
Project Plan Final - cc3k

Authors: Angelina Liang (a25liang), Derek Tan (d28tan), Paul Xiao (pxiao)

Overview

The game will first process the command line arguments, initialize input/output (I/O) resources,
and enable the corresponding features based on the inputs.

Then, it would give the game engine CC3K access to those resources.

The game engine will create a menu for the player to select their desired race, then pass in the in-
formation to initialize a new game instance. Meanwhile, the instance of the menu is simultaneously
destroyed.

The game will construct a new player based on the information given and initialize all in-game
flags (e.g. hostile_merchants).

Then, it would start level generation per level, starting with the first level.

When the player goes up/downstairs, it will fetch the correct level from its stored list of levels to
run. This design is to accommodate add-ons related to revisiting levels (floors).

The game will primarily run based on user input. It will pass the input command to the player, if the
player takes a legitimate action, (i.e. the command is valid) then it will let enemies take their re-
spective turns (unless the command for stopping movement has been issued).

The level class will contain all the information of that level (i.e. map, items, enemies) and is re-
sponsible for providing the related details (available locations, pointers to items/enemies) for the
game to process.

The map class stores all map-related information (room numbers, walls, corridors, etc.) and han-
dles random map generation.

If the player picks up any items (e.g. potions and treasures), the item ownership will be transferred
over to the player class.

When a potion is applied to a character, the potion will be moved into the “effects” list of the char-
acter. The related stats of a character will get reset before each turn, and the corresponding po-
tion effects will be applied to them to deduce the temporary stats for that turn.

This design is meant to allow players to apply potion effects onto enemies (via throwing potions)
and to accommodate the turn-based duration of some additional DLC potions.

For attacks, the attacker will call the get_hit() method of the character being attacked, and
both functions can be overridden by specific subclasses to implement custom special abilities.

Command Line Arguments

Argument Description

-n Uses ncurses for I/O

-r Randomly generate maps. Cannot be used with -m

-c Enemies chase the player

-d Enemies can go through doors

-i Enable inventory (will also enable -o)

-t Enable throw (will also enable -i)

-R Enable revisiting levels. Cannot be used with -m

-e Enable extra potions and races

-E Enable extra levels. Cannot be used with -m

-o Allow players to pick up gold and potions by walking over them

-m [file] Reads map data from a file. Cannot be used with -r or -R or -E

-s [seed] Sets initial seed

-I [file] Reads commands from a file. Cannot be used with -n

-O [file] Outputs to file. Cannot be used with -n

-h/--help Displays options list (doesn't start a game)

--races Displays playable characters list

--enemies Displays enemies list

--potions Displays potions list

--commands Displays available commands

Optionally, the cc3k program can be run with additional command line arguments:

You can run ./cc3k -h or ./cc3k --help to open the help information in the terminal.

Design

The following paragraphs describe the techniques used to solve the various design challenges
encountered in this project.

For player character (PC) and enemy classes, we added two virtual classes: player_base and
enemy_base that were implemented with a default (generic) set of interactions. To implement the
logic for each specific PC/enemy class, a subclass would inherit from the player_base or
enemy_base class and override the logic to match the respective characteristics or abilities of
each character.

Gold and potions both inherit from a common item class. Potions are implemented with a deco-
rator design pattern, such that their effects can be immediately applied by decorating the player
class.

Abstract I/O classes are used to provide easy access to different I/O methods (cin / cout , file
I/O, ncurses I/O).

At the start of each turn, the player stats are reset to accommodate the turn-based duration of
potions. In addition, a timer is used to keep track of level-based duration, potions that last beyond
the scope of a particular level.

For output, the output is not redisplayed upon every state change. Instead, it is written to a buffer
and rendered all at once when the out::render() method is called.

If provided with a file for the five floors, when initializing the game (a CC3K object), it will prepro-
cess all the given data to store information about the entities on the map and use a DFS algorithm
to number the tiles for each room.

Random Map Generation is handled in the following manner:

Generate the dimensions of all rooms

Distribute the rooms horizontally into layers

Distribute the layers vertically

Jitter (randomly move upwards or downwards) the rooms vertically

Generate the doors for each room

Draw passages connecting the doors for all rooms

Ensuring that the player and stairwell do not spawn in the same room requires a way to identify the
different rooms. Therefore, tiles in rooms are stored as numerical digits instead of '.' to keep track
of the room number.

