Files
rgs/grep-regex/src/config.rs
Andrew Gallant 9d703110cf regex: make CRLF hack more robust
This commit improves the CRLF hack to be more robust. In particular, in
addition to rewriting `$` as `(?:\r??$)`, we now strip `\r` from the end
of a match if and only if the regex has an ending line anchor required for
a match. This doesn't quite make the hack 100% correct, but should fix most
use cases in practice. An example of a regex that will still be incorrect
is `foo|bar$`, since the analysis isn't quite sophisticated enough to
determine that a `\r` can be safely stripped from any match. Even if we
fix that, regexes like `foo\r|bar$` still won't be handled correctly. Alas,
more work on this front should really be focused on enabling this in the
regex engine itself.

The specific cause of this bug was that grep-searcher was sneakily
stripping CRLF from matching lines when it really shouldn't have. We remove
that code now, and instead rely on better match semantics provided at a
lower level.

Fixes #1095
2019-01-26 12:34:28 -05:00

274 lines
11 KiB
Rust

use grep_matcher::{ByteSet, LineTerminator};
use regex::bytes::{Regex, RegexBuilder};
use regex_syntax::ast::{self, Ast};
use regex_syntax::hir::Hir;
use ast::AstAnalysis;
use crlf::crlfify;
use error::Error;
use literal::LiteralSets;
use non_matching::non_matching_bytes;
use strip::strip_from_match;
/// Config represents the configuration of a regex matcher in this crate.
/// The configuration is itself a rough combination of the knobs found in
/// the `regex` crate itself, along with additional `grep-matcher` specific
/// options.
///
/// The configuration can be used to build a "configured" HIR expression. A
/// configured HIR expression is an HIR expression that is aware of the
/// configuration which generated it, and provides transformation on that HIR
/// such that the configuration is preserved.
#[derive(Clone, Debug)]
pub struct Config {
pub case_insensitive: bool,
pub case_smart: bool,
pub multi_line: bool,
pub dot_matches_new_line: bool,
pub swap_greed: bool,
pub ignore_whitespace: bool,
pub unicode: bool,
pub octal: bool,
pub size_limit: usize,
pub dfa_size_limit: usize,
pub nest_limit: u32,
pub line_terminator: Option<LineTerminator>,
pub crlf: bool,
pub word: bool,
}
impl Default for Config {
fn default() -> Config {
Config {
case_insensitive: false,
case_smart: false,
multi_line: false,
dot_matches_new_line: false,
swap_greed: false,
ignore_whitespace: false,
unicode: true,
octal: false,
// These size limits are much bigger than what's in the regex
// crate.
size_limit: 100 * (1<<20),
dfa_size_limit: 1000 * (1<<20),
nest_limit: 250,
line_terminator: None,
crlf: false,
word: false,
}
}
}
impl Config {
/// Parse the given pattern and returned its HIR expression along with
/// the current configuration.
///
/// If there was a problem parsing the given expression then an error
/// is returned.
pub fn hir(&self, pattern: &str) -> Result<ConfiguredHIR, Error> {
let analysis = self.analysis(pattern)?;
let expr = ::regex_syntax::ParserBuilder::new()
.nest_limit(self.nest_limit)
.octal(self.octal)
.allow_invalid_utf8(true)
.ignore_whitespace(self.ignore_whitespace)
.case_insensitive(self.is_case_insensitive(&analysis)?)
.multi_line(self.multi_line)
.dot_matches_new_line(self.dot_matches_new_line)
.swap_greed(self.swap_greed)
.unicode(self.unicode)
.build()
.parse(pattern)
.map_err(Error::regex)?;
let expr = match self.line_terminator {
None => expr,
Some(line_term) => strip_from_match(expr, line_term)?,
};
Ok(ConfiguredHIR {
original: pattern.to_string(),
config: self.clone(),
analysis: analysis,
// If CRLF mode is enabled, replace `$` with `(?:\r?$)`.
expr: if self.crlf { crlfify(expr) } else { expr },
})
}
/// Accounting for the `smart_case` config knob, return true if and only if
/// this pattern should be matched case insensitively.
fn is_case_insensitive(
&self,
analysis: &AstAnalysis,
) -> Result<bool, Error> {
if self.case_insensitive {
return Ok(true);
}
if !self.case_smart {
return Ok(false);
}
Ok(analysis.any_literal() && !analysis.any_uppercase())
}
/// Perform analysis on the AST of this pattern.
///
/// This returns an error if the given pattern failed to parse.
fn analysis(&self, pattern: &str) -> Result<AstAnalysis, Error> {
Ok(AstAnalysis::from_ast(&self.ast(pattern)?))
}
/// Parse the given pattern into its abstract syntax.
///
/// This returns an error if the given pattern failed to parse.
fn ast(&self, pattern: &str) -> Result<Ast, Error> {
ast::parse::ParserBuilder::new()
.nest_limit(self.nest_limit)
.octal(self.octal)
.ignore_whitespace(self.ignore_whitespace)
.build()
.parse(pattern)
.map_err(Error::regex)
}
}
/// A "configured" HIR expression, which is aware of the configuration which
/// produced this HIR.
///
/// Since the configuration is tracked, values with this type can be
/// transformed into other HIR expressions (or regular expressions) in a way
/// that preserves the configuration. For example, the `fast_line_regex`
/// method will apply literal extraction to the inner HIR and use that to build
/// a new regex that matches the extracted literals in a way that is
