template <std::size_t thread_id>
FanOutFabricDeallocResult flush() noexcept {
static_assert(thread_id < OUT_THREAD_CNT,
"Thread ID out of bounds");
std::size_t head = consumer_queues[thread_id].get_head();
std::size_t tail = consumer_queues[thread_id].get_tail();
auto &qbuffer = consumer_queues[thread_id].get_buffer();
for (std::size_t i = head; i != tail;
i = ((i + 1) & CONSUMER_QSIZE_MASK)) {
RefCountType cnt = buffer[qbuffer[i]].count.fetch_sub(
1, std::memory_order_relaxed);
if (cnt == 1 && dealloc_try<thread_id>(qbuffer[i]) !=
FanOutFabricDeallocResult::Ok)
return FanOutFabricDeallocResult::
ErrReclaimQueueFull;
}
consumer_queues[thread_id].flush();
return FanOutFabricDeallocResult();
}
void flush_all() noexcept {
for (int i = 0; i < OUT_THREAD_CNT; ++i) {
reclaim_queues[i].flush();
consumer_queues[i].flush();
}
reclaim_hint.store(0, std::memory_order_release);
fs.init();
reclaim_rot = 0;
}
template <std::size_t thread_id>
BorrowedRef<thread_id> get_empty_borrowed_ref() const noexcept {
return BorrowedRef<thread_id>();
}
IndexType free_size() const noexcept { return fs.size(); }
template <std::size_t thread_id> std::size_t size() const noexcept {
static_assert(thread_id < OUT_THREAD_CNT,
"Thread ID out of bounds");
return consumer_queues[thread_id].size();
}
FanOutFabricSendResult<BitmapType>
send(MessageType &&message, BitmapType policy,
IndexType reclaim_budget) noexcept {
if (fs.is_empty()) {
reclaim(reclaim_budget);
if (fs.is_empty())
return {policy,
FanOutFabricSendResult<
BitmapType>::ErrFullFailure};
}
IndexType slot = fs.pop_unsafe();
RefCountType failed_cnt = 0;
RefCountType try_cnt = std::popcount(policy);
buffer[slot].payload = std::move(message);
buffer[slot].count.store(try_cnt);
for (std::size_t i = 0; i < OUT_THREAD_CNT; ++i) {
if ((policy & (BitmapType(1) << i)) &&
consumer_queues[i].send(std::move(slot)) !=
EndpointQueueSendResult::Ok)
++failed_cnt;
else
policy &= (~(BitmapType(1) << i)) &
THREAD_BITMAP_MASK;
}
buffer[slot].count.fetch_sub(failed_cnt,
std::memory_order_relaxed);
if (try_cnt == failed_cnt) {
fs.push(slot);
return {policy, FanOutFabricSendResult<
BitmapType>::ErrFullFailure};
} else if (failed_cnt) {
return {policy, FanOutFabricSendResult<
BitmapType>::ErrPartialSuccess};
} else {
return {0, FanOutFabricSendResult<BitmapType>::Ok};
}
}
template <std::size_t thread_id>
FanOutFabricRecvResult recv(BorrowedRef<thread_id> &token) noexcept {
static_assert(thread_id < OUT_THREAD_CNT,
"Thread ID out of bounds");
std::size_t head = consumer_queues[thread_id].get_head();
std::size_t tail = consumer_queues[thread_id].get_tail();
if (head == tail)
return FanOutFabricRecvResult::ErrEmpty;
if (token.is_valid())
token.release();
IndexType slot;
consumer_queues[thread_id].recv_unsafe(slot, head);
token.init(this, slot, &(buffer[slot].payload));
return FanOutFabricRecvResult::Ok;
}
IndexType reclaim(IndexType budget) noexcept {
IndexType reclaim_cnt = 0;
BitmapType bitmap =
reclaim_hint.load(std::memory_order_relaxed);
bitmap = rotate(bitmap);
for (std::size_t i = 0;
reclaim_cnt < budget && i < OUT_THREAD_CNT; ++i) {
if (!(bitmap & (BitmapType(1) << i)))
