mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-29 08:41:22 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			916 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			916 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #pragma once
 | |
| 
 | |
| #include "common.h"
 | |
| #include "log.h"
 | |
| #include "llama.h"
 | |
| #include "base64.hpp"
 | |
| 
 | |
| // increase max payload length to allow use of larger context size
 | |
| #define CPPHTTPLIB_FORM_URL_ENCODED_PAYLOAD_MAX_LENGTH 1048576
 | |
| // disable Nagle's algorithm
 | |
| #define CPPHTTPLIB_TCP_NODELAY true
 | |
| #include "httplib.h"
 | |
| 
 | |
| // Change JSON_ASSERT from assert() to GGML_ASSERT:
 | |
| #define JSON_ASSERT GGML_ASSERT
 | |
| #include "json.hpp"
 | |
| #include "chat.h"
 | |
| 
 | |
| #include <random>
 | |
| #include <sstream>
 | |
| #include <string>
 | |
| #include <vector>
 | |
| #include <memory>
 | |
| 
 | |
| #define DEFAULT_OAICOMPAT_MODEL "gpt-3.5-turbo"
 | |
| 
 | |
| using json = nlohmann::ordered_json;
 | |
| 
 | |
| #define SLT_INF(slot, fmt, ...) LOG_INF("slot %12.*s: id %2d | task %d | " fmt, 12, __func__, (slot).id, (slot).id_task, __VA_ARGS__)
 | |
| #define SLT_WRN(slot, fmt, ...) LOG_WRN("slot %12.*s: id %2d | task %d | " fmt, 12, __func__, (slot).id, (slot).id_task, __VA_ARGS__)
 | |
| #define SLT_ERR(slot, fmt, ...) LOG_ERR("slot %12.*s: id %2d | task %d | " fmt, 12, __func__, (slot).id, (slot).id_task, __VA_ARGS__)
 | |
| #define SLT_DBG(slot, fmt, ...) LOG_DBG("slot %12.*s: id %2d | task %d | " fmt, 12, __func__, (slot).id, (slot).id_task, __VA_ARGS__)
 | |
| 
 | |
| #define SRV_INF(fmt, ...) LOG_INF("srv  %12.*s: " fmt, 12, __func__, __VA_ARGS__)
 | |
| #define SRV_WRN(fmt, ...) LOG_WRN("srv  %12.*s: " fmt, 12, __func__, __VA_ARGS__)
 | |
| #define SRV_ERR(fmt, ...) LOG_ERR("srv  %12.*s: " fmt, 12, __func__, __VA_ARGS__)
 | |
| #define SRV_DBG(fmt, ...) LOG_DBG("srv  %12.*s: " fmt, 12, __func__, __VA_ARGS__)
 | |
| 
 | |
| #define QUE_INF(fmt, ...) LOG_INF("que  %12.*s: " fmt, 12, __func__, __VA_ARGS__)
 | |
| #define QUE_WRN(fmt, ...) LOG_WRN("que  %12.*s: " fmt, 12, __func__, __VA_ARGS__)
 | |
| #define QUE_ERR(fmt, ...) LOG_ERR("que  %12.*s: " fmt, 12, __func__, __VA_ARGS__)
 | |
| #define QUE_DBG(fmt, ...) LOG_DBG("que  %12.*s: " fmt, 12, __func__, __VA_ARGS__)
 | |
| 
 | |
| template <typename T>
 | |
| static T json_value(const json & body, const std::string & key, const T & default_value) {
 | |
|     // Fallback null to default value
 | |
|     if (body.contains(key) && !body.at(key).is_null()) {
 | |
|         try {
 | |
|             return body.at(key);
 | |
|         } catch (NLOHMANN_JSON_NAMESPACE::detail::type_error const &) {
 | |
|             LOG_WRN("Wrong type supplied for parameter '%s'. Expected '%s', using default value\n", key.c_str(), json(default_value).type_name());
 | |
|             return default_value;
 | |
|         }
 | |
|     } else {
 | |
|         return default_value;
 | |
|     }
 | |
| }
 | |
| 
 | |
| const static std::string build_info("b" + std::to_string(LLAMA_BUILD_NUMBER) + "-" + LLAMA_COMMIT);
 | |
| 
 | |
| // thin wrapper around common_grammar_trigger with (de)serialization functions
 | |
| struct server_grammar_trigger {
 | |
|     common_grammar_trigger value;
 | |
| 
 | |
|     server_grammar_trigger() = default;
 | |
|     server_grammar_trigger(const common_grammar_trigger & value) : value(value) {}
 | |
|     server_grammar_trigger(const json & in) {
 | |
|         value.type = (common_grammar_trigger_type) in.at("type").get<int>();
 | |
|         value.value = in.at("value").get<std::string>();
 | |
|         if (value.type == COMMON_GRAMMAR_TRIGGER_TYPE_TOKEN) {
 | |
|             value.token = (llama_token) in.at("token").get<int>();
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     json to_json() const {
 | |
|         json out {
 | |
|             {"type", (int) value.type},
 | |
|             {"value", value.value},
 | |
|         };
 | |
|         if (value.type == COMMON_GRAMMAR_TRIGGER_TYPE_TOKEN) {
 | |
|             out["token"] = (int) value.token;
 | |
|         }
 | |
|         return out;
 | |
|     }
 | |
| };
 | |
| 
 | |
| //
 | |
| // tokenizer and input processing utils
 | |
| //
 | |
| 
 | |
| static bool json_is_array_of_numbers(const json & data) {
 | |
|     if (data.is_array()) {
 | |
|         for (const auto & e : data) {
 | |
|             if (!e.is_number_integer()) {
 | |
|                 return false;
 | |
|             }
 | |
|         }
 | |
|         return true;
 | |
|     }
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| // is array having BOTH numbers & strings?
