mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-29 08:41:22 +00:00 
			
		
		
		
	 267c1399f1
			
		
	
	267c1399f1
	
	
	
		
			
			* (wip) refactor downloading system [no ci] * fix all examples * fix mmproj with -hf * gemma3: update readme * only handle mmproj in llava example * fix multi-shard download * windows: fix problem with std::min and std::max * fix 2
		
			
				
	
	
		
			645 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			645 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #include "arg.h"
 | |
| #include "common.h"
 | |
| #include "sampling.h"
 | |
| #include "log.h"
 | |
| #include "llama.h"
 | |
| 
 | |
| #include <algorithm>
 | |
| #include <cstdio>
 | |
| #include <cstring>
 | |
| #include <random>
 | |
| #include <set>
 | |
| #include <string>
 | |
| #include <vector>
 | |
| 
 | |
| #define SPEC_VOCAB_MAX_SIZE_DIFFERENCE  128
 | |
| #define SPEC_VOCAB_CHECK_START_TOKEN_ID 5
 | |
| 
 | |
| struct seq_draft {
 | |
|     bool active   = false;
 | |
|     bool drafting = false;
 | |
|     bool skip     = false;
 | |
| 
 | |
|     int i_batch_dft = 0;
 | |
|     std::vector<int> i_batch_tgt;
 | |
| 
 | |
|     std::vector<llama_token> tokens;
 | |
|     std::vector<std::vector<llama_token_data>> dists;
 | |
| 
 | |
|     struct common_sampler * smpl = nullptr;
 | |
| };
 | |
| 
 | |
| int main(int argc, char ** argv) {
 | |
|     common_params params;
 | |
| 
 | |
|     // needed to get candidate probs even for temp <= 0.0
 | |
|     params.sampling.n_probs = 128;
 | |
| 
 | |
|     if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_SPECULATIVE)) {
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     if (params.n_predict < -1) {
 | |
|         LOG_ERR("%s: --n-predict must be >= -1\n", __func__);
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     common_init();
 | |
| 
 | |
|     if (params.speculative.model.path.empty()) {
 | |
|         LOG_ERR("%s: --model-draft is required\n", __func__);
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     // max number of parallel drafting sequences (i.e. tree branches)
 | |
|     const int n_seq_dft = params.n_parallel;
 | |
| 
 | |
|     // probability threshold for splitting a draft branch (only for n_seq_dft > 1)
 | |
|     const float p_draft_split = params.speculative.p_split;
 | |
| 
 | |
|     std::default_random_engine rng(params.sampling.seed == LLAMA_DEFAULT_SEED ? std::random_device()() : params.sampling.seed);
 | |
|     std::uniform_real_distribution<> u_dist;
 | |
| 
 | |
|     // init llama.cpp
 | |
|     llama_backend_init();
 | |
|     llama_numa_init(params.numa);
 | |
| 
 | |
|     llama_model * model_tgt = NULL;
 | |
|     llama_model * model_dft = NULL;
 | |
| 
 | |
|     llama_context * ctx_tgt = NULL;
 | |
|     llama_context * ctx_dft = NULL;
 | |
| 
 | |
|     // load the target model
 | |
|     common_init_result llama_init_tgt = common_init_from_params(params);
 | |
| 
 | |
|     model_tgt = llama_init_tgt.model.get();
 | |
|     ctx_tgt   = llama_init_tgt.context.get();
 | |
| 
 | |
|     // load the draft model
 | |
|     params.devices = params.speculative.devices;
 | |
|     params.model = params.speculative.model;
 | |
|     params.n_gpu_layers = params.speculative.n_gpu_layers;
 | |
|     if (params.speculative.cpuparams.n_threads > 0) {
 | |
|         params.cpuparams.n_threads = params.speculative.cpuparams.n_threads;
 | |
|     }
 | |
| 
 | |
|     params.cpuparams_batch.n_threads = params.speculative.cpuparams_batch.n_threads;
 | |
|     common_init_result llama_init_dft = common_init_from_params(params);
 | |
| 
 | |
|     model_dft = llama_init_dft.model.get();
 | |
|     ctx_dft   = llama_init_dft.context.get();
 | |
| 
 | |
|     const llama_vocab * vocab_tgt = llama_model_get_vocab(model_tgt);
