mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-29 08:41:22 +00:00 
			
		
		
		
	 00131d6eaf
			
		
	
	00131d6eaf
	
	
	
		
			
			* test-thread-safety : each context uses a single sequence * embedding : handle --parallel argument ggml-ci * save-load : handle -np 1 ggml-ci * thread-safety : avoid overriding threads, reduce test case arg ggml-ci
		
			
				
	
	
		
			373 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			373 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #include "arg.h"
 | |
| #include "common.h"
 | |
| #include "log.h"
 | |
| #include "llama.h"
 | |
| 
 | |
| #include <ctime>
 | |
| #include <algorithm>
 | |
| 
 | |
| #if defined(_MSC_VER)
 | |
| #pragma warning(disable: 4244 4267) // possible loss of data
 | |
| #endif
 | |
| 
 | |
| static std::vector<std::string> split_lines(const std::string & s, const std::string & separator = "\n") {
 | |
|     std::vector<std::string> lines;
 | |
|     size_t start = 0;
 | |
|     size_t end = s.find(separator);
 | |
| 
 | |
|     while (end != std::string::npos) {
 | |
|         lines.push_back(s.substr(start, end - start));
 | |
|         start = end + separator.length();
 | |
|         end = s.find(separator, start);
 | |
|     }
 | |
| 
 | |
|     lines.push_back(s.substr(start)); // Add the last part
 | |
| 
 | |
|     return lines;
 | |
| }
 | |
| 
 | |
| static void batch_add_seq(llama_batch & batch, const std::vector<int32_t> & tokens, llama_seq_id seq_id) {
 | |
|     size_t n_tokens = tokens.size();
 | |
|     for (size_t i = 0; i < n_tokens; i++) {
 | |
|         common_batch_add(batch, tokens[i], i, { seq_id }, true);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void batch_decode(llama_context * ctx, llama_batch & batch, float * output, int n_seq, int n_embd, int embd_norm) {
 | |
|     const enum llama_pooling_type pooling_type = llama_pooling_type(ctx);
 | |
| 
 | |
|     // clear previous kv_cache values (irrelevant for embeddings)
 | |
|     llama_memory_clear(llama_get_memory(ctx), true);
 | |
| 
 | |
|     // run model
 | |
|     LOG_INF("%s: n_tokens = %d, n_seq = %d\n", __func__, batch.n_tokens, n_seq);
 | |
|     if (llama_decode(ctx, batch) < 0) {
 | |
|         LOG_ERR("%s : failed to process\n", __func__);
 | |
|     }
 | |
| 
 | |
|     for (int i = 0; i < batch.n_tokens; i++) {
 | |
|         if (!batch.logits[i]) {
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         const float * embd = nullptr;
 | |
|         int embd_pos = 0;
 | |
| 
 | |
|         if (pooling_type == LLAMA_POOLING_TYPE_NONE) {
 | |
|             // try to get token embeddings
 | |
|             embd = llama_get_embeddings_ith(ctx, i);
 | |
|             embd_pos = i;
 | |
|             GGML_ASSERT(embd != NULL && "failed to get token embeddings");
 | |
|         } else {
 | |
|             // try to get sequence embeddings - supported only when pooling_type is not NONE
 | |
|             embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]);
 | |
|             embd_pos = batch.seq_id[i][0];
 | |
|             GGML_ASSERT(embd != NULL && "failed to get sequence embeddings");
 | |
|         }
 | |
| 
 | |
|         float * out = output + embd_pos * n_embd;
 | |
|         common_embd_normalize(embd, out, n_embd, embd_norm);
 | |
|     }
 | |
| }
 | |
| 
 | |
| int main(int argc, char ** argv) {
 | |
|     common_params params;
 | |
| 
 | |
|     if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_EMBEDDING)) {
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     common_init();
 | |
| 
 | |
|     params.embedding = true;
 | |
| 
 | |
|     // if the number of prompts that would be encoded is known in advance, it's more efficient to specify the
 | |
|     //   --parallel argument accordingly. for convenience, if not specified, we fallback to unified KV cache
 | |
|     //   in order to support any number of prompts
 | |
|     if (params.n_parallel == 1) {
 | |
|         LOG_INF("%s: n_parallel == 1 -> unified KV cache is enabled\n", __func__);
 | |
|         params.kv_unified = true;
 | |
|     }
 | |
| 
 | |
|     // utilize the full context
 | |
|     if (params.n_batch < params.n_ctx) {