 | |
| static bool json_is_array_of_mixed_numbers_strings(const json & data) {
 | |
|     bool seen_string = false;
 | |
|     bool seen_number = false;
 | |
|     if (data.is_array()) {
 | |
|         for (const auto & e : data) {
 | |
|             seen_string |= e.is_string();
 | |
|             seen_number |= e.is_number_integer();
 | |
|             if (seen_number && seen_string) {
 | |
|                 return true;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| // get value by path(key1 / key2)
 | |
| static json json_get_nested_values(const std::vector<std::string> & paths, const json & js) {
 | |
|     json result = json::object();
 | |
| 
 | |
|     for (const std::string & path : paths) {
 | |
|         json current = js;
 | |
|         const auto keys = string_split<std::string>(path, /*separator*/ '/');
 | |
|         bool valid_path = true;
 | |
|         for (const std::string & k : keys) {
 | |
|             if (valid_path && current.is_object() && current.contains(k)) {
 | |
|                 current = current[k];
 | |
|             } else {
 | |
|                 valid_path = false;
 | |
|             }
 | |
|         }
 | |
|         if (valid_path) {
 | |
|             result[path] = current;
 | |
|         }
 | |
|     }
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * this handles 2 cases:
 | |
|  * - only string, example: "string"
 | |
|  * - mixed string and tokens, example: [12, 34, "string", 56, 78]
 | |
|  */
 | |
| static llama_tokens tokenize_mixed(const llama_vocab * vocab, const json & json_prompt, bool add_special, bool parse_special) {
 | |
|     // If `add_bos` is true, we only add BOS, when json_prompt is a string,
 | |
|     // or the first element of the json_prompt array is a string.
 | |
|     llama_tokens prompt_tokens;
 | |
| 
 | |
|     if (json_prompt.is_array()) {
 | |
|         bool first = true;
 | |
|         for (const auto & p : json_prompt) {
 | |
|             if (p.is_string()) {
 | |
|                 auto s = p.template get<std::string>();
 | |
| 
 | |
|                 llama_tokens p;
 | |
|                 if (first) {
 | |
|                     p = common_tokenize(vocab, s, add_special, parse_special);
 | |
|                     first = false;
 | |
|                 } else {
 | |
|                     p = common_tokenize(vocab, s, false, parse_special);
 | |
|                 }
 | |
| 
 | |
|                 prompt_tokens.insert(prompt_tokens.end(), p.begin(), p.end());
 | |
|             } else {
 | |
|                 if (first) {
 | |
|                     first = false;
 | |
|                 }
 | |
| 
 | |
|                 prompt_tokens.push_back(p.template get<llama_token>());
 | |
|             }
 | |
|         }
 | |
|     } else {
 | |
|         auto s = json_prompt.template get<std::string>();
 | |
|         prompt_tokens = common_tokenize(vocab, s, add_special, parse_special);
 | |
|     }
 | |
| 
 | |
|     return prompt_tokens;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * break the input "prompt" object into multiple prompt if needed, then tokenize them
 | |
|  * this supports these cases:
 | |
|  * - "prompt": "string"
 | |
|  * - "prompt": [12, 34, 56]
 | |
|  * - "prompt": [12, 34, "string", 56, 78]
 | |
|  * and multiple prompts (multi-tasks):
 | |
|  * - "prompt": ["string1", "string2"]
 | |
|  * - "prompt": ["string1", [12, 34, 56]]
 | |
|  * - "prompt": [[12, 34, 56], [78, 90, 12]]
 | |
|  * - "prompt": [[12, 34, "string", 56, 78], [12, 34, 56]]
 | |
|  */
 | |
| static std::vector<llama_tokens> tokenize_input_prompts(const llama_vocab * vocab, const json & json_prompt, bool add_special, bool parse_special) {
 | |
|     std::vector<llama_tokens> result;
 | |
|     if (json_prompt.is_string() || json_is_array_of_mixed_numbers_strings(json_prompt)) {
 | |
|         // string or mixed
 | |
|         result.push_back(tokenize_mixed(vocab, json_prompt, add_special, parse_special));
 | |
|     } else if (json_is_array_of_numbers(json_prompt)) {
 | |
|         // array of tokens
 | |
|         result.push_back(json_prompt.get<llama_tokens>());
 | |
|     } else if (json_prompt.is_array()) {
 | |
|         // array of prompts
 | |
|         result.reserve(json_prompt.size());
 | |
|         for (const auto & p : json_prompt) {
 | |
|             if (p.is_string() || json_is_array_of_mixed_numbers_strings(p)) {
 | |
|                 result.push_back(tokenize_mixed(vocab, p, add_special, parse_special));
 | |
|             } else if (json_is_array_of_numbers(p)) {
 | |
|                 // array of tokens
 | |
|                 result.push_back(p.get<llama_tokens>());
 | |
|             } else {
 | |
|                 throw std::runtime_error("element of \"prompt\" must be a string, an list of tokens, or a list of mixed strings & tokens");
 | |
|             }
 | |
|         }
 | |
|     } else {
 | |
|         throw std::runtime_error("\"prompt\" must be a string, an list of tokens, a list of mixed strings & tokens, or a list of prompts");
 | |
|     }
 | |
|     if (result.empty()) {
 | |
|         throw std::runtime_error("\"prompt\" must not be empty");
 | |
|     }
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| // return the last index of character that can form a valid string
 | |
| // if the last character is potentially cut in half, return the index before the cut
 | |
| // if validate_utf8(text) == text.size(), then the whole text is valid utf8