 | |
|     const llama_vocab * vocab_dft = llama_model_get_vocab(model_dft);
 | |
| 
 | |
|     const bool vocab_type_tgt = llama_vocab_type(vocab_tgt);
 | |
|     LOG_DBG("vocab_type tgt: %d\n", vocab_type_tgt);
 | |
| 
 | |
|     const bool vocab_type_dft = llama_vocab_type(vocab_dft);
 | |
|     LOG_DBG("vocab_type dft: %d\n", vocab_type_dft);
 | |
| 
 | |
|     if (vocab_type_tgt != vocab_type_dft) {
 | |
|         LOG_ERR("%s: draft model vocab type must match target model to use speculation but ", __func__);
 | |
|         LOG_ERR("vocab_type_dft = %d while vocab_type_tgt = %d\n", vocab_type_dft, vocab_type_tgt);
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     if (
 | |
|         llama_vocab_get_add_bos(vocab_tgt) != llama_vocab_get_add_bos(vocab_dft) ||
 | |
|         llama_vocab_get_add_eos(vocab_tgt) != llama_vocab_get_add_eos(vocab_dft) ||
 | |
|         llama_vocab_bos(vocab_tgt) != llama_vocab_bos(vocab_dft) ||
 | |
|         llama_vocab_eos(vocab_tgt) != llama_vocab_eos(vocab_dft)
 | |
|     ) {
 | |
|         LOG_ERR("%s: draft model special tokens must match target model to use speculation\n", __func__);
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     {
 | |
|         const int n_vocab_tgt = llama_vocab_n_tokens(vocab_tgt);
 | |
|         const int n_vocab_dft = llama_vocab_n_tokens(vocab_dft);
 | |
|         const int vocab_diff  = n_vocab_tgt > n_vocab_dft
 | |
|             ? n_vocab_tgt - n_vocab_dft
 | |
|             : n_vocab_dft - n_vocab_tgt;
 | |
| 
 | |
|         if (vocab_diff > SPEC_VOCAB_MAX_SIZE_DIFFERENCE) {
 | |
|             LOG_ERR("%s: draft model vocab must closely match target model to use speculation but ", __func__);
 | |
|             LOG_ERR("target vocab size %d does not match draft vocab size %d - difference %d, max allowed %d\n",
 | |
|                     n_vocab_tgt, llama_vocab_n_tokens(vocab_dft), vocab_diff, SPEC_VOCAB_MAX_SIZE_DIFFERENCE);
 | |
|             return 1;
 | |
|         }
 | |
| 
 | |
|         for (int i = SPEC_VOCAB_CHECK_START_TOKEN_ID; i < std::min(n_vocab_tgt, n_vocab_dft); ++i) {
 | |
|             const char * token_text_tgt = llama_vocab_get_text(vocab_tgt, i);
 | |
|             const char * token_text_dft = llama_vocab_get_text(vocab_dft, i);
 | |
|             if (std::strcmp(token_text_tgt, token_text_dft) != 0) {
 | |
|                 LOG_ERR("%s: draft model vocab must match target model to use speculation but ", __func__);
 | |
|                 LOG_ERR("token %d content differs - target '%s', draft '%s'\n", i,
 | |
|                         common_token_to_piece(ctx_tgt, i).c_str(),
 | |
|                         common_token_to_piece(ctx_dft, i).c_str());
 | |
|                 return 1;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
| 
 | |
|     // Tokenize the prompt
 | |
|     std::vector<llama_token> inp;
 | |
|     inp = common_tokenize(ctx_tgt, params.prompt, true, true);
 | |
| 
 | |
|     const int max_context_size     = llama_n_ctx(ctx_tgt);
 | |
|     const int max_tokens_list_size = max_context_size - 4;
 | |
| 
 | |
|     if ((int) inp.size() > max_tokens_list_size) {
 | |
|         LOG_ERR("%s: prompt too long (%d tokens, max %d)\n", __func__, (int) inp.size(), max_tokens_list_size);
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     LOG("\n\n");
 | |
| 
 | |
|     for (auto id : inp) {
 | |
|         LOG("%s", common_token_to_piece(ctx_tgt, id).c_str());
 | |
|     }
 | |
| 
 | |
|     const int n_input = inp.size();
 | |
| 
 | |
|     const auto t_enc_start = ggml_time_us();
 | |
| 
 | |
|     // eval the prompt with both models
 | |
|     llama_decode(ctx_tgt, llama_batch_get_one( inp.data(), n_input - 1));
 | |
|     llama_decode(ctx_tgt, llama_batch_get_one(&inp.back(),           1));