 | |
|         LOG_WRN("%s: setting batch size to %d\n", __func__, params.n_ctx);
 | |
|         params.n_batch = params.n_ctx;
 | |
|     }
 | |
| 
 | |
|     // For non-causal models, batch size must be equal to ubatch size
 | |
|     params.n_ubatch = params.n_batch;
 | |
| 
 | |
|     llama_backend_init();
 | |
|     llama_numa_init(params.numa);
 | |
| 
 | |
|     // load the model
 | |
|     common_init_result llama_init = common_init_from_params(params);
 | |
| 
 | |
|     llama_model * model = llama_init.model.get();
 | |
|     llama_context * ctx = llama_init.context.get();
 | |
| 
 | |
|     if (model == NULL) {
 | |
|         LOG_ERR("%s: unable to load model\n", __func__);
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     const llama_vocab * vocab = llama_model_get_vocab(model);
 | |
| 
 | |
|     const int n_ctx_train = llama_model_n_ctx_train(model);
 | |
|     const int n_ctx       = llama_n_ctx(ctx);
 | |
| 
 | |
|     const enum llama_pooling_type pooling_type = llama_pooling_type(ctx);
 | |
| 
 | |
|     if (llama_model_has_encoder(model) && llama_model_has_decoder(model)) {
 | |
|         LOG_ERR("%s: computing embeddings in encoder-decoder models is not supported\n", __func__);
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     if (n_ctx > n_ctx_train) {
 | |
|         LOG_WRN("%s: warning: model was trained on only %d context tokens (%d specified)\n",
 | |
|                 __func__, n_ctx_train, n_ctx);
 | |
|     }
 | |
| 
 | |
|     // print system information
 | |
|     {
 | |
|         LOG_INF("\n");
 | |
|         LOG_INF("%s\n", common_params_get_system_info(params).c_str());
 | |
|     }
 | |
| 
 | |
|     // split the prompt into lines
 | |
|     std::vector<std::string> prompts = split_lines(params.prompt, params.embd_sep);
 | |
| 
 | |
|     // max batch size
 | |
|     const uint64_t n_batch = params.n_batch;
 | |
| 
 | |
|     // get added sep and eos token, if any
 | |
|     const std::string added_sep_token = llama_vocab_get_add_sep(vocab) ? llama_vocab_get_text(vocab, llama_vocab_sep(vocab)) : "";
 | |
|     const std::string added_eos_token = llama_vocab_get_add_eos(vocab) ? llama_vocab_get_text(vocab, llama_vocab_eos(vocab)) : "";
 | |
| 
 | |
|     // tokenize the prompts and trim
 | |
|     std::vector<std::vector<int32_t>> inputs;
 | |
|     for (const auto & prompt : prompts) {
 | |
|         std::vector<llama_token> inp;
 | |
| 
 | |
|         // split classification pairs and insert expected separator tokens
 | |
|         if (pooling_type == LLAMA_POOLING_TYPE_RANK && prompt.find(params.cls_sep) != std::string::npos) {
 | |
|             std::vector<std::string> pairs = split_lines(prompt, params.cls_sep);
 | |
|             std::string final_prompt;
 | |
| 
 | |
|             for (size_t i = 0; i < pairs.size(); i++) {
 | |
|                 final_prompt += pairs[i];
 | |
|                 if (i != pairs.size() - 1) {
 | |
|                     if (!added_eos_token.empty()) {
 | |
|                         final_prompt += added_eos_token;
 | |
|                     }
 | |
|                     if (!added_sep_token.empty()) {
 | |
|                         final_prompt += added_sep_token;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             inp = common_tokenize(ctx, final_prompt, true, true);
 | |
|         } else {
 | |
|             inp = common_tokenize(ctx, prompt, true, true);
 | |
|         }
 | |
|         if (inp.size() > n_batch) {
 | |
|             LOG_ERR("%s: number of tokens in input line (%lld) exceeds batch size (%lld), increase batch size and re-run\n",
 | |
|                     __func__, (long long int) inp.size(), (long long int) n_batch);
 | |
|             return 1;
 | |
|         }
 | |
|         inputs.push_back(inp);
 | |
|     }
 | |
| 
 | |
|     // check if the last token is SEP/EOS
 | |
|     // it should be automatically added by the tokenizer when 'tokenizer.ggml.add_eos_token' is set to 'true'
 | |
|     for (auto & inp : inputs) {
 | |
|         if (inp.empty() || (inp.back() != llama_vocab_sep(vocab) && inp.back() != llama_vocab_eos(vocab))) {
 | |