/// consistent with the configuration that produced this HIR. For example, the
/// size limits set on the configured HIR will be propagated out to any
/// subsequently constructed HIR or regular expression.
#[derive(Clone, Debug)]
pub struct ConfiguredHIR {
original: String,
config: Config,
analysis: AstAnalysis,
expr: Hir,
}
impl ConfiguredHIR {
/// Return the configuration for this HIR expression.
pub fn config(&self) -> &Config {
&self.config
}
/// Compute the set of non-matching bytes for this HIR expression.
pub fn non_matching_bytes(&self) -> ByteSet {
non_matching_bytes(&self.expr)
}
/// Returns true if and only if this regex needs to have its match offsets
/// tweaked because of CRLF support. Specifically, this occurs when the
/// CRLF hack is enabled and the regex is line anchored at the end. In
/// this case, matches that end with a `\r` have the `\r` stripped.
pub fn needs_crlf_stripped(&self) -> bool {
self.config.crlf && self.expr.is_line_anchored_end()
}
/// Builds a regular expression from this HIR expression.
pub fn regex(&self) -> Result<Regex, Error> {
self.pattern_to_regex(&self.expr.to_string())
}
/// Applies the given function to the concrete syntax of this HIR and then
/// generates a new HIR based on the result of the function in a way that
/// preserves the configuration.
///
/// For example, this can be used to wrap a user provided regular
/// expression with additional semantics. e.g., See the `WordMatcher`.
pub fn with_pattern<F: FnMut(&str) -> String>(
&self,
mut f: F,
) -> Result<ConfiguredHIR, Error>
{
self.pattern_to_hir(&f(&self.expr.to_string()))
}
/// If the current configuration has a line terminator set and if useful
/// literals could be extracted, then a regular expression matching those
/// literals is returned. If no line terminator is set, then `None` is
/// returned.
///
/// If compiling the resulting regular expression failed, then an error
/// is returned.
///
/// This method only returns something when a line terminator is set
/// because matches from this regex are generally candidates that must be
/// confirmed before reporting a match. When performing a line oriented
/// search, confirmation is easy: just extend the candidate match to its
/// respective line boundaries and then re-search that line for a full
/// match. This only works when the line terminator is set because the line
/// terminator setting guarantees that the regex itself can never match
/// through the line terminator byte.
pub fn fast_line_regex(&self) -> Result<Option<Regex>, Error> {
if self.config.line_terminator.is_none() {
return Ok(None);
}
match LiteralSets::new(&self.expr).one_regex() {
None => Ok(None),
Some(pattern) => self.pattern_to_regex(&pattern).map(Some),
}
}
/// Create a regex from the given pattern using this HIR's configuration.
fn pattern_to_regex(&self, pattern: &str) -> Result<Regex, Error> {
// The settings we explicitly set here are intentionally a subset
// of the settings we have. The key point here is that our HIR
// expression is computed with the settings in mind, such that setting
// them here could actually lead to unintended behavior. For example,
// consider the pattern `(?U)a+`. This will get folded into the HIR
// as a non-greedy repetition operator which will in turn get printed
// to the concrete syntax as `a+?`, which is correct. But if we
// set the `swap_greed` option again, then we'll wind up with `(?U)a+?`
// which is equal to `a+` which is not the same as what we were given.
//
// We also don't need to apply `case_insensitive` since this gets
// folded into the HIR and would just cause us to do redundant work.
//
// Finally, we don't need to set `ignore_whitespace` since the concrete
// syntax emitted by the HIR printer never needs it.
//
// We set the rest of the options. Some of them are important, such as
// the size limit, and some of them are necessary to preserve the
// intention of the original pattern. For example, the Unicode flag
// will impact how the WordMatcher functions, namely, whether its
// word boundaries are Unicode aware or not.
RegexBuilder::new(&pattern)
.nest_limit(self.config.nest_limit)
.octal(self.config.octal)
.multi_line(self.config.multi_line)
.dot_matches_new_line(self.config.dot_matches_new_line)
.unicode(self.config.unicode)
.size_limit(self.config.size_limit)
.dfa_size_limit(self.config.dfa_size_limit)
.build()
.map_err(Error::regex)
}
/// Create an HIR expression from the given pattern using this HIR's
/// configuration.
fn pattern_to_hir(&self, pattern: &str) -> Result<ConfiguredHIR, Error> {
// See `pattern_to_regex` comment for explanation of why we only set
// a subset of knobs here. e.g., `swap_greed` is explicitly left out.
let expr = ::regex_syntax::ParserBuilder::new()
.nest_limit(self.config.nest_limit)
.octal(self.config.octal)
.allow_invalid_utf8(true)
.multi_line(self.config.multi_line)
.dot_matches_new_line(self.config.dot_matches_new_line)
.unicode(self.config.unicode)
.build()
.parse(pattern)
.map_err(Error::regex)?;
Ok(ConfiguredHIR {
original: self.original.clone(),
config: self.config.clone(),
analysis: self.analysis.clone(),
expr: expr,
})
}
}