 | |
|     llama_decode(ctx_dft, llama_batch_get_one( inp.data(), n_input));
 | |
| 
 | |
|     const auto t_enc_end = ggml_time_us();
 | |
| 
 | |
|     // the 2 models should have the same vocab
 | |
|     //GGML_ASSERT(n_vocab == llama_vocab_n_tokens(model_dft));
 | |
| 
 | |
|     // how many tokens to draft each time
 | |
|     int n_draft = params.speculative.n_max;
 | |
| 
 | |
|     int n_predict = 0;
 | |
|     int n_drafted = 0;
 | |
|     int n_accept  = 0;
 | |
| 
 | |
|     int n_past_tgt = inp.size();
 | |
|     int n_past_dft = inp.size();
 | |
| 
 | |
|     // used to determine end of generation
 | |
|     bool has_eos = false;
 | |
| 
 | |
|     // target model sampling context (reuse the llama_context's sampling instance)
 | |
|     struct common_sampler * smpl = common_sampler_init(model_tgt, params.sampling);
 | |
| 
 | |
|     // draft sequence data
 | |
|     std::vector<seq_draft> drafts(n_seq_dft);
 | |
| 
 | |
|     for (int s = 0; s < n_seq_dft; ++s) {
 | |
|         // allocate llama_sampler for each draft sequence
 | |
|         drafts[s].smpl = common_sampler_init(model_dft, params.sampling);
 | |
|     }
 | |
| 
 | |
|     llama_batch batch_dft = llama_batch_init(llama_n_batch(ctx_dft), 0, 1);
 | |
|     llama_batch batch_tgt = llama_batch_init(llama_n_batch(ctx_tgt), 0, n_seq_dft);
 | |
| 
 | |
|     const auto t_dec_start = ggml_time_us();
 | |
| 
 | |
|     // sample from the last token of the prompt
 | |
|     drafts[0].i_batch_tgt.resize(1);
 | |
|     drafts[0].i_batch_tgt[0] = 0;
 | |
| 
 | |
|     while (true) {
 | |
|         std::set<int> active_seqs = {};
 | |
| 
 | |
|         // print current draft sequences
 | |
|         for (int s = 0; s < n_seq_dft; ++s) {
 | |
|             if (!drafts[s].active) {
 | |
|                 continue;
 | |
|             }
 | |
| 
 | |
|             active_seqs.insert(s);
 | |
|             const auto & tokens = drafts[s].tokens;
 | |
| 
 | |
|             LOG_DBG("draft %d: %s\n", s, string_from(ctx_dft, tokens).c_str());
 | |
|         }
 | |
| 
 | |
|         int i_dft  = 0;
 | |
|         int s_keep = 0;
 | |
| 
 | |
|         llama_token token_id;
 | |
|         std::string token_str;
 | |
| 
 | |
|         // loop until we fail to accept a drafted token or we run out of drafted tokens
 | |
|         while (true) {
 | |
| 
 | |
|             // check if the target token matches any of the drafts
 | |
|             // for stochastic sampling, attempt to match the token with the drafted tokens
 | |
|             {
 | |
|                 bool accept = false;
 | |
|                 if (params.sampling.temp > 0) {
 | |
|                     // stochastic verification
 | |
|                     common_sampler_sample(smpl, ctx_tgt, drafts[s_keep].i_batch_tgt[i_dft], true);
 | |
| 
 | |
|                     auto & dist_tgt = *common_sampler_get_candidates(smpl);
 | |
| 
 | |
|                     float p_tgt = 0.0f;
 | |
|                     float p_dft = 0.0f;
 | |
| 
 | |
|                     while (active_seqs.size() > 0) {
 | |
|                         // randomly select a sequence to verify from active sequences
 | |
|                         std::uniform_int_distribution<unsigned int> u_int_dist(0, active_seqs.size() - 1);
 | |
|                         int s = *std::next(active_seqs.begin(), u_int_dist(rng));
 | |
|                         if (i_dft >= (int) drafts[s].tokens.size()) {
 | |
|                             drafts[s].active = false;
 | |
|                             active_seqs.erase(s);
 | |
|                             continue;
 | |
|                         }
 | |
|                         if (accept) {
 | |
|                             // if we already accepted a token, we can skip the rest