 | |
| static size_t validate_utf8(const std::string& text) {
 | |
|     size_t len = text.size();
 | |
|     if (len == 0) return 0;
 | |
| 
 | |
|     // Check the last few bytes to see if a multi-byte character is cut off
 | |
|     for (size_t i = 1; i <= 4 && i <= len; ++i) {
 | |
|         unsigned char c = text[len - i];
 | |
|         // Check for start of a multi-byte sequence from the end
 | |
|         if ((c & 0xE0) == 0xC0) {
 | |
|             // 2-byte character start: 110xxxxx
 | |
|             // Needs at least 2 bytes
 | |
|             if (i < 2) return len - i;
 | |
|         } else if ((c & 0xF0) == 0xE0) {
 | |
|             // 3-byte character start: 1110xxxx
 | |
|             // Needs at least 3 bytes
 | |
|             if (i < 3) return len - i;
 | |
|         } else if ((c & 0xF8) == 0xF0) {
 | |
|             // 4-byte character start: 11110xxx
 | |
|             // Needs at least 4 bytes
 | |
|             if (i < 4) return len - i;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // If no cut-off multi-byte character is found, return full length
 | |
|     return len;
 | |
| }
 | |
| 
 | |
| //
 | |
| // template utils
 | |
| //
 | |
| 
 | |
| // format rerank task: [BOS]query[EOS][SEP]doc[EOS]
 | |
| static llama_tokens format_rerank(const struct llama_vocab * vocab, const llama_tokens & query, const llama_tokens & doc) {
 | |
|     llama_tokens result;
 | |
| 
 | |
|     result.reserve(doc.size() + query.size() + 4);
 | |
|     result.push_back(llama_vocab_bos(vocab));
 | |
|     result.insert(result.end(), query.begin(), query.end());
 | |
|     result.push_back(llama_vocab_eos(vocab));
 | |
|     result.push_back(llama_vocab_sep(vocab));
 | |
|     result.insert(result.end(), doc.begin(), doc.end());
 | |
|     result.push_back(llama_vocab_eos(vocab));
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| // format infill task
 | |
| static llama_tokens format_infill(
 | |
|         const llama_vocab * vocab,
 | |
|         const json & input_prefix,
 | |
|         const json & input_suffix,
 | |
|         const json & input_extra,
 | |
|         const int n_batch,
 | |
|         const int n_predict,
 | |
|         const int n_ctx,
 | |
|         const bool spm_infill,
 | |
|         const llama_tokens & tokens_prompt
 | |
|     ) {
 | |
|     // TODO: optimize this block by reducing memory allocations and movement
 | |
| 
 | |
|     // use FIM repo-level pattern:
 | |
|     // ref: https://arxiv.org/pdf/2409.12186
 | |
|     //
 | |
|     // [FIM_REP]myproject
 | |
|     // [FIM_SEP]filename0
 | |
|     // extra chunk 0
 | |
|     // [FIM_SEP]filename1
 | |
|     // extra chunk 1
 | |
|     // ...
 | |
|     // [FIM_SEP]filename
 | |
|     // [FIM_PRE]prefix[FIM_SUF]suffix[FIM_MID]prompt
 | |
|     //
 | |
|     llama_tokens extra_tokens;
 | |
|     extra_tokens.reserve(n_ctx);
 | |
| 
 | |
|     auto tokens_prefix = tokenize_mixed(vocab, input_prefix, false, false);
 | |
|     auto tokens_suffix = tokenize_mixed(vocab, input_suffix, false, false);
 | |
| 
 | |
|     if (llama_vocab_fim_rep(vocab) != LLAMA_TOKEN_NULL) {
 | |
|         // TODO: make project name an input
 | |
|         static const auto k_fim_repo = common_tokenize(vocab, "myproject\n", false, false);
 | |
| 
 | |
|         extra_tokens.push_back(llama_vocab_fim_rep(vocab));
 | |
|         extra_tokens.insert(extra_tokens.end(), k_fim_repo.begin(), k_fim_repo.end());
 | |
|     }
 | |
|     for (const auto & chunk : input_extra) {
 | |
|         // { "text": string, "filename": string }
 | |
|         const std::string text     = json_value(chunk, "text",     std::string());
 | |
|         const std::string filename = json_value(chunk, "filename", std::string("tmp"));
 | |
| 
 | |
|         if (llama_vocab_fim_sep(vocab) != LLAMA_TOKEN_NULL) {
 | |
|             const auto k_fim_file = common_tokenize(vocab, filename + "\n", false, false);
 | |
| 
 | |
|             extra_tokens.insert(extra_tokens.end(), llama_vocab_fim_sep(vocab));
 | |
|             extra_tokens.insert(extra_tokens.end(), k_fim_file.begin(), k_fim_file.end());
 | |
|         } else {
 | |
|             // chunk separator in binary form to avoid confusing the AI
 | |
|             static const char k_chunk_prefix_str[] = {0x0a, 0x0a, 0x2d, 0x2d, 0x2d, 0x20, 0x73, 0x6e, 0x69, 0x70, 0x70, 0x65, 0x74, 0x20, 0x2d, 0x2d, 0x2d, 0x0a, 0x0a, 0x00};
 | |
|             static const auto k_chunk_prefix_tokens = common_tokenize(vocab, k_chunk_prefix_str, false, false);
 | |
| 
 | |
|             extra_tokens.insert(extra_tokens.end(), k_chunk_prefix_tokens.begin(), k_chunk_prefix_tokens.end());
 | |
|         }
 | |
| 
 | |
|         const auto chunk_tokens = common_tokenize(vocab, text, false, false);
 | |
|         extra_tokens.insert(extra_tokens.end(), chunk_tokens.begin(), chunk_tokens.end());
 | |
|     }
 | |
| 
 | |
|     if (llama_vocab_fim_sep(vocab) != LLAMA_TOKEN_NULL) {
 | |
|         // TODO: current filename
 | |
|         static const auto k_fim_file = common_tokenize(vocab, "filename\n", false, false);
 | |
| 
 | |
|         extra_tokens.insert(extra_tokens.end(), llama_vocab_fim_sep(vocab));
 | |
|         extra_tokens.insert(extra_tokens.end(), k_fim_file.begin(), k_fim_file.end());
 | |
|     }
 | |
| 
 | |
|     // for now pick FIM context to fit in a batch (ratio prefix:suffix = 3:1, TODO: configurable?)