Resilience to Change

There are intentional design choices in the code structure that allow for the possibility of changes
to the program specification.

If the developer wishes to add a new player character, enemy, potion, or I/O channel into the
game, they can override the virtual functions in the class hierarchy to have easy access to the in-
dividual features at an abstract level.

There is a unified constants file (src/constants.h) that tracks the state of all constants used in
the cc3k program. These include player stats, enemy stats, potion stats, feature flags, and map
stats. The developer would only need to edit this file to make any changes to the stats used for
the game.

There are a few utility libraries that are used across multiple different classes. These include:
rng , position , and fraction . These tools have been abstracted away from the client classes

to reduce the coupling of their common functionality and improve coherence among all game-re-
lated classes.

Answers to Questions

Question 1: How could you design your system so that each race could be easily generated?
Additionally, how difficult does such a solution make adding additional races?

Answer: In our project, two classes handle races: player_base and enemy_base . The abstract
character and enemy classes will contain common attributes among all classes, such as attack
(ATK), defense, (DEF), health points (HP), and hit rates.

Player character (PC) races (e.g. shade, drow, vampire, troll, goblin) will be subclasses of the class
player_base .

Enemy character races (e.g. human, dwarf, elf, orc, merchant, dragon, halfling) will be subclasses
of class enemy_base .

By design, it is manageable to add additional DLC classes to the game without refactoring the log-
ic of the player character and enemy classes of the base game.

If the developer desires to add a new PC class, they create a subclass of player_base .

If the developer desires to add a new enemy class, they create a subclass of enemy_base .

After creating the subclass, the developer may add any custom attributes/methods of the
additional race into the new subclass (e.g. lifesteal, extra gold, etc.)

Question 2: How does your system handle generating different enemies? Is it different from
how you generate the player character? Why or why not?

Answer: The system handles initializing different enemies to player characters in a similar manner.
For enemy classes, the new enemy instance is inherited from the class enemy_base and the vir-
tual functions of enemy_base are overridden in the implementation of each concrete enemy
class.

The difference in generating between the player character and enemy classes is that enemy
classes rely on a random number generator (RNG) object with predefined odds specified in the
document, whereas the player character class generates with 100% certainty the selected player
character class.

The enemy classes are designed in this way to make it easy to add new enemy classes in the fu-
ture (as part of a DLC), all the developer would need to do is to inherit from enemy_base and add
the custom functionality in its implementation file.

Question 3: How could you implement the various abilities of the enemy characters? Do you
use the same techniques as for the player character races? Explain.

Answer: Enemies have a set of basic abilities (normal attacks, normal movement, getting hit by
others) in their base class enemy_base , all of which are virtual and can be overridden.

Each basic ability in the enemy_base class also contains a default implementation, such that if a
new enemy class does not change its default functionality, then the virtual function can simply be
inherited and not overridden (i.e. non-pure virtual function).

These abilities are common amongst all enemies, and thus are shared through inheritance by
enemy_base .

The same technique will be applied to the abilities of PC races (attack, applying potions, getting
hit, etc.). For example, the basic set of operations for PCs is based on the shade race (i.e. shade
doesnʼt need to override any method of player_base and is a generic PC class) and the vampire
will override the attack function to include HP draining (i.e. lifesteal).

The player_base class also contains a set of default ability implementations that may be over-
ridden or simply inherited as is, depending on the specific player character's race.

Question 4: What design pattern could you use to model the effects of temporary potions
(Wound/Boost Atk/Def) so that you do not need to explicitly track which potions the player
character has consumed on any particular floor?

Answer: We would use the Decorator design pattern to temporarily attach the effects of tempo-
rary potions (WA/WD/BA/BD) to the PC class. Immediately upon potion use, the decorators will di-
rectly alter the ATK/DEF/HP attributes of the player, thus the potion does not need to be explicitly
tracked for its effects to be reflected in the player's stats.

At the end of each level, there will be a reset function that will reset the effects of all temporary
potions used on the current floor, thus clearing its effects before advancing to the next floor. After
the level is complete, all player character stats will reset to their default values (except HP), and a
new round of interpreting will begin at the new level.

Question 5: How could you generate items so that the generation of Treasure and Potions
reuses as much code as possible? That is, how would you structure your system so that the
generation of a potion and then the generation of treasure does not duplicate code?