 | |
|                             if (drafts[s].tokens[i_dft] != drafts[s_keep].tokens[i_dft]) {
 | |
|                                 drafts[s].active = false;
 | |
|                                 active_seqs.erase(s);
 | |
|                             }
 | |
|                             continue;
 | |
|                         }
 | |
| 
 | |
|                         LOG_DBG("verifying sequence #%d at pos #%d from %d active sequence(s)\n", s, i_dft, (int) active_seqs.size());
 | |
|                         float r = u_dist(rng);
 | |
|                         llama_token_data_array dist_dft = { drafts[s].dists[i_dft].data() , drafts[s].dists[i_dft].size(), LLAMA_TOKEN_NULL, true };
 | |
| 
 | |
|                         //GGML_ASSERT(dist_tgt.size <= dist_dft.size);
 | |
| 
 | |
|                         // acquire the token probabilities assigned by the draft and target models
 | |
|                         for (size_t i = 0; i < dist_tgt.size; i++) {
 | |
|                             if (dist_tgt.data[i].id == drafts[s].tokens[i_dft]) {
 | |
|                                 p_tgt = dist_tgt.data[i].p;
 | |
|                                 break;
 | |
|                             }
 | |
|                         }
 | |
|                         for (size_t i = 0; i < dist_dft.size; i++) {
 | |
|                             if (dist_dft.data[i].id == drafts[s].tokens[i_dft]) {
 | |
|                                 p_dft = dist_dft.data[i].p;
 | |
|                                 break;
 | |
|                             }
 | |
|                         }
 | |
|                         LOG_DBG("r = %f, p_dft = %f, p_tgt = %f\n", r, p_dft, p_tgt);
 | |
|                         if (r <= p_tgt / p_dft) {
 | |
|                             s_keep = s;
 | |
|                             accept = true;
 | |
|                             token_id = drafts[s].tokens[i_dft];
 | |
|                             token_str = common_token_to_piece(ctx_tgt, token_id);
 | |
|                             common_sampler_accept(smpl, token_id, true);
 | |
| 
 | |
|                             LOG_DBG("draft token %d of sequence %d (%d, '%s') accepted\n", i_dft, s, token_id, token_str.c_str());
 | |
|                             break;
 | |
|                         } else {
 | |
|                             LOG_DBG("draft token %d of sequence %d (%d, '%s') rejected\n", i_dft, s, drafts[s].tokens[i_dft], common_token_to_piece(ctx_tgt, drafts[s].tokens[i_dft]).c_str());
 | |
|                             drafts[s].active = false;
 | |
| 
 | |
|                             // calculate residual probability
 | |
|                             GGML_ASSERT(dist_tgt.sorted);
 | |
|                             GGML_ASSERT(dist_dft.sorted);
 | |
| 
 | |
|                             // sort dist by id
 | |
|                             std::sort(dist_tgt.data, dist_tgt.data + dist_tgt.size, [](const llama_token_data &a, const llama_token_data &b) {
 | |
|                                 return a.id < b.id;
 | |
|                             });
 | |
|                             std::sort(dist_dft.data, dist_dft.data + dist_dft.size, [](const llama_token_data &a, const llama_token_data &b) {
 | |
|                                 return a.id < b.id;
 | |
|                             });
 | |
| 
 | |
|                             float sum_probs = 0.0f;
 | |
| 
 | |
|                             for (size_t i = 0; i < dist_tgt.size; i++) {
 | |
|                                 if (i < dist_dft.size) {
 | |
|                                     dist_tgt.data[i].p = std::max(0.0f, dist_tgt.data[i].p - dist_dft.data[i].p);
 | |
|                                 } else {
 | |