continue;
std::size_t idx = (i + reclaim_rot) % OUT_THREAD_CNT;
reclaim_hint.fetch_and(~(BitmapType(1) << idx),
std::memory_order_relaxed);
std::size_t head = reclaim_queues[idx].get_head();
std::size_t tail = reclaim_queues[idx].get_tail();
while (reclaim_cnt < budget && head != tail) {
IndexType tmp;
reclaim_queues[idx].recv_unsafe(tmp, head);
fs.push(tmp);
++reclaim_cnt;
}
if (reclaim_cnt >= budget &&
head != reclaim_queues[idx].get_tail())
reclaim_hint.fetch_or(
BitmapType(1) << idx,
std::memory_order_relaxed);
reclaim_rot = (idx + 1) % OUT_THREAD_CNT;
}
return reclaim_cnt;
}
IndexType reclaim_unlimited() noexcept { return reclaim(BUFFER_SIZE); }
IndexType reclaim_scan_all(IndexType budget) noexcept {
IndexType reclaim_cnt = 0;
for (std::size_t i = 0;
reclaim_cnt < budget && i < OUT_THREAD_CNT; ++i) {
std::size_t idx = (i + reclaim_rot) % OUT_THREAD_CNT;
reclaim_hint.fetch_and(~(BitmapType(1) << idx),
std::memory_order_relaxed);
std::size_t head = reclaim_queues[idx].get_head();
std::size_t tail = reclaim_queues[idx].get_tail();
while (reclaim_cnt < budget && head != tail) {
IndexType tmp;
reclaim_queues[idx].recv_unsafe(tmp, head);
fs.push(tmp);
++reclaim_cnt;
}
if (reclaim_cnt >= budget &&
head != reclaim_queues[idx].get_tail())
reclaim_hint.fetch_or(
BitmapType(1) << idx,
std::memory_order_relaxed);
reclaim_rot = (idx + 1) % OUT_THREAD_CNT;
}
return reclaim_cnt;
}
template <std::size_t thread_id>
FanOutFabricDeallocResult dealloc_try(IndexType slot) noexcept {
static_assert(thread_id < OUT_THREAD_CNT,
"Thread ID out of bounds");
auto res = reclaim_queues[thread_id].send(std::move(slot));
if (res == EndpointQueueSendResult::Ok) {
reclaim_hint.fetch_or(BitmapType(1) << thread_id,
std::memory_order_relaxed);
return FanOutFabricDeallocResult::Ok;
} else {
return FanOutFabricDeallocResult::ErrReclaimQueueFull;
}
}
private:
std::array<EndpointQueue<IndexType, reclaim_qsize_expt>, OUT_THREAD_CNT>
reclaim_queues;
std::array<EndpointQueue<IndexType, consumer_qsize_expt>,
OUT_THREAD_CNT>
consumer_queues;
alignas(CLS) std::atomic<BitmapType> reclaim_hint;
struct alignas(CLS) BufferSlot {
std::atomic<RefCountType> count;
MessageType payload;
};
std::array<BufferSlot, BUFFER_SIZE> buffer;
struct alignas(CLS) FreeStack {
std::array<IndexType, BUFFER_SIZE> free;
int top;
void init() {
for (std::size_t i = 0; i < BUFFER_SIZE; ++i)
free[i] = i;
top = BUFFER_SIZE;
}
void push(IndexType val) {
free[top] = val;
++top;
}
IndexType pop() {
if (top)
return free[--top];
return BUFFER_SIZE;
}
IndexType pop_unsafe() { return free[--top]; }
bool is_empty() const { return top == 0; }
int size() const { return top; }
} fs;
std::size_t reclaim_rot;
BitmapType rotate(BitmapType bitmap) const noexcept {
bitmap &= THREAD_BITMAP_MASK;
if (reclaim_rot == 0)
return bitmap;
return ((bitmap >> reclaim_rot) |
(bitmap << (OUT_THREAD_CNT - reclaim_rot))) &
THREAD_BITMAP_MASK;
}
};
} // namespace THWeaver } // namespace THWeaver
#endif #endif

161
tests/fan_in/basic_test.cc Normal file
View File

@@ -0,0 +1,161 @@
#include <atomic>
#include <chrono>
#include <cstdint>
#include <iostream>
#include <thread>