Answer: Both potions and gold (treasure) will inherit from a base class item . The generation
function will have shared functionality in generating positions, and different type indicators can be
inserted to create items of various flavours (i.e. different potion types and different gold types).

Since potions and gold inherit from the base class item , any possible duplication of code is
avoided by the sharing of common functionality (e.g. position generation). This makes it a more
efficient process when adding new potion/gold types, as well as improving the developer experi-
ence when maintaining different items in the game (since core item functionality is centralized in a
single location).

Extra Credit Features

No Raw Pointers

What we did: All memory in the program is allocated using STL containers and smart pointers,
and no raw pointers are used to manually allocate memory.

PC
Class

HP ATK DEF
Base Hit

Rate
Description

T-800 800 40 50 2/3
All potions will give it rusty joints (i.e. -50
HP)

ncurses I/O

What we did: Print output using the ncurses library, which reduces latency.

Random Map Generation

What we did: Randomly generates a new map each time.

Why it was challenging: Random generation can get out of hand since there is no way to predict
the generated output.

How we solved it: Setting bounds on the parameters used for generation (max/min room
height/width, room spacing, reserved space).

Enemy Chasing

What we did: Enemies move towards the player when within a certain radius.

Transient Enemies

What we did: Enemies can walk through doors/passages.

Inventory

What we did: The player can store potions and items in their inventory (across levels).

Why it was challenging: Managing potion ownership.

How we solved it: Levels can release the ownership of individual potions and transfer it to the
player class.

Throwable Potions

What we did: The player can throw a potion in their inventory for up to a certain distance.

Additional Player Characters

What we did: Added new playable character classes to the game, each with their unique charac-
teristics and abilities.

How we solved it: Override individual members of the player_base class.

PC
Class

HP ATK DEF
Base Hit

Rate
Description

Mr.
Goose

130 25 20 Infinity /1
All potions are known at the beginning of
the game

Monk 100 70 0 1/1 Gains 2 HP at the start of each turn

Tavern
Brawler

120 20 15 3/4
Has a 50% chance of attacking twice and a
50% chance of attacking three times

Assassin 100 30 10 1/1
Upon a successful hit, has a 10% chance
of assassinating the target (instant kill)

Enemy
Class

Symbol HP ATK DEF
Base
Hit

Rate
Description

Viking V 150 30 25 1/3 Attacks twice vs. every race

Swordsman S 100 25 15 1/1
Attacks with finesse (guaranteed
hit)

Leprechaun l 80 10 15 1/2

Steals 3 gold from PC on each
successful attack
If PC has insufficient gold, then
deal damage with a much higher
ATK
Upon death, drop all stolen gold
+ 5 extra gold

Witch Z 100 20 15 1/2

Upon a successful hit, has a 1/5
chance of applying a random
potion onto PC (effect begins on
the next turn)

Hacker h 90 15 30 1/2
Outputs a random message
when attacking / being attacked

1

2

 Mr. Goose is knowledgeable and will never miss an attack.
 Monk starts the game with 100 HP, with a max of 125 HP from potion effects.

1

2

Additional Enemies

What we did: Added new enemy classes to the game, each with their unique characteristics and
abilities.

How we did it: Override individual members of the enemy_base class.

Enemy
Class

Symbol HP ATK DEF
Base
Hit

Rate
Description

Baby
Dragon

B 140 20 40 1/3
Not fully grown, thus able to
move and is immune to all
potions

Potion Class HP ATK DEF
Hit

Rate
Description

Continuous
Restoration (CR)

+3 - - - Lasts 5 turns

Savage Strike (SS) -
1.25x
base

-
0.8x
base

Lasts 20 turns

Echoing Resilience
(ER)

+7
-10
base

-10
base

- Lasts 20 turns

Tempest Tantrum
(TT)

-25%
current HP

3x
final

0.5x
final

- Lasts 12 turns

Berzerk Brew (BB) -
2x
base

0.5x
base

- Lasts 15 turns

Borrow Life (BL)
+50 start,
-55 end

- - - Lasts 24 turns

Fine Booze (FB) +2 per turn - -
0.7x
final

Tavern brawlers
never miss
Lasts 12 turns

Ironclad Ward (IW) -
0.5x
final

3x
final

0.75x
final

Lasts 12 turns

Additional Potions

What we did: Added additional potion classes that had a variety of different effects not included
in the base game.

Why it was challenging: Additional potions have turn-based duration instead of lasting for an en-
tire level.