|                                     dist_tgt.data[i].p = std::max(0.0f, dist_tgt.data[i].p);
 | |
|                                 }
 | |
| 
 | |
|                                 sum_probs += dist_tgt.data[i].p;
 | |
|                             }
 | |
| 
 | |
|                             for (size_t i = 0; i < dist_tgt.size; i++) {
 | |
|                                 dist_tgt.data[i].p /= sum_probs;
 | |
|                             }
 | |
| 
 | |
|                             // sort dist_tgt by p desc
 | |
|                             std::sort(dist_tgt.data, dist_tgt.data + dist_tgt.size, [](const llama_token_data &a, const llama_token_data &b) {
 | |
|                                 return a.p > b.p;
 | |
|                             });
 | |
|                         }
 | |
| 
 | |
|                         active_seqs.erase(s);
 | |
|                         for (int i = 0; i < n_seq_dft; i++) {
 | |
|                             if (i == s) {
 | |
|                                 continue;
 | |
|                             }
 | |
|                             if (drafts[i].active && drafts[i].tokens[i_dft] == drafts[s].tokens[i_dft]) {
 | |
|                                 // synchronize active status for sequences with the same drafted token
 | |
|                                 drafts[i].active = drafts[i].active && accept;
 | |
|                                 if (!drafts[i].active) {
 | |
|                                     active_seqs.erase(s);
 | |
|                                 }
 | |
|                             }
 | |
|                         }
 | |
|                     }
 | |
| 
 | |
|                     if (!accept) {
 | |
|                         // all drafted tokens were rejected
 | |
|                         // sample from the target model
 | |
|                         LOG_DBG("all drafted tokens were rejected, sampling from residual distribution\n");
 | |
|                         std::vector<float> probs(dist_tgt.size);
 | |
|                         for (size_t i = 0; i < dist_tgt.size; ++i) {
 | |
|                             probs[i] = dist_tgt.data[i].p;
 | |
|                         }
 | |
| 
 | |
|                         std::discrete_distribution<> dist(probs.begin(), probs.end());
 | |
| 
 | |
|                         const int idx = dist(rng);
 | |
| 
 | |
|                         token_id = dist_tgt.data[idx].id;
 | |
|                         common_sampler_accept(smpl, token_id, true);
 | |
|                         token_str = common_token_to_piece(ctx_tgt, token_id);
 | |
|                     }
 | |
|                 } else {
 | |
|                     // greedy verification
 | |
| 
 | |
|                     // sample from the target model
 | |
|                     LOG_DBG("sampling target: s_keep = %3d, i_dft = %3d, i_batch_tgt = %3d\n", s_keep, i_dft, drafts[s_keep].i_batch_tgt[i_dft]);
 | |
|                     token_id = common_sampler_sample(smpl, ctx_tgt, drafts[s_keep].i_batch_tgt[i_dft]);
 | |
| 
 | |
|                     common_sampler_accept(smpl, token_id, true);
 | |
| 
 | |
|                     token_str = common_token_to_piece(ctx_tgt, token_id);
 | |
| 
 | |
|                     for (int s = 0; s < n_seq_dft; ++s) {
 | |
|                         if (!drafts[s].active) {
 | |
|                             continue;
 | |
|                         }
 | |
| 
 | |
|                         if (i_dft < (int) drafts[s].tokens.size() && token_id == drafts[s].tokens[i_dft]) {
 | |
|                             LOG_DBG("the sampled target token matches the %dth drafted token of sequence %d (%d, '%s') - accepted\n", i_dft, s, token_id, token_str.c_str());
 | |
| 
 | |
|                             s_keep = s;
 | |
|                             accept = true;
