mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-29 08:41:22 +00:00 
			
		
		
		
	 5bf2a27718
			
		
	
	5bf2a27718
	
	
	
		
			
			* Add ggml changes * Update train-text-from-scratch for change * mpi : adapt to new ggml_tensor->src --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
		
			
				
	
	
		
			217 lines
		
	
	
		
			6.8 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			217 lines
		
	
	
		
			6.8 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| #include "ggml-mpi.h"
 | |
| 
 | |
| #include "ggml.h"
 | |
| 
 | |
| #include <mpi.h>
 | |
| 
 | |
| #include <stdio.h>
 | |
| #include <stdlib.h>
 | |
| 
 | |
| #define MIN(a, b) ((a) < (b) ? (a) : (b))
 | |
| 
 | |
| #define UNUSED GGML_UNUSED
 | |
| 
 | |
| struct ggml_mpi_context {
 | |
|     int rank;
 | |
|     int size;
 | |
| };
 | |
| 
 | |
| void ggml_mpi_backend_init(void) {
 | |
|     MPI_Init(NULL, NULL);
 | |
| }
 | |
| 
 | |
| void ggml_mpi_backend_free(void) {
 | |
|     MPI_Finalize();
 | |
| }
 | |
| 
 | |
| struct ggml_mpi_context * ggml_mpi_init(void) {
 | |
|     struct ggml_mpi_context * ctx = calloc(1, sizeof(struct ggml_mpi_context));
 | |
| 
 | |
|     MPI_Comm_rank(MPI_COMM_WORLD, &ctx->rank);
 | |
|     MPI_Comm_size(MPI_COMM_WORLD, &ctx->size);
 | |
| 
 | |
|     return ctx;
 | |
| }
 | |
| 
 | |
| void ggml_mpi_free(struct ggml_mpi_context * ctx) {
 | |
|     free(ctx);
 | |
| }
 | |
| 
 | |
| int ggml_mpi_rank(struct ggml_mpi_context * ctx) {
 | |
|     return ctx->rank;
 | |
| }
 | |
| 
 | |
| void ggml_mpi_eval_init(
 | |
|         struct ggml_mpi_context * ctx_mpi,
 | |
|                             int * n_tokens,
 | |
|                             int * n_past,
 | |
|                             int * n_threads) {
 | |
|     UNUSED(ctx_mpi);
 | |
| 
 | |
|     // synchronize the worker node parameters with the root node
 | |
|     MPI_Barrier(MPI_COMM_WORLD);
 | |
| 
 | |
|     MPI_Bcast(n_tokens,  1, MPI_INT, 0, MPI_COMM_WORLD);
 | |
|     MPI_Bcast(n_past,    1, MPI_INT, 0, MPI_COMM_WORLD);
 | |
|     MPI_Bcast(n_threads, 1, MPI_INT, 0, MPI_COMM_WORLD);
 | |
| }
 | |
| 
 | |
| static int ggml_graph_get_node_idx(struct ggml_cgraph * gf, const char * name) {
 | |
|     struct ggml_tensor * t = ggml_graph_get_tensor(gf, name);
 | |
|     if (t == NULL) {
 | |
|         fprintf(stderr, "%s: tensor %s not found\n", __func__, name);
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     for (int i = 0; i < gf->n_nodes; i++) {
 | |
|         if (gf->nodes[i] == t) {
 | |
|             return i;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     fprintf(stderr, "%s: tensor %s not found in graph (should not happen)\n", __func__, name);
 | |
|     return -1;
 | |
| }
 | |
| 
 | |
| static void ggml_mpi_tensor_send(struct ggml_tensor * t, int mpi_rank_dst) {
 | |
|     MPI_Datatype mpi_type;
 | |
| 
 | |
|     switch (t->type) {
 | |
|         case GGML_TYPE_I32: mpi_type = MPI_INT32_T; break;
 | |
|         case GGML_TYPE_F32: mpi_type = MPI_FLOAT;   break;
 | |
|         default: GGML_ASSERT(false && "not implemented");
 | |
|     }
 | |
| 
 | |
|     const int retval = MPI_Send(t->data, ggml_nelements(t), mpi_type, mpi_rank_dst, 0, MPI_COMM_WORLD);
 | |
|     GGML_ASSERT(retval == MPI_SUCCESS);
 | |
| }
 | |
| 
 | |
| static void ggml_mpi_tensor_recv(struct ggml_tensor * t, int mpi_rank_src) {
 | |
|     MPI_Datatype mpi_type;
 | |
| 
 | |
|     switch (t->type) {
 | |
|         case GGML_TYPE_I32: mpi_type = MPI_INT32_T; break;
 | |
|         case GGML_TYPE_F32: mpi_type = MPI_FLOAT;   break;
 | |
|         default: GGML_ASSERT(false && "not implemented");
 | |
|     }
 | |
| 
 | |
|     MPI_Status status; UNUSED(status);
 | |
| 
 | |
|     const int retval = MPI_Recv(t->data, ggml_nelements(t), mpi_type, mpi_rank_src, MPI_ANY_TAG, MPI_COMM_WORLD, &status);
 | |
|     GGML_ASSERT(retval == MPI_SUCCESS);
 | |
| }
 | |
| 
 | |
| // TODO: there are many improvements that can be done to this implementation
 | |
| void ggml_mpi_graph_compute_pre(
 | |
|         struct ggml_mpi_context * ctx_mpi,
 | |
|              struct ggml_cgraph * gf,
 | |
|                             int   n_layers) {
 | |
|     const int mpi_rank = ctx_mpi->rank;
 | |
|     const int mpi_size = ctx_mpi->size;
 | |
| 
 | |
|     struct ggml_tensor * inp_tokens = ggml_graph_get_tensor(gf, "inp_tokens");
 | |
|     if (inp_tokens == NULL) {
 | |
