mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-30 08:42:00 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			269 lines
		
	
	
		
			8.9 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			269 lines
		
	
	
		
			8.9 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #include "llama-memory-hybrid.h"
 | |
| 
 | |
| #include "llama-impl.h"
 | |
| #include "llama-model.h"
 | |
| #include "llama-context.h"
 | |
| 
 | |
| //
 | |
| // llama_memory_hybrid
 | |
| //
 | |
| 
 | |
| llama_memory_hybrid::llama_memory_hybrid(
 | |
|         const llama_model & model,
 | |
|                             /* attn */
 | |
|                 ggml_type   type_k,
 | |
|                 ggml_type   type_v,
 | |
|                      bool   v_trans,
 | |
|                  uint32_t   kv_size,
 | |
|                  uint32_t   n_pad,
 | |
|                  uint32_t   n_swa,
 | |
|            llama_swa_type   swa_type,
 | |
|                             /* recurrent */
 | |
|                 ggml_type   type_r,
 | |
|                 ggml_type   type_s,
 | |
|                  uint32_t   rs_size,
 | |
|                             /* common */
 | |
|                  uint32_t   n_seq_max,
 | |
|                      bool   offload,
 | |
|                      bool   unified,
 | |
|                             /* layer filters */
 | |
|     const layer_filter_cb & filter_attn,
 | |
|     const layer_filter_cb & filter_recr) :
 | |
|     hparams(model.hparams),
 | |
|     mem_attn(new llama_kv_cache(
 | |
|         model,
 | |
|         type_k,
 | |
|         type_v,
 | |
|         v_trans,
 | |
|         offload,
 | |
|         unified,
 | |
|         kv_size,
 | |
|         n_seq_max,
 | |
|         n_pad,
 | |
|         n_swa,
 | |
|         swa_type,
 | |
|         filter_attn == nullptr ?
 | |
|             [&](int32_t il) { return !hparams.is_recurrent(il); }
 | |
|             : filter_attn,
 | |
|         nullptr
 | |
|     )),
 | |
|     mem_recr(new llama_memory_recurrent(
 | |
|         model,
 | |
|         type_r,
 | |
|         type_s,
 | |
|         offload,
 | |
|         rs_size,
 | |
|         n_seq_max,
 | |
|         filter_recr == nullptr ?
 | |
|             [&](int32_t il) { return hparams.is_recurrent(il); }
 | |
|             : filter_recr
 | |
|     )) {}
 | |
| 
 | |
| llama_memory_context_ptr llama_memory_hybrid::init_batch(llama_batch_allocr & balloc, uint32_t n_ubatch, bool embd_all) {
 | |
|     do {
 | |
|         balloc.split_reset();
 | |
| 
 | |
|         // follow the recurrent pattern for creating the ubatch splits
 | |
|         std::vector<llama_ubatch> ubatches;
 | |
| 
 | |
|         while (true) {
 | |
|             llama_ubatch ubatch;
 | |
| 
 | |
|             if (embd_all) {
 | |
|                 // if all tokens are output, split by sequence
 | |
|                 ubatch = balloc.split_seq(n_ubatch);
 | |
|             } else {
 | |
|                 // TODO: non-sequential equal split can be done if using unified KV cache
 | |
|                 //       for simplicity, we always use sequential equal split for now
 | |
|                 ubatch = balloc.split_equal(n_ubatch, true);
 | |
|             }
 | |
| 
 | |
|             if (ubatch.n_tokens == 0) {
 | |
|                 break;
 | |
|             }
 | |
| 
 | |
|             ubatches.push_back(std::move(ubatch)); // NOLINT
 | |
|         }
 | |
| 
 | |
|         if (balloc.get_n_used() < balloc.get_n_tokens()) {
 | |
|             // failed to find a suitable split
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         // prepare the recurrent batches first
 | |
|         if (!mem_recr->prepare(ubatches)) {
 | |
|             // TODO: will the recurrent cache be in an undefined context at this point?