|             LOG_WRN("%s: last token in the prompt is not SEP or EOS\n", __func__);
 | |
|             LOG_WRN("%s: 'tokenizer.ggml.add_eos_token' should be set to 'true' in the GGUF header\n", __func__);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // tokenization stats
 | |
|     if (params.verbose_prompt) {
 | |
|         for (int i = 0; i < (int) inputs.size(); i++) {
 | |
|             LOG_INF("%s: prompt %d: '%s'\n", __func__, i, prompts[i].c_str());
 | |
|             LOG_INF("%s: number of tokens in prompt = %zu\n", __func__, inputs[i].size());
 | |
|             for (int j = 0; j < (int) inputs[i].size(); j++) {
 | |
|                 LOG("%6d -> '%s'\n", inputs[i][j], common_token_to_piece(ctx, inputs[i][j]).c_str());
 | |
|             }
 | |
|             LOG("\n\n");
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // initialize batch
 | |
|     const int n_prompts = prompts.size();
 | |
|     struct llama_batch batch = llama_batch_init(n_batch, 0, 1);
 | |
| 
 | |
|     // count number of embeddings
 | |
|     int n_embd_count = 0;
 | |
|     if (pooling_type == LLAMA_POOLING_TYPE_NONE) {
 | |
|         for (int k = 0; k < n_prompts; k++) {
 | |
|             n_embd_count += inputs[k].size();
 | |
|         }
 | |
|     } else {
 | |
|         n_embd_count = n_prompts;
 | |
|     }
 | |
| 
 | |
|     // allocate output
 | |
|     const int n_embd = llama_model_n_embd(model);
 | |
|     std::vector<float> embeddings(n_embd_count * n_embd, 0);
 | |
|     float * emb = embeddings.data();
 | |
| 
 | |
|     // break into batches
 | |
|     int e = 0; // number of embeddings already stored
 | |
|     int s = 0; // number of prompts in current batch
 | |
|     for (int k = 0; k < n_prompts; k++) {
 | |
|         // clamp to n_batch tokens
 | |
|         auto & inp = inputs[k];
 | |
| 
 | |
|         const uint64_t n_toks = inp.size();
 | |
| 
 | |
|         // encode if at capacity
 | |
|         if (batch.n_tokens + n_toks > n_batch) {
 | |
|             float * out = emb + e * n_embd;
 | |
|             batch_decode(ctx, batch, out, s, n_embd, params.embd_normalize);
 | |
|             e += pooling_type == LLAMA_POOLING_TYPE_NONE ? batch.n_tokens : s;
 | |
|             s = 0;
 | |
|             common_batch_clear(batch);
 | |
|         }
 | |
| 
 | |
|         // add to batch
 | |
|         batch_add_seq(batch, inp, s);
 | |
|         s += 1;
 | |
|     }
 | |
| 
 | |
|     // final batch
 | |
|     float * out = emb + e * n_embd;
 | |
|     batch_decode(ctx, batch, out, s, n_embd, params.embd_normalize);
 | |
| 
 | |
|     if (params.embd_out.empty()) {
 | |
|         LOG("\n");
 | |
| 
 | |
|         if (pooling_type == LLAMA_POOLING_TYPE_NONE) {
 | |
|             for (int j = 0; j < n_embd_count; j++) {
 | |
|                 LOG("embedding %d: ", j);
 | |
|                 for (int i = 0; i < std::min(3, n_embd); i++) {
 | |
|                     if (params.embd_normalize == 0) {
 | |
|                         LOG("%6.0f ", emb[j * n_embd + i]);
 | |
|                     } else {
 | |
|                         LOG("%9.6f ", emb[j * n_embd + i]);
 | |
|                     }
 | |
|                 }
 | |
|                 LOG(" ... ");
 | |
|                 for (int i = n_embd - 3; i < n_embd; i++) {
 | |
|                     if (params.embd_normalize == 0) {
 | |
|                         LOG("%6.0f ", emb[j * n_embd + i]);
 | |
|                     } else {
 | |
|                         LOG("%9.6f ", emb[j * n_embd + i]);
 | |
|                     }
 | |
|                 }
 | |
|                 LOG("\n");
 | |
|             }
 | |
|         } else if (pooling_type == LLAMA_POOLING_TYPE_RANK) {
 | |
|             const uint32_t n_cls_out = llama_model_n_cls_out(model);
 | |
|             std::vector<std::string> cls_out_labels;
 | |
| 
 | |
|             for (uint32_t i = 0; i < n_cls_out; i++) {
 | |
|                 const char * label = llama_model_cls_label(model, i);
 | |
|                 const std::string label_i(label == nullptr ? "" : label);
 | |
|                 cls_out_labels.emplace_back(label_i.empty() ? std::to_string(i) : label_i);
 | |
|             }
 | |
| 
 | |