 | |
|                         } else {
 | |
|                             drafts[s].active = false;
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
| 
 | |
|                 if (llama_vocab_is_eog(vocab_tgt, token_id)) {
 | |
|                     has_eos = true;
 | |
|                 }
 | |
|                 ++n_predict;
 | |
| 
 | |
|                 if (accept) {
 | |
|                     ++n_accept;
 | |
|                     ++n_past_tgt;
 | |
|                     ++n_past_dft;
 | |
|                     ++i_dft;
 | |
|                     if (params.use_color) {
 | |
|                         // Color token according to its origin sequence
 | |
|                         LOG("\u001b[%dm%s\u001b[37m", (36 - s_keep % 6), token_str.c_str());
 | |
|                     } else {
 | |
|                         LOG("%s", token_str.c_str());
 | |
|                     }
 | |
|                     continue;
 | |
|                 } else {
 | |
|                     LOG("%s", token_str.c_str());
 | |
|                     break;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         {
 | |
|             LOG_DBG("the sampled target token (%d, '%s') did not match, or we ran out of drafted tokens\n", token_id, token_str.c_str());
 | |
| 
 | |
|             // TODO: simplify
 | |
|             {
 | |
|                 LOG_DBG("keeping sequence %d, n_past_tgt = %d, n_past_dft = %d\n", s_keep, n_past_tgt, n_past_dft);
 | |
| 
 | |
|                 llama_kv_self_seq_keep(ctx_dft, s_keep);
 | |
|                 llama_kv_self_seq_cp  (ctx_dft, s_keep, 0, -1, -1);
 | |
|                 llama_kv_self_seq_keep(ctx_dft, 0);
 | |
| 
 | |
|                 llama_kv_self_seq_rm  (ctx_tgt, s_keep, n_past_tgt, -1);
 | |
|                 llama_kv_self_seq_keep(ctx_tgt, s_keep);
 | |
|                 llama_kv_self_seq_cp  (ctx_tgt, s_keep, 0, -1, -1);
 | |
|                 llama_kv_self_seq_keep(ctx_tgt, 0);
 | |
|             }
 | |
| 
 | |
|             for (int s = 0; s < n_seq_dft; ++s) {
 | |
|                 drafts[s].active = false;
 | |
|                 drafts[s].tokens.clear();
 | |
|                 drafts[s].i_batch_tgt.clear();
 | |
|                 drafts[s].dists.clear();
 | |
|             }
 | |
|             // note: will be erased after the speculation phase
 | |
|             drafts[0].tokens.push_back(token_id);
 | |
|             drafts[0].dists.push_back(std::vector<llama_token_data>());
 | |
|             drafts[0].i_batch_tgt.push_back(0);
 | |
| 
 | |
|             common_batch_clear(batch_dft);
 | |
|             common_batch_add  (batch_dft, token_id, n_past_dft, { 0 }, true);
 | |
| 
 | |
|             llama_kv_self_seq_rm(ctx_dft, 0, n_past_dft, -1);
 | |
|             // LOG_DBG("dft batch: %s\n", LOG_BATCH_TOSTR_PRETTY(ctx_dft, batch_dft).c_str());
 | |
|             llama_decode(ctx_dft, batch_dft);
 | |
| 
 | |
|             ++n_past_dft;
 | |
|         }
 | |
| 
 | |
|         if ((params.n_predict >= 0 && n_predict > params.n_predict) || has_eos) {
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         if (drafts[0].smpl) {
 | |
|             common_sampler_free(drafts[0].smpl);
 | |
|         }
 | |
|         drafts[0].smpl = common_sampler_clone(smpl);
 | |
| 
 | |
|         int n_seq_cur  = 1;
 | |
|         int n_past_cur = n_past_dft;
 | |
| 
 | |
|         for (int s = 0; s < n_seq_dft; ++s) {
 | |
|             drafts[s].active   = false;
 | |
|             drafts[s].drafting = false;
 | |
|         }
 | |
|         drafts[0].active      = true;
 | |
|         drafts[0].drafting    = true;
 | |
|         drafts[0].i_batch_dft = 0;
 | |
| 
 | |
|         common_batch_clear(batch_tgt);
 | |
|         common_batch_add  (batch_tgt, drafts[0].tokens[0], n_past_tgt, { 0 }, true);