#include <vector>
#include <weaver.h>
using std::chrono::nanoseconds;
constexpr std::size_t kThreads = 2;
uint64_t pack_message(uint32_t producer, uint32_t seq) {
return (static_cast<uint64_t>(producer) << 32) |
static_cast<uint64_t>(seq);
}
void unpack_message(uint64_t value, uint32_t &producer, uint32_t &seq) {
producer = static_cast<uint32_t>(value >> 32);
seq = static_cast<uint32_t>(value & 0xffffffffu);
}
using std::chrono::nanoseconds;
using std::chrono::steady_clock;
int main() {
int n = 0;
if (!(std::cin >> n) || n <= 0) {
std::cerr << "n must be positive\n";
return 1;
}
using Fabric = THWeaver::FanInFabric<uint64_t, 10, kThreads>;
Fabric fabric;
fabric.init();
std::atomic<bool> failed(false);
std::vector<int64_t> send_time0(n, -1);
std::vector<int64_t> send_time1(n, -1);
std::vector<int64_t> recv_time0(n, -1);
std::vector<int64_t> recv_time1(n, -1);
std::thread producer0([&]() {
for (int i = 1; i <= n && !failed.load(); ++i) {
while (true) {
auto now =
std::chrono::steady_clock::now()
.time_since_epoch();
auto ns =
std::chrono::duration_cast<nanoseconds>(
now)
.count();
if (fabric.send<0>(pack_message(0, i)) ==
THWeaver::FanInFabricSendResult::Ok) {
send_time0[i - 1] = ns;
break;
}
}
}
});
std::thread producer1([&]() {
for (int i = 1; i <= n && !failed.load(); ++i) {
while (true) {
auto now =
std::chrono::steady_clock::now()
.time_since_epoch();
auto ns =
std::chrono::duration_cast<nanoseconds>(
now)
.count();
if (fabric.send<1>(pack_message(1, i)) ==
THWeaver::FanInFabricSendResult::Ok) {
send_time1[i - 1] = ns;
break;
}
}
}
});
std::thread consumer([&]() {
std::vector<uint32_t> expected(kThreads, 1);
std::size_t received = 0;
const std::size_t total =
static_cast<std::size_t>(n) * kThreads;
while (received < total && !failed.load()) {
uint64_t value = 0;
auto res = fabric.recv_try(value);
if (res == THWeaver::FanInFabricRecvTryResult::Ok) {
uint32_t producer = 0;
uint32_t seq = 0;
unpack_message(value, producer, seq);
if (producer >= kThreads ||
seq != expected[producer]) {
std::cerr
<< "fan-in mismatch: producer "
<< producer << " expected "
<< expected[producer] << " got "
<< seq << "\n";
failed.store(true);
break;
}
if (producer == 0) {
auto recv_time =
std::chrono::steady_clock::now()
.time_since_epoch();
auto recv_ns =
std::chrono::duration_cast<
nanoseconds>(recv_time)
.count();
recv_time0[seq - 1] = recv_ns;
} else {
auto recv_time =
std::chrono::steady_clock::now()
.time_since_epoch();
auto recv_ns =
std::chrono::duration_cast<
nanoseconds>(recv_time)
.count();
recv_time1[seq - 1] = recv_ns;
}
++expected[producer];
++received;
continue;
}
Fabric::BitmapType bitmap = 0;
fabric.full_scan(bitmap);
}
});
producer0.join();
producer1.join();
consumer.join();
if (failed.load()) {
return 1;
}
for (int i = 1; i <= n; ++i) {
uint64_t payload0 = pack_message(0, i);
uint64_t payload1 = pack_message(1, i);
int64_t send_ns0 = send_time0[i - 1];
int64_t recv_ns0 = recv_time0[i - 1];
int64_t send_ns1 = send_time1[i - 1];
int64_t recv_ns1 = recv_time1[i - 1];
std::cout << payload0 << ","
<< (recv_ns0 - send_ns0) << "\n";
std::cout << payload1 << ","