 | |
|             LLAMA_LOG_ERROR("%s: failed to prepare recurrent ubatches\n", __func__);
 | |
|             return std::make_unique<llama_memory_hybrid_context>(LLAMA_MEMORY_STATUS_FAILED_PREPARE);
 | |
|         }
 | |
| 
 | |
|         // prepare the attention cache
 | |
|         auto heads_attn = mem_attn->prepare(ubatches);
 | |
|         if (heads_attn.empty()) {
 | |
|             LLAMA_LOG_ERROR("%s: failed to prepare attention ubatches\n", __func__);
 | |
|             return std::make_unique<llama_memory_hybrid_context>(LLAMA_MEMORY_STATUS_FAILED_PREPARE);
 | |
|         }
 | |
| 
 | |
|         return std::make_unique<llama_memory_hybrid_context>(
 | |
|                 this, std::move(heads_attn), std::move(ubatches));
 | |
|     } while(false);
 | |
| 
 | |
|     return std::make_unique<llama_memory_hybrid_context>(LLAMA_MEMORY_STATUS_FAILED_PREPARE);
 | |
| }
 | |
| 
 | |
| llama_memory_context_ptr llama_memory_hybrid::init_full() {
 | |
|     return std::make_unique<llama_memory_hybrid_context>(this);
 | |
| }
 | |
| 
 | |
| llama_memory_context_ptr llama_memory_hybrid::init_update(llama_context * lctx, bool optimize) {
 | |
|     return std::make_unique<llama_memory_hybrid_context>(this, lctx, optimize);
 | |
| }
 | |
| 
 | |
| bool llama_memory_hybrid::get_can_shift() const {
 | |
|     // Shifting is trivially supported for recurrent
 | |
|     return mem_attn->get_can_shift();
 | |
| }
 | |
| 
 | |
| void llama_memory_hybrid::clear(bool data) {
 | |
|     mem_attn->clear(data);
 | |
|     mem_recr->clear(data);
 | |
| }
 | |
| 
 | |
| bool llama_memory_hybrid::seq_rm(llama_seq_id seq_id, llama_pos p0, llama_pos p1) {
 | |
|     // Try removing from the recurrent cache first since it may fail. If it does
 | |
|     // fail, the cache will not have been mutated.
 | |
|     if (!mem_recr->seq_rm(seq_id, p0, p1)) {
 | |
|         return false;
 | |
|     }
 | |
|     return mem_attn->seq_rm(seq_id, p0, p1);
 | |
| }
 | |
| 
 | |
| void llama_memory_hybrid::seq_cp(llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) {
 | |
|     mem_attn->seq_cp(seq_id_src, seq_id_dst, p0, p1);
 | |
|     mem_recr->seq_cp(seq_id_src, seq_id_dst, p0, p1);
 | |
| }
 | |
| 
 | |
| void llama_memory_hybrid::seq_keep(llama_seq_id seq_id) {
 | |
|     mem_attn->seq_keep(seq_id);
 | |
|     mem_recr->seq_keep(seq_id);
 | |
| }
 | |
| 
 | |
| void llama_memory_hybrid::seq_add(llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos shift) {
 | |
|     mem_attn->seq_add(seq_id, p0, p1, shift);
 | |
|     mem_recr->seq_add(seq_id, p0, p1, shift);
 | |
| }
 | |
| 
 | |
| void llama_memory_hybrid::seq_div(llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) {
 | |
|     mem_attn->seq_div(seq_id, p0, p1, d);
 | |
|     mem_recr->seq_div(seq_id, p0, p1, d);
 | |
| }
 | |
| 
 | |
| llama_pos llama_memory_hybrid::seq_pos_min(llama_seq_id seq_id) const {
 | |
|     // the min of the total cache is the max of the two caches' min values
 | |
|     return std::max(mem_attn->seq_pos_min(seq_id), mem_recr->seq_pos_min(seq_id));
 | |
| }
 | |
| 
 | |
| llama_pos llama_memory_hybrid::seq_pos_max(llama_seq_id seq_id) const {
 | |
|     // the max of the total cache is the min of the two caches' max values
 | |
|     return std::min(mem_attn->seq_pos_max(seq_id), mem_recr->seq_pos_max(seq_id));
 | |
| }
 | |
| 
 | |
| std::map<ggml_backend_buffer_type_t, size_t> llama_memory_hybrid::memory_breakdown() const {
 | |
|     std::map<ggml_backend_buffer_type_t, size_t> mb = mem_attn->memory_breakdown();
 | |
|     for (const auto & buft_size : mem_recr->memory_breakdown()) {
 | |
|         mb[buft_size.first] += buft_size.second;
 | |
|     }
 | |
|     return mb;
 | |
| }
 | |
| 