 | |
| 
 | |
|         // sample n_draft tokens from the draft model using tree-based sampling
 | |
|         for (int i = 0; i < n_draft; ++i) {
 | |
|             batch_dft.n_tokens = 0;
 | |
| 
 | |
|             for (int s = 0; s < n_seq_dft; ++s) {
 | |
|                 drafts[s].skip = false;
 | |
|             }
 | |
| 
 | |
|             for (int s = 0; s < n_seq_dft; ++s) {
 | |
|                 if (!drafts[s].drafting || drafts[s].skip) {
 | |
|                     continue;
 | |
|                 }
 | |
| 
 | |
|                 common_sampler_sample(drafts[s].smpl, ctx_dft, drafts[s].i_batch_dft, true);
 | |
| 
 | |
|                 const auto * cur_p = common_sampler_get_candidates(drafts[s].smpl);
 | |
| 
 | |
|                 for (int k = 0; k < std::min(n_seq_dft + 3, (int) cur_p->size); ++k) {
 | |
|                     LOG_DBG(" - draft candidate %3d for seq %3d, pos %3d: %6d (%8.3f) '%s'\n",
 | |
|                             k, s, i, cur_p->data[k].id, cur_p->data[k].p, common_token_to_piece(ctx_dft, cur_p->data[k].id).c_str());
 | |
|                 }
 | |
| 
 | |
|                 std::vector<int> sa(1, s);
 | |
| 
 | |
|                 // attempt to split the branch if the probability is high enough
 | |
|                 for (int f = 1; f < 8; ++f) {
 | |
|                     if (n_seq_cur < n_seq_dft && cur_p->data[f].p > p_draft_split) {
 | |
|                         LOG_DBG("splitting seq %3d into %3d\n", s, n_seq_cur);
 | |
| 
 | |
|                         llama_kv_self_seq_rm(ctx_dft,    n_seq_cur, -1, -1);
 | |
|                         llama_kv_self_seq_cp(ctx_dft, s, n_seq_cur, -1, -1);
 | |
| 
 | |
|                         // all previous tokens from this branch are now also part of the new branch
 | |
|                         for (int t = 0; t < batch_tgt.n_tokens; ++t) {
 | |
|                             for (int p = 0; p < batch_tgt.n_seq_id[t]; ++p) {
 | |
|                                 if (batch_tgt.seq_id[t][p] == s) {
 | |
|                                     batch_tgt.seq_id[t][batch_tgt.n_seq_id[t]] = n_seq_cur;
 | |
|                                     batch_tgt.n_seq_id[t]++;
 | |
|                                     break;
 | |
|                                 }
 | |
|                             }
 | |
|                         }
 | |
| 
 | |
|                         // copy the draft state
 | |
|                         drafts[n_seq_cur].active   = true;
 | |
|                         drafts[n_seq_cur].drafting = true;
 | |
|                         drafts[n_seq_cur].skip     = true;
 | |
| 
 | |
|                         drafts[n_seq_cur].tokens      = drafts[s].tokens;
 | |
|                         drafts[n_seq_cur].dists       = drafts[s].dists;
 | |
|                         drafts[n_seq_cur].i_batch_dft = drafts[s].i_batch_dft;
 | |
|                         drafts[n_seq_cur].i_batch_tgt = drafts[s].i_batch_tgt;
 | |
| 
 | |
|                         if (drafts[n_seq_cur].smpl) {
 | |
|                             common_sampler_free(drafts[n_seq_cur].smpl);
 | |
|                         }
 | |
|                         drafts[n_seq_cur].smpl = common_sampler_clone(drafts[s].smpl);
 | |
| 
 | |
|                         sa.push_back(n_seq_cur);
 | |
| 
 | |
|                         n_seq_cur++;
 | |
|                     } else {
 | |
|                         break;
 | |
|                     }
 | |
|                 }
 | |
| 
 | |
|                 // add drafted token for each sequence
 | |
|                 for (int is = 0; is < (int) sa.size(); ++is) {
 | |
|                     const llama_token id = cur_p->data[is].id;
 | |
| 
 | |
|                     const int s = sa[is];
 | |
| 
 | |