<< (recv_ns1 - send_ns1) << "\n";
}
return 0;
}

134
tests/fan_out/basic_test.cc Normal file
View File

@@ -0,0 +1,134 @@
#include <atomic>
#include <chrono>
#include <cstdint>
#include <iostream>
#include <thread>
#include <vector>
#include <weaver.h>
constexpr std::size_t kConsumers = 2;
constexpr std::size_t kBufferSize = 256;
using std::chrono::nanoseconds;
using std::chrono::steady_clock;
int main() {
int n = 0;
if (!(std::cin >> n) || n <= 0) {
std::cerr << "n must be positive\n";
return 1;
}
using Fabric =
THWeaver::FanOutFabric<uint64_t, 8, kBufferSize, 8, kConsumers>;
Fabric fabric;
fabric.init();
std::atomic<bool> failed(false);
std::atomic<int> consumed0(0);
std::atomic<int> consumed1(0);
std::vector<int64_t> send_time(n, -1);
std::vector<int64_t> recv_time0(n, -1);
std::vector<int64_t> recv_time1(n, -1);
std::thread consumer0([&]() {
auto token = fabric.get_empty_borrowed_ref<0>();
int expected = 1;
while (expected <= n && !failed.load()) {
if (fabric.recv<0>(token) !=
THWeaver::FanOutFabricRecvResult::Ok) {
continue;
}
if (token.get() != static_cast<uint64_t>(expected)) {
std::cerr << "fan-out mismatch on consumer 0: "
<< "expected " << expected << " got "
<< token.get() << "\n";
failed.store(true);
break;
}
auto recv_time = steady_clock::now().time_since_epoch();
auto recv_ns =
std::chrono::duration_cast<nanoseconds>(
recv_time)
.count();
recv_time0[expected - 1] = recv_ns;
token.release();
consumed0.store(expected);
++expected;
}
});
std::thread consumer1([&]() {
auto token = fabric.get_empty_borrowed_ref<1>();
int expected = 1;
while (expected <= n && !failed.load()) {
if (fabric.recv<1>(token) !=
THWeaver::FanOutFabricRecvResult::Ok) {
continue;
}
if (token.get() != static_cast<uint64_t>(expected)) {
std::cerr << "fan-out mismatch on consumer 1: "
<< "expected " << expected << " got "
<< token.get() << "\n";
failed.store(true);
break;
}
auto recv_time = steady_clock::now().time_since_epoch();
auto recv_ns =
std::chrono::duration_cast<nanoseconds>(
recv_time)
.count();
recv_time1[expected - 1] = recv_ns;
token.release();
consumed1.store(expected);
++expected;
}
});
constexpr uint64_t policy = (1ULL << 0) | (1ULL << 1);
for (int i = 1; i <= n && !failed.load(); ++i) {
while (!failed.load()) {
auto now = steady_clock::now().time_since_epoch();
auto ns = std::chrono::duration_cast<nanoseconds>(now)
.count();
auto res = fabric.send(static_cast<uint64_t>(i), policy,
kBufferSize);
if (res.result ==
THWeaver::FanOutFabricSendResult<uint64_t>::Ok) {
send_time[i - 1] = ns;
break;
}
if (res.result ==
THWeaver::FanOutFabricSendResult<
uint64_t>::ErrPartialSuccess) {
std::cerr << "fan-out partial success for "
<< "message " << i << "\n";
failed.store(true);
break;
}
}
while (!failed.load() &&
(consumed0.load() < i || consumed1.load() < i)) {
}
}
consumer0.join();
consumer1.join();
if (failed.load()) {
return 1;
}
for (int i = 1; i <= n; ++i) {
int64_t send_ns = send_time[i - 1];
int64_t recv_ns0 = recv_time0[i - 1];
int64_t recv_ns1 = recv_time1[i - 1];
std::cout << i << "," << (recv_ns0 - send_ns) << "\n";
std::cout << i << "," << (recv_ns1 - send_ns) << "\n";
}
return 0;
}