How we solved it: All potions have an internal duration timer and we explicitly stored potions in
the ownership of the character owning the effect.

1

 Overhealth (additional health above max race HP) gained by Borrow Life cannot be restored by
other potions.

1

Final Questions

Q1: What lessons did this project teach you about developing software in teams? If you
worked alone, what lessons did you learn about writing large programs?

A: Many important lessons were learned throughout the course of doing this project. Specifically,
it reminded us of the importance of version control, project/task tracking, and communication.

Importance of Version Control:

When simultaneously collaborating on a project with multiple contributors, we discovered that it is
important to keep a single, centralized source of truth available at all times. Without it, there would
be unnecessary confusion surrounding which version of the code was the latest, which version is
the most recent working (i.e. compiling) version, etc.

For our group, using Git allowed us to have a stable working version of the code in the master
branch at all times, as well as roll back any breaking changes to a previous working version of the
code. Furthermore, it helped us keep track of the latest changes to the code using Git logs and
commit messages and provided us with the ability to asynchronously work on different features
without interfering with the master branch (through Git branching) or with each other.

Importance of Project and Task Tracking:

We also realized the importance of having a system to help us keep track of the current status of
the project and the status of all pending tasks. This required a project management tool such as
Trello to monitor and track the progress of such tasks.

Through a Kanban Board on Trello, we tracked the status of all tasks, bugs, chores, and features.
By bucketing them into the categories of To-do, Doing, Blocked, Under Review, and Done. Fur-
thermore, we could assign tasks to individual members to clarify the work distribution.

Importance of Communication:

Through this process, we realized that communication was an essential pillar of effective group
collaboration. In our group, we maintained a searchable chat log that we would use to communi-
cate, and this helped us organize our thoughts and ideas. Whenever the code or design was up-
dated, a message was sent to the group notifying everyone of the changes in detail. This practice
helped our group avoid potential miscommunications, as well as build a traceable knowledge base
for future reference. We also constantly updated the Trello board and informed group members of
any blockers/updates when they occurred. Through these processes, we were able to constantly
stay on top of tasks and always maintained a clear understanding of what needed to be done.

Q2: What would you have done differently if you had the chance to start over?

A:

1. More time spent on planning and design: Many of our features were inspired while working
on the project, and we overlooked a few requirements at the beginning.

2. Unify coding style: While working, we found that individual members have different styles for
indentations, naming, code structure, etc. Even though we managed to present a unified-

looking codebase with the help of tools like AStyle, it required a lot of additional
communication to help understand each other's code.

3. Continuous testing: We started out implementing individual modules and only writing testing
harnesses specific to the modules. When we pieced them together after individual testing,
we found that they did not coherently fit together. Moving forward, we should test both
individual components (unit testing) as well as their interactions with other components
(integration testing).

4. Emphasis on documentation: We had several loose files describing how each module and
the entirety of the code worked but lacked any general documentation to explain the code in
its entirety. We should document what we were doing with each piece of code along with how
we did it.

5. More robust structure: We designed the code with some of the extra features in mind, but
the features we implemented after required us to implement additional interfaces to
accommodate. In the future, we should design interfaces with accessibility and modularity in
mind.

Conclusion

As a concluding note, we would like to express our heartfelt gratitude to the CS246 instructors
Caroline Kierstead and Jens Schmitz, as well as the CS246 instructional support staff, for their in-
valuable guidance, insightful advice, and unwavering support throughout this process.

Many DLC features in this project were inspired by NetHack, an open-source, single-player rogue-
like video game also inspired by the 1980 video game Rogue.

This project has been a rewarding and enjoyable experience, through which we gained substantial
knowledge in C++ and object-oriented programming. The skills and understanding we acquired in
this project will undoubtedly serve us well in our future programming endeavours.

After careful consideration, we have decided not to become Shades and instead transform our
lives into those of Hackers .

1

2

This project has received great help from Mr. Goose during debugging, which is a good alterna-
tive to trolling .

3

4

This message was sponsored by your local neighbourhood leprechaun .5

Sincerely,

Angelina, Derek, and Paul

 "You either die a hero or live long enough to see yourself become the villain" - Harvey Dent, in the film The Dark Knight

 Hackers will attack Shades in the cc3k game.

 The one who knows all.

 Troll was the most broken character in the basic game, thus Mr. Goose is a good alternative.

 They probably stole all your gold when you weren't looking.

1

2

3

4

5