 | |
|     const int n_prefix_take = std::min<int>(tokens_prefix.size(),                3*(n_batch/4));
 | |
|     const int n_suffix_take = std::min<int>(tokens_suffix.size(), std::max<int>(0, (n_batch/4) - (2 + tokens_prompt.size())));
 | |
| 
 | |
|     SRV_DBG("n_prefix_take = %d, n_suffix_take = %d, total = %d\n", n_prefix_take, n_suffix_take, (n_prefix_take + n_suffix_take));
 | |
| 
 | |
|     // fill the rest of the context with extra chunks
 | |
|     const int n_extra_take = std::min<int>(std::max<int>(0, n_ctx - (n_batch) - 2*n_predict), extra_tokens.size());
 | |
| 
 | |
|     tokens_prefix.erase(tokens_prefix.begin(), tokens_prefix.begin() + tokens_prefix.size() - n_prefix_take);
 | |
|     tokens_suffix.resize(n_suffix_take);
 | |
| 
 | |
|     tokens_prefix.insert(tokens_prefix.begin(), llama_vocab_fim_pre(vocab));
 | |
|     tokens_prefix.insert(tokens_prefix.end(),   tokens_prompt.begin(), tokens_prompt.end());
 | |
|     tokens_suffix.insert(tokens_suffix.begin(), llama_vocab_fim_suf(vocab));
 | |
| 
 | |
|     auto embd_inp = spm_infill ? tokens_suffix : tokens_prefix;
 | |
|     auto embd_end = spm_infill ? tokens_prefix : tokens_suffix;
 | |
| 
 | |
|     if (llama_vocab_get_add_bos(vocab)) {
 | |
|         embd_inp.insert(embd_inp.begin(), llama_vocab_bos(vocab));
 | |
|     }
 | |
| 
 | |
|     SRV_DBG("extra: n_ctx = %d, n_extra_take = %d, n_extra = %d\n", n_ctx, n_extra_take, (int) extra_tokens.size());
 | |
| 
 | |
|     // put the extra context before the FIM prefix
 | |
|     embd_inp.insert(embd_inp.begin(), extra_tokens.end() - n_extra_take, extra_tokens.end());
 | |
| 
 | |
|     embd_inp.insert(embd_inp.end(), embd_end.begin(), embd_end.end());
 | |
|     embd_inp.push_back(llama_vocab_fim_mid(vocab));
 | |
| 
 | |
|     return embd_inp;
 | |
| }
 | |
| 
 | |
| //
 | |
| // base64 utils (TODO: move to common in the future)
 | |
| //
 | |
| 
 | |
| static const std::string base64_chars =
 | |
|              "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
 | |
|              "abcdefghijklmnopqrstuvwxyz"
 | |
|              "0123456789+/";
 | |
| 
 | |
| static inline bool is_base64(uint8_t c) {
 | |
|     return (isalnum(c) || (c == '+') || (c == '/'));
 | |
| }
 | |
| 
 | |
| static inline std::vector<uint8_t> base64_decode(const std::string & encoded_string) {
 | |
|     int i = 0;
 | |
|     int j = 0;
 | |
|     int in_ = 0;
 | |
| 
 | |
|     int in_len = encoded_string.size();
 | |
| 
 | |
|     uint8_t char_array_4[4];
 | |
|     uint8_t char_array_3[3];
 | |
| 
 | |
|     std::vector<uint8_t> ret;
 | |
| 
 | |
|     while (in_len-- && (encoded_string[in_] != '=') && is_base64(encoded_string[in_])) {
 | |
|         char_array_4[i++] = encoded_string[in_]; in_++;
 | |
|         if (i == 4) {
 | |
|             for (i = 0; i < 4; i++) {
 | |
|                 char_array_4[i] = base64_chars.find(char_array_4[i]);
 | |
|             }
 | |
| 
 | |
|             char_array_3[0] = ((char_array_4[0]      ) << 2) + ((char_array_4[1] & 0x30) >> 4);
 | |
|             char_array_3[1] = ((char_array_4[1] & 0xf) << 4) + ((char_array_4[2] & 0x3c) >> 2);
 | |
|             char_array_3[2] = ((char_array_4[2] & 0x3) << 6) +   char_array_4[3];
 | |
| 
 | |
|             for (i = 0; (i < 3); i++) {
 | |
|                 ret.push_back(char_array_3[i]);
 | |
|             }
 | |
| 
 | |
|             i = 0;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (i) {
 | |
|         for (j = i; j < 4; j++) {
 | |
|             char_array_4[j] = 0;
 | |
|         }
 | |
| 
 | |
|         for (j = 0; j < 4; j++) {
 | |