|         fprintf(stderr, "%s: tensor 'inp_tokens' not found\n", __func__);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     struct ggml_tensor * inp0 = ggml_graph_get_tensor(gf, "layer_inp_0");
 | |
|     if (inp0 == NULL) {
 | |
|         fprintf(stderr, "%s: tensor 'inp0' not found\n", __func__);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     GGML_ASSERT(inp0 == gf->nodes[0]);
 | |
| 
 | |
|     // distribute the compute graph into slices across the MPI nodes
 | |
|     //
 | |
|     // the main node (0) processes the last layers + the remainder of the compute graph
 | |
|     // and is responsible to pass the input tokens to the first node (1)
 | |
|     //
 | |
|     // node 1:   [(  0) * n_per_node, (  1) * n_per_node)
 | |
|     // node 2:   [(  1) * n_per_node, (  2) * n_per_node)
 | |
|     // ...
 | |
|     // node n-1: [(n-2) * n_per_node, (n-1) * n_per_node)
 | |
|     // node 0:   [(n-1) * n_per_node,            n_nodes)
 | |
|     //
 | |
|     if (mpi_rank > 0) {
 | |
|         if (mpi_rank == 1) {
 | |
|             // the first node (1) receives the input tokens from the main node (0)
 | |
|             ggml_mpi_tensor_recv(inp_tokens, 0);
 | |
|         } else {
 | |
|             // recv input data for each node into the "inp0" tensor (i.e. the first node in the compute graph)
 | |
|             ggml_mpi_tensor_recv(inp0, mpi_rank - 1);
 | |
|         }
 | |
|     } else if (mpi_size > 1) {
 | |
|         // node 0 sends the input tokens to node 1
 | |
|         ggml_mpi_tensor_send(inp_tokens, 1);
 | |
| 
 | |
|         // recv the output data from the last node
 | |
|         ggml_mpi_tensor_recv(inp0, mpi_size - 1);
 | |
|     }
 | |
| 
 | |
|     {
 | |
|         const int n_per_node = (n_layers + (mpi_size - 1)) / mpi_size;
 | |
| 
 | |
|         const int mpi_idx = mpi_rank > 0 ? mpi_rank - 1 : mpi_size - 1;
 | |
| 
 | |
|         const int il0 =               (mpi_idx + 0) * n_per_node;
 | |
|         const int il1 = MIN(n_layers, (mpi_idx + 1) * n_per_node);
 | |
| 
 | |
|         char name_l0[GGML_MAX_NAME];
 | |
|         char name_l1[GGML_MAX_NAME];
 | |
| 
 | |
|         snprintf(name_l0, sizeof(name_l0), "layer_inp_%d", il0);
 | |
|         snprintf(name_l1, sizeof(name_l1), "layer_inp_%d", il1);
 | |
| 
 | |
|         const int idx_l0 =                ggml_graph_get_node_idx(gf, name_l0);
 | |
|         const int idx_l1 = mpi_rank > 0 ? ggml_graph_get_node_idx(gf, name_l1) + 1 : gf->n_nodes;
 | |
| 
 | |
|         if (idx_l0 < 0 || idx_l1 < 0) {
 | |
|             fprintf(stderr, "%s: layer input nodes not found\n", __func__);
 | |
|             return;
 | |
|         }
 | |
| 
 | |
|         // attach the input data to all nodes that need it
 | |
|         // TODO: not great - should be able to do this without modifying the compute graph (see next TODO below)
 | |
|         for (int i = idx_l0; i < idx_l1; i++) {
 | |
|             if (gf->nodes[i]->src[0] == gf->nodes[idx_l0]) {
 | |
|                 gf->nodes[i]->src[0] =  inp0;
 | |
|             }
 | |
|             if (gf->nodes[i]->src[1] == gf->nodes[idx_l0]) {
 | |
|                 gf->nodes[i]->src[1] =  inp0;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // TODO: instead of rearranging the nodes, we should be able to execute a subset of the compute graph
 | |
|         for (int i = 1; i < idx_l1 - idx_l0; i++) {
 | |
|             gf->nodes[i] = gf->nodes[idx_l0 + i];
 | |
|             gf->grads[i] = gf->grads[idx_l0 + i];
 | |
|         }
 | |
| 
 | |
|         // the first node performs the "get_rows" operation, the rest of the nodes get the data from the previous node
 | |
|         if (mpi_idx != 0) {
 | |
|             gf->nodes[0]->op = GGML_OP_NONE;
 | |
|         }
 | |
| 
 | |
|         gf->n_nodes = idx_l1 - idx_l0;
 | |
| 
 | |
|         //fprintf(stderr, "%s: node %d: processing %d nodes [%d, %d)\n", __func__, mpi_rank, gf->n_nodes, il0, il1);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void ggml_mpi_graph_compute_post(
 | |
|         struct ggml_mpi_context * ctx_mpi,
 | |
|              struct ggml_cgraph * gf,
 | |
|                             int   n_layers) {
 | |
|     UNUSED(n_layers);
 | |
| 
 | |
|     const int mpi_rank = ctx_mpi->rank;
 | |
|     const int mpi_size = ctx_mpi->size;
 | |
| 
 | |
|     // send the output data to the next node
 | |
|     if (mpi_rank > 0) {
 | |
|         ggml_mpi_tensor_send(gf->nodes[gf->n_nodes - 1], (mpi_rank + 1) % mpi_size);
 | |
|     }
 | |
| }
 |