 | |
| void llama_memory_hybrid::state_write(llama_io_write_i & io, llama_seq_id seq_id, llama_state_seq_flags flags) const {
 | |
|     if ((flags & LLAMA_STATE_SEQ_FLAGS_PARTIAL_ONLY) == 0) {
 | |
|         mem_attn->state_write(io, seq_id, flags);
 | |
|     }
 | |
|     mem_recr->state_write(io, seq_id, flags);
 | |
| }
 | |
| 
 | |
| void llama_memory_hybrid::state_read(llama_io_read_i & io, llama_seq_id seq_id, llama_state_seq_flags flags) {
 | |
|     if ((flags & LLAMA_STATE_SEQ_FLAGS_PARTIAL_ONLY) == 0) {
 | |
|         mem_attn->state_read(io, seq_id, flags);
 | |
|     }
 | |
|     mem_recr->state_read(io, seq_id, flags);
 | |
| }
 | |
| 
 | |
| llama_kv_cache * llama_memory_hybrid::get_mem_attn() const {
 | |
|     return mem_attn.get();
 | |
| }
 | |
| 
 | |
| llama_memory_recurrent * llama_memory_hybrid::get_mem_recr() const {
 | |
|     return mem_recr.get();
 | |
| }
 | |
| 
 | |
| llama_memory_hybrid_context::llama_memory_hybrid_context(llama_memory_status status) : status(status) {}
 | |
| 
 | |
| llama_memory_hybrid_context::llama_memory_hybrid_context(llama_memory_hybrid * mem) :
 | |
|     ctx_attn(mem->get_mem_attn()->init_full()),
 | |
|     ctx_recr(mem->get_mem_recr()->init_full()),
 | |
|     status(llama_memory_status_combine(ctx_attn->get_status(), ctx_recr->get_status())) {
 | |
| }
 | |
| 
 | |
| llama_memory_hybrid_context::llama_memory_hybrid_context(
 | |
|         llama_memory_hybrid * mem,
 | |
|               llama_context * lctx,
 | |
|                        bool   optimize) :
 | |
|     ctx_attn(mem->get_mem_attn()->init_update(lctx, optimize)),
 | |
|     ctx_recr(mem->get_mem_recr()->init_update(lctx, optimize)),
 | |
|     status(llama_memory_status_combine(ctx_attn->get_status(), ctx_recr->get_status())) {
 | |
| }
 | |
| 
 | |
| llama_memory_hybrid_context::llama_memory_hybrid_context(
 | |
|               llama_memory_hybrid * mem,
 | |
|                   slot_info_vec_t   sinfos_attn,
 | |
|         std::vector<llama_ubatch>   ubatches) :
 | |
|     ubatches(std::move(ubatches)),
 | |
|     // note: here we copy the ubatches. not sure if this is ideal
 | |
|     ctx_attn(new llama_kv_cache_context(mem->get_mem_attn(), std::move(sinfos_attn), this->ubatches)),
 | |
|     ctx_recr(new llama_memory_recurrent_context(mem->get_mem_recr(),                        this->ubatches)),
 | |
|     status(llama_memory_status_combine(ctx_attn->get_status(), ctx_recr->get_status())) {
 | |
| }
 | |
| 
 | |
| bool llama_memory_hybrid_context::next() {
 | |
|     assert(status == LLAMA_MEMORY_STATUS_SUCCESS);
 | |
| 
 | |
|     ctx_attn->next();
 | |
|     ctx_recr->next();
 | |
| 
 | |
|     if (++i_next >= ubatches.size()) {
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| bool llama_memory_hybrid_context::apply() {
 | |
|     assert(!llama_memory_status_is_fail(status));
 | |
| 
 | |
|     bool res = true;
 | |
| 
 | |
|     res = res & ctx_attn->apply();
 | |
|     res = res & ctx_recr->apply();
 | |
| 
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| llama_memory_status llama_memory_hybrid_context::get_status() const {
 | |
|     return status;
 | |
| }
 | |
| 
 | |
| const llama_ubatch & llama_memory_hybrid_context::get_ubatch() const {
 | |
|     assert(status == LLAMA_MEMORY_STATUS_SUCCESS);
 | |
|     return ubatches[i_next];
 | |
| }
 | |
| 
 | |
| const llama_kv_cache_context * llama_memory_hybrid_context::get_attn() const {
 | |
|     return static_cast<const llama_kv_cache_context *>(ctx_attn.get());
 | |
| }
 | |
| 
 | |
| const llama_memory_recurrent_context * llama_memory_hybrid_context::get_recr() const {
 | |
|     return static_cast<const llama_memory_recurrent_context *>(ctx_recr.get());
 | |
| }
 | 