|             char_array_4[j] = base64_chars.find(char_array_4[j]);
 | |
|         }
 | |
| 
 | |
|         char_array_3[0] = ((char_array_4[0]      ) << 2) + ((char_array_4[1] & 0x30) >> 4);
 | |
|         char_array_3[1] = ((char_array_4[1] & 0xf) << 4) + ((char_array_4[2] & 0x3c) >> 2);
 | |
|         char_array_3[2] = ((char_array_4[2] & 0x3) << 6) +   char_array_4[3];
 | |
| 
 | |
|         for (j = 0; j < i - 1; j++) {
 | |
|             ret.push_back(char_array_3[j]);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| //
 | |
| // random string / id
 | |
| //
 | |
| 
 | |
| static std::string random_string() {
 | |
|     static const std::string str("0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz");
 | |
| 
 | |
|     std::random_device rd;
 | |
|     std::mt19937 generator(rd());
 | |
| 
 | |
|     std::string result(32, ' ');
 | |
| 
 | |
|     for (int i = 0; i < 32; ++i) {
 | |
|         result[i] = str[generator() % str.size()];
 | |
|     }
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| static std::string gen_chatcmplid() {
 | |
|     return "chatcmpl-" + random_string();
 | |
| }
 | |
| 
 | |
| static std::string gen_tool_call_id() {
 | |
|     return random_string();
 | |
| }
 | |
| 
 | |
| //
 | |
| // other common utils
 | |
| //
 | |
| 
 | |
| static bool ends_with(const std::string & str, const std::string & suffix) {
 | |
|     return str.size() >= suffix.size() && 0 == str.compare(str.size() - suffix.size(), suffix.size(), suffix);
 | |
| }
 | |
| 
 | |
| static size_t find_partial_stop_string(const std::string &stop, const std::string &text) {
 | |
|     if (!text.empty() && !stop.empty()) {
 | |
|         const char text_last_char = text.back();
 | |
|         for (int64_t char_index = stop.size() - 1; char_index >= 0; char_index--) {
 | |
|             if (stop[char_index] == text_last_char) {
 | |
|                 const std::string current_partial = stop.substr(0, char_index + 1);
 | |
|                 if (ends_with(text, current_partial)) {
 | |
|                     return text.size() - char_index - 1;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return std::string::npos;
 | |
| }
 | |
| 
 | |
| // TODO: reuse llama_detokenize
 | |
| template <class Iter>
 | |
| static std::string tokens_to_str(llama_context * ctx, Iter begin, Iter end) {
 | |
|     std::string ret;
 | |
|     for (; begin != end; ++begin) {
 | |
|         ret += common_token_to_piece(ctx, *begin);
 | |
|     }
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| // format incomplete utf-8 multibyte character for output
 | |
| static std::string tokens_to_output_formatted_string(const llama_context * ctx, const llama_token token) {
 | |
|     std::string out = token == LLAMA_TOKEN_NULL ? "" : common_token_to_piece(ctx, token);
 | |
| 
 | |
|     // if the size is 1 and first bit is 1, meaning it's a partial character
 | |
|     //   (size > 1 meaning it's already a known token)
 | |
|     if (out.size() == 1 && (out[0] & 0x80) == 0x80) {
 | |
|         std::stringstream ss;
 | |
|         ss << std::hex << (out[0] & 0xff);
 | |
|         std::string res(ss.str());
 | |
|         out = "byte: \\x" + res;
 | |
|     }
 | |
| 
 | |
|     return out;
 | |
| }
 | |
| 
 | |
| static bool server_sent_event(httplib::DataSink & sink, const char * event, const json & data) {
 | |
|     const std::string str =
 | |
|         std::string(event) + ": " +
 | |
|         data.dump(-1, ' ', false, json::error_handler_t::replace) +
 | |
|         "\n\n"; // required by RFC 8895 - A message is terminated by a blank line (two line terminators in a row).