|             for (int j = 0; j < n_embd_count; j++) {
 | |
|                 for (uint32_t i = 0; i < n_cls_out; i++) {
 | |
|                     // NOTE: if you change this log - update the tests in ci/run.sh
 | |
|                     if (n_cls_out == 1) {
 | |
|                         LOG("rerank score %d: %8.3f\n", j, emb[j * n_embd]);
 | |
|                     } else {
 | |
|                         LOG("rerank score %d: %8.3f [%s]\n", j, emb[j * n_embd + i], cls_out_labels[i].c_str());
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         } else {
 | |
|             // print the first part of the embeddings or for a single prompt, the full embedding
 | |
|             for (int j = 0; j < n_prompts; j++) {
 | |
|                 LOG("embedding %d: ", j);
 | |
|                 for (int i = 0; i < (n_prompts > 1 ? std::min(16, n_embd) : n_embd); i++) {
 | |
|                     if (params.embd_normalize == 0) {
 | |
|                         LOG("%6.0f ", emb[j * n_embd + i]);
 | |
|                     } else {
 | |
|                         LOG("%9.6f ", emb[j * n_embd + i]);
 | |
|                     }
 | |
|                 }
 | |
|                 LOG("\n");
 | |
|             }
 | |
| 
 | |
|             // print cosine similarity matrix
 | |
|             if (n_prompts > 1) {
 | |
|                 LOG("\n");
 | |
|                 LOG("cosine similarity matrix:\n\n");
 | |
|                 for (int i = 0; i < n_prompts; i++) {
 | |
|                     LOG("%6.6s ", prompts[i].c_str());
 | |
|                 }
 | |
|                 LOG("\n");
 | |
|                 for (int i = 0; i < n_prompts; i++) {
 | |
|                     for (int j = 0; j < n_prompts; j++) {
 | |
|                         float sim = common_embd_similarity_cos(emb + i * n_embd, emb + j * n_embd, n_embd);
 | |
|                         LOG("%6.2f ", sim);
 | |
|                     }
 | |
|                     LOG("%1.10s", prompts[i].c_str());
 | |
|                     LOG("\n");
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (params.embd_out == "json" || params.embd_out == "json+" || params.embd_out == "array") {
 | |
|         const bool notArray = params.embd_out != "array";
 | |
| 
 | |
|         LOG(notArray ? "{\n  \"object\": \"list\",\n  \"data\": [\n" : "[");
 | |
|         for (int j = 0;;) { // at least one iteration (one prompt)
 | |
|             if (notArray) LOG("    {\n      \"object\": \"embedding\",\n      \"index\": %d,\n      \"embedding\": ",j);
 | |
|             LOG("[");
 | |
|             for (int i = 0;;) { // at least one iteration (n_embd > 0)
 | |
|                 LOG(params.embd_normalize == 0 ? "%1.0f" : "%1.7f", emb[j * n_embd + i]);
 | |
|                 i++;
 | |
|                 if (i < n_embd) LOG(","); else break;
 | |
|             }
 | |
|             LOG(notArray ? "]\n    }" : "]");
 | |
|             j++;
 | |
|             if (j < n_embd_count) LOG(notArray ? ",\n" : ","); else break;
 | |
|         }
 | |
|         LOG(notArray ? "\n  ]" : "]\n");
 | |
| 
 | |
|         if (params.embd_out == "json+" && n_prompts > 1) {
 | |
|             LOG(",\n  \"cosineSimilarity\": [\n");
 | |
|             for (int i = 0;;) { // at least two iteration (n_embd_count > 1)
 | |
|                 LOG("    [");
 | |
|                 for (int j = 0;;) { // at least two iteration (n_embd_count > 1)
 | |
|                     float sim = common_embd_similarity_cos(emb + i * n_embd, emb + j * n_embd, n_embd);
 | |
|                     LOG("%6.2f", sim);
 | |
|                     j++;
 | |
|                     if (j < n_embd_count) LOG(", "); else break;
 | |
|                 }
 | |
|                 LOG(" ]");
 | |
|                 i++;
 | |
|                 if (i < n_embd_count) LOG(",\n"); else break;
 | |
|             }
 | |
|             LOG("\n  ]");
 | |
|         }
 | |
| 
 | |
|         if (notArray) LOG("\n}\n");
 | |
|     }
 | |
| 
 | |
|     LOG("\n");
 | |
|     llama_perf_context_print(ctx);
 | |
| 
 | |
|     // clean up
 | |
|     llama_batch_free(batch);
 | |
|     llama_backend_free();
 | |
| 
 | |
|     return 0;
 | |
| }
 |