|                     common_sampler_accept(drafts[s].smpl, id, true);
 | |
| 
 | |
|                     drafts[s].tokens.push_back(id);
 | |
|                     // save cur_p.data into drafts[s].dists
 | |
|                     drafts[s].dists.push_back({cur_p->data, cur_p->data + cur_p->size});
 | |
| 
 | |
|                     // add unique drafted tokens to the target batch
 | |
|                     drafts[s].i_batch_tgt.push_back(batch_tgt.n_tokens);
 | |
| 
 | |
|                     common_batch_add(batch_tgt, id, n_past_tgt + i + 1, { s }, true);
 | |
| 
 | |
|                     // add the token to the batch for batched decoding with the draft model
 | |
|                     drafts[s].i_batch_dft = batch_dft.n_tokens;
 | |
| 
 | |
|                     common_batch_add(batch_dft, id, n_past_cur, { s }, true);
 | |
| 
 | |
|                     if (batch_tgt.n_tokens > n_draft) {
 | |
|                         drafts[s].drafting = false;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             // no sequence is drafting anymore
 | |
|             if (batch_dft.n_tokens == 0) {
 | |
|                 break;
 | |
|             }
 | |
| 
 | |
|             // evaluate the drafted tokens on the draft model
 | |
|             llama_decode(ctx_dft, batch_dft);
 | |
|             ++n_past_cur;
 | |
|             ++n_drafted;
 | |
| 
 | |
|             if (batch_tgt.n_tokens > n_draft) {
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // evaluate the target model on the drafted tokens
 | |
|         {
 | |
|             llama_kv_self_seq_keep(ctx_tgt, 0);
 | |
|             for (int s = 1; s < n_seq_dft; ++s) {
 | |
|                 llama_kv_self_seq_cp(ctx_tgt, 0, s, -1, -1);
 | |
|             }
 | |
| 
 | |
|             // LOG_DBG("target batch: %s\n", LOG_BATCH_TOSTR_PRETTY(ctx_tgt, batch_tgt).c_str());
 | |
|             llama_decode(ctx_tgt, batch_tgt);
 | |
|             ++n_past_tgt;
 | |
|         }
 | |
| 
 | |
|         // the first token is always proposed by the target model before the speculation loop so we erase it here
 | |
|         for (int s = 0; s < n_seq_dft; ++s) {
 | |
|             if (!drafts[s].active) {
 | |
|                 continue;
 | |
|             }
 | |
| 
 | |
|             drafts[s].tokens.erase(drafts[s].tokens.begin());
 | |
|             drafts[s].dists.erase(drafts[s].dists.begin());
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     auto t_dec_end = ggml_time_us();
 | |
| 
 | |
|     LOG("\n\n");
 | |
| 
 | |
|     LOG_INF("encoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_input,   (t_enc_end - t_enc_start) / 1e6f, inp.size() / ((t_enc_end - t_enc_start) / 1e6f));
 | |
|     LOG_INF("decoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_predict, (t_dec_end - t_dec_start) / 1e6f, n_predict  / ((t_dec_end - t_dec_start) / 1e6f));
 | |
| 
 | |
|     LOG_INF("\n");
 | |
|     LOG_INF("n_draft   = %d\n", n_draft);
 | |
|     LOG_INF("n_predict = %d\n", n_predict);
 | |
|     LOG_INF("n_drafted = %d\n", n_drafted);
 | |
|     LOG_INF("n_accept  = %d\n", n_accept);
 | |
|     LOG_INF("accept    = %.3f%%\n", 100.0f * n_accept / n_drafted);
 | |
| 
 | |
|     LOG_INF("\n");
 | |
|     LOG_INF("draft:\n\n");
 | |
|     // TODO: print sampling/grammar timings for all drafts
 | |
|     llama_perf_context_print(ctx_dft);
 | |
| 
 | |
|     LOG_INF("\n");
 | |
|     LOG_INF("target:\n\n");
 | |
|     common_perf_print(ctx_tgt, smpl);
 | |
| 
 | |
|     common_sampler_free(smpl);
 | |
|     for (int s = 0; s < n_seq_dft; ++s) {
 | |
|         common_sampler_free(drafts[s].smpl);
 | |
|     }
 | |
| 
 | |
|     llama_batch_free(batch_dft);
 | |
| 
 | |
|     llama_backend_free();
 | |
| 
 | |
|     LOG("\n\n");
 | |
| 
 | |
|     return 0;
 | |
| }
 |