 | |
| 
 | |
|     LOG_DBG("data stream, to_send: %s", str.c_str());
 | |
| 
 | |
|     return sink.write(str.c_str(), str.size());
 | |
| }
 | |
| 
 | |
| //
 | |
| // OAI utils
 | |
| //
 | |
| 
 | |
| static json oaicompat_completion_params_parse(const json & body) {
 | |
|     json llama_params;
 | |
| 
 | |
|     if (!body.contains("prompt")) {
 | |
|         throw std::runtime_error("\"prompt\" is required");
 | |
|     }
 | |
| 
 | |
|     // Handle "stop" field
 | |
|     if (body.contains("stop") && body.at("stop").is_string()) {
 | |
|         llama_params["stop"] = json::array({body.at("stop").get<std::string>()});
 | |
|     } else {
 | |
|         llama_params["stop"] = json_value(body, "stop", json::array());
 | |
|     }
 | |
| 
 | |
|     // Handle "n" field
 | |
|     int n_choices = json_value(body, "n", 1);
 | |
|     if (n_choices != 1) {
 | |
|         throw std::runtime_error("Only one completion choice is allowed");
 | |
|     }
 | |
| 
 | |
|     // Handle "echo" field
 | |
|     if (json_value(body, "echo", false)) {
 | |
|         throw std::runtime_error("Only no echo is supported");
 | |
|     }
 | |
| 
 | |
|     // Params supported by OAI but unsupported by llama.cpp
 | |
|     static const std::vector<std::string> unsupported_params { "best_of", "suffix" };
 | |
|     for (const auto & param : unsupported_params) {
 | |
|         if (body.contains(param)) {
 | |
|             throw std::runtime_error("Unsupported param: " + param);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Copy remaining properties to llama_params
 | |
|     for (const auto & item : body.items()) {
 | |
|         // Exception: if "n_predict" is present, we overwrite the value specified earlier by "max_tokens"
 | |
|         if (!llama_params.contains(item.key()) || item.key() == "n_predict") {
 | |
|             llama_params[item.key()] = item.value();
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return llama_params;
 | |
| }
 | |
| 
 | |
| static json oaicompat_completion_params_parse(
 | |
|     const json & body, /* openai api json semantics */
 | |
|     bool use_jinja,
 | |
|     common_reasoning_format reasoning_format,
 | |
|     const struct common_chat_templates * tmpls)
 | |
| {
 | |
|     json llama_params;
 | |
| 
 | |
|     auto tools = json_value(body, "tools", json());
 | |
|     auto stream = json_value(body, "stream", false);
 | |
| 
 | |
|     if (tools.is_array() && !tools.empty()) {
 | |
|         if (stream) {
 | |
|             throw std::runtime_error("Cannot use tools with stream");
 | |
|         }
 | |
|         if (!use_jinja) {
 | |
|             throw std::runtime_error("tools param requires --jinja flag");
 | |
|         }
 | |
|     }
 | |
|     if (!use_jinja) {
 | |
|         if (body.contains("tool_choice") && !body.at("tool_choice").is_null()) {
 | |
|             throw std::runtime_error("Unsupported param: tool_choice");
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Handle "stop" field
 | |
|     if (body.contains("stop") && body.at("stop").is_string()) {
 | |
|         llama_params["stop"] = json::array({body.at("stop").get<std::string>()});
 | |
|     } else {
 | |
|         llama_params["stop"] = json_value(body, "stop", json::array());
 | |
|     }
 | |
| 
 | |
|     auto json_schema = json_value(body, "json_schema", json());
 | |
|     auto grammar = json_value(body, "grammar", std::string());
 | |
|     if (!json_schema.is_null() && !grammar.empty()) {
 | |
|         throw std::runtime_error("Cannot use both json_schema and grammar");
 | |
|     }
 | |
| 
 | |
|     // Handle "response_format" field
 | |
|     if (body.contains("response_format")) {
 | |
|         json response_format      = json_value(body, "response_format", json::object());
 | |
|         std::string response_type = json_value(response_format, "type", std::string());
 | |
|         if (response_type == "json_object") {
 | |
|             json_schema = json_value(response_format, "schema", json::object());
 | |
|         } else if (response_type == "json_schema") {
 | |
|             auto schema_wrapper = json_value(response_format, "json_schema", json::object());
 | |
|             json_schema = json_value(schema_wrapper, "schema", json::object());
 | |
|         } else if (!response_type.empty() && response_type != "text") {
 | |
|             throw std::runtime_error("response_format type must be one of \"text\" or \"json_object\", but got: " + response_type);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     common_chat_templates_inputs inputs;
 | |
|     inputs.messages              = common_chat_msgs_parse_oaicompat(body.at("messages"));
 | |
|     inputs.tools                 = common_chat_tools_parse_oaicompat(tools);
 | |
|     inputs.tool_choice           = common_chat_tool_choice_parse_oaicompat(json_value(body, "tool_choice", std::string("auto")));
 | |
|     inputs.json_schema           = json_schema.is_null() ? "" : json_schema.dump();
 | |
|     inputs.grammar               = grammar;
 | |
|     inputs.add_generation_prompt = json_value(body, "add_generation_prompt", true);
 | |
|     inputs.use_jinja             = use_jinja;
 | |
|     inputs.parallel_tool_calls   = json_value(body, "parallel_tool_calls", false);
 | |
|     inputs.extract_reasoning     = reasoning_format != COMMON_REASONING_FORMAT_NONE;
 | |
|     inputs.add_generation_prompt = json_value(body, "add_generation_prompt", true);
 | |
|     if (!inputs.tools.empty() && inputs.tool_choice != COMMON_CHAT_TOOL_CHOICE_NONE && body.contains("grammar")) {
 | |
|         throw std::runtime_error("Cannot use custom grammar constraints with tools.");
 | |
|     }
 | |
| 
 | |
|     // Apply chat template to the list of messages
 | |
|     auto chat_params = common_chat_templates_apply(tmpls, inputs);
 | |
| 
 | |
|     llama_params["chat_format"]      = static_cast<int>(chat_params.format);
 | |
|     llama_params["prompt"]           = chat_params.prompt;
 | |
|     if (!chat_params.grammar.empty()) {
 | |
|         llama_params["grammar"] = chat_params.grammar;
 | |
|     }
 | |
|     llama_params["grammar_lazy"]     = chat_params.grammar_lazy;
 | |
|     auto grammar_triggers = json::array();
 | |
|     for (const auto & trigger : chat_params.grammar_triggers) {
 | |
|         server_grammar_trigger ct(trigger);
 | |
|         grammar_triggers.push_back(ct.to_json());
 | |
|     }
 | |
|     llama_params["grammar_triggers"] = grammar_triggers;
 | |
|     llama_params["preserved_tokens"] = chat_params.preserved_tokens;
 | |
|     for (const auto & stop : chat_params.additional_stops) {
 | |
|         llama_params["stop"].push_back(stop);
 | |
|     }
 | |
| 
 | |
|     // Handle "n" field
 | |
|     int n_choices = json_value(body, "n", 1);
 | |
|     if (n_choices != 1) {
 | |
|         throw std::runtime_error("Only one completion choice is allowed");
 | |
|     }
 | |
| 
 | |
|     // Handle "logprobs" field
 | |
|     // TODO: The response format of this option is not yet OAI-compatible, but seems like no one really using it; We may need to fix it in the future
 | |
|     if (json_value(body, "logprobs", false)) {
 | |
|         llama_params["n_probs"] = json_value(body, "top_logprobs", 20);
 | |
|     } else if (body.contains("top_logprobs") && !body.at("top_logprobs").is_null()) {
 | |
|         throw std::runtime_error("top_logprobs requires logprobs to be set to true");
 | |
|     }
 | |
| 
 | |
|     // Copy remaining properties to llama_params
 | |
|     // This allows user to use llama.cpp-specific params like "mirostat", ... via OAI endpoint.
 | |
|     // See "launch_slot_with_task()" for a complete list of params supported by llama.cpp
 | |
|     for (const auto & item : body.items()) {
 | |
|         // Exception: if "n_predict" is present, we overwrite the value specified earlier by "max_tokens"
 | |
|         if (!llama_params.contains(item.key()) || item.key() == "n_predict") {
 | |
|             llama_params[item.key()] = item.value();
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return llama_params;
 | |
| }
 | |
| 
 | |
| static json format_embeddings_response_oaicompat(const json & request, const json & embeddings, bool use_base64 = false) {
 | |
|     json data = json::array();
 | |
|     int32_t n_tokens = 0;
 | |
|     int i = 0;
 | |
|     for (const auto & elem : embeddings) {
 | |
|         json embedding_obj;
 | |
| 
 | |
|         if (use_base64) {
 | |
|             const auto& vec = json_value(elem, "embedding", json::array()).get<std::vector<float>>();
 | |
|             const char* data_ptr = reinterpret_cast<const char*>(vec.data());
 | |
|             size_t data_size = vec.size() * sizeof(float);
 | |
|             embedding_obj = {
 | |
|                 {"embedding", base64::encode(data_ptr, data_size)},
 | |
|                 {"index", i++},
 | |
|                 {"object", "embedding"},
 | |
|                 {"encoding_format", "base64"}
 | |
|             };
 | |
|         } else {
 | |
|             embedding_obj = {
 | |
|                 {"embedding", json_value(elem, "embedding", json::array())},
 | |
|                 {"index", i++},
 | |
|                 {"object", "embedding"}
 | |
|             };
 | |
|         }
 | |
|         data.push_back(embedding_obj);
 | |
| 
 | |
|         n_tokens += json_value(elem, "tokens_evaluated", 0);
 | |
|     }
 | |
| 
 | |
|     json res = json {
 | |
|         {"model", json_value(request, "model", std::string(DEFAULT_OAICOMPAT_MODEL))},
 | |
|         {"object", "list"},
 | |
|         {"usage", json {
 | |
|             {"prompt_tokens", n_tokens},
 | |
|             {"total_tokens", n_tokens}
 | |
|         }},
 | |
|         {"data", data}
 | |
|     };
 | |
| 
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| static json format_response_rerank(
 | |
|         const json & request,
 | |
|         const json & ranks,
 | |
|         bool is_tei_format,
 | |
|         std::vector<std::string> & texts) {
 | |
|     json res;
 | |
|     if (is_tei_format) {
 | |
|         // TEI response format
 | |
|         res = json::array();
 | |
|         bool return_text = json_value(request, "return_text", false);
 | |
|         for (const auto & rank : ranks) {
 | |
|             int index = json_value(rank, "index", 0);
 | |
|             json elem = json{
 | |
|                 {"index", index},
 | |
|                 {"score", json_value(rank, "score", 0.0)},
 | |
|             };
 | |
|             if (return_text) {
 | |
|                 elem["text"] = std::move(texts[index]);
 | |
|             }
 | |
|             res.push_back(elem);
 | |
|         }
 | |
|     } else {
 | |
|         // Jina response format
 | |
|         json results = json::array();
 | |
|         int32_t n_tokens = 0;
 | |
|         for (const auto & rank : ranks) {
 | |
|             results.push_back(json{
 | |
|                 {"index",           json_value(rank, "index", 0)},
 | |
|                 {"relevance_score", json_value(rank, "score", 0.0)},
 | |
|             });
 | |
| 
 | |
|             n_tokens += json_value(rank, "tokens_evaluated", 0);
 | |
|         }
 | |
| 
 | |
|         res = json{
 | |
|             {"model", json_value(request, "model", std::string(DEFAULT_OAICOMPAT_MODEL))},
 | |
|             {"object", "list"},
 | |
|             {"usage", json{
 | |
|                 {"prompt_tokens", n_tokens},
 | |
|                 {"total_tokens", n_tokens}
 | |
|             }},
 | |
|             {"results", results}
 | |
|         };
 | |
|     }
 | |
| 
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| static bool is_valid_utf8(const std::string & str) {
 | |
|     const unsigned char* bytes = reinterpret_cast<const unsigned char*>(str.data());
 | |
|     const unsigned char* end = bytes + str.length();
 | |
| 
 | |
|     while (bytes < end) {
 | |
|         if (*bytes <= 0x7F) {
 | |
|             // 1-byte sequence (0xxxxxxx)
 | |
|             bytes++;
 | |
|         } else if ((*bytes & 0xE0) == 0xC0) {
 | |
|             // 2-byte sequence (110xxxxx 10xxxxxx)
 | |
|             if (end - bytes < 2 || (bytes[1] & 0xC0) != 0x80)
 | |
|                 return false;
 | |
|             bytes += 2;
 | |
|         } else if ((*bytes & 0xF0) == 0xE0) {
 | |
|             // 3-byte sequence (1110xxxx 10xxxxxx 10xxxxxx)
 | |
|             if (end - bytes < 3 || (bytes[1] & 0xC0) != 0x80 || (bytes[2] & 0xC0) != 0x80)
 | |
|                 return false;
 | |
|             bytes += 3;
 | |
|         } else if ((*bytes & 0xF8) == 0xF0) {
 | |
|             // 4-byte sequence (11110xxx 10xxxxxx 10xxxxxx 10xxxxxx)
 | |
|             if (end - bytes < 4 || (bytes[1] & 0xC0) != 0x80 ||
 | |
|                 (bytes[2] & 0xC0) != 0x80 || (bytes[3] & 0xC0) != 0x80)
 | |
|                 return false;
 | |
|             bytes += 4;
 | |
|         } else {
 | |
|             // Invalid UTF-8 lead byte
 | |
|             return false;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| static json format_tokenizer_response(const json & tokens) {
 | |
|     return json {
 | |
|         {"tokens", tokens}
 | |
|     };
 | |
| }
 | |
| 
 | |
| static json format_detokenized_response(const std::string & content) {
 | |
|     return json {
 | |
|         {"content", content}
 | |
|     };
 | |
| }
 | |
| 
 | |
| static json format_logit_bias(const std::vector<llama_logit_bias> & logit_bias) {
 | |
|     json data = json::array();
 | |
|     for (const auto & lb : logit_bias) {
 | |
|         data.push_back(json{
 | |
|             {"bias", lb.bias},
 | |
|             {"token", lb.token},
 | |
|         });
 | |
|     }
 | |
|     return data;
 | |
| }
 | |
| 
 | |
| static std::string safe_json_to_str(const json & data) {
 | |
|     return data.dump(-1, ' ', false, json::error_handler_t::replace);
 | |
| }
 | |
| 
 | |
| static std::vector<llama_token_data> get_token_probabilities(llama_context * ctx, int idx) {
 | |
|     std::vector<llama_token_data> cur;
 | |
|     const auto * logits = llama_get_logits_ith(ctx, idx);
 | |
| 
 | |
|     const llama_model * model = llama_get_model(ctx);
 | |
|     const llama_vocab * vocab = llama_model_get_vocab(model);
 | |
| 
 | |
|     const int n_vocab = llama_vocab_n_tokens(vocab);
 | |
| 
 | |
|     cur.resize(n_vocab);
 | |
|     for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
 | |
|         cur[token_id] = llama_token_data{token_id, logits[token_id], 0.0f};
 | |
|     }
 | |
| 
 | |
|     // sort tokens by logits
 | |
|     std::sort(cur.begin(), cur.end(), [](const llama_token_data & a, const llama_token_data & b) {
 | |
|         return a.logit > b.logit;
 | |
|     });
 | |
| 
 | |
|     // apply softmax
 | |
|     float max_l = cur[0].logit;
 | |
|     float cum_sum = 0.0f;
 | |
|     for (size_t i = 0; i < cur.size(); ++i) {
 | |
|         float p = expf(cur[i].logit - max_l);
 | |
|         cur[i].p = p;
 | |
|         cum_sum += p;
 | |
|     }
 | |
|     for (size_t i = 0; i < cur.size(); ++i) {
 | |
|         cur[i].p /= cum_sum;
 | |
|     }
 | |
| 
 | |
|     return cur;
 | |
| }
 | |
| 
 | |
| static bool are_lora_equal(
 | |
|         const std::vector<common_adapter_lora_info> & l1,
 | |
|         const std::vector<common_adapter_lora_info> & l2) {
 | |
|     if (l1.size() != l2.size()) {
 | |
|         return false;
 | |
|     }
 | |
|     for (size_t i = 0; i < l1.size(); ++i) {
 | |
|         // we don't check lora.path to reduce the time complexity
 | |
|         if (l1[i].scale != l2[i].scale || l1[i].ptr != l2[i].ptr) {
 | |
|             return false;
 | |
|         }
 | |
|     }
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| // parse lora config from JSON request, returned a copy of lora_base with updated scale
 | |
| static std::vector<common_adapter_lora_info> parse_lora_request(
 | |
|         const std::vector<common_adapter_lora_info> & lora_base,
 | |
|         const json & data) {
 | |
|     std::vector<common_adapter_lora_info> lora(lora_base);
 | |
|     int max_idx = lora.size();
 | |
| 
 | |
|     // clear existing value
 | |
|     for (auto & entry : lora) {
 | |
|         entry.scale = 0.0f;
 | |
|     }
 | |
| 
 | |
|     // set value
 | |
|     for (const auto & entry : data) {
 | |
|         int id      = json_value(entry, "id", -1);
 | |
|         float scale = json_value(entry, "scale", 0.0f);
 | |
|         if (0 <= id && id < max_idx) {
 | |
|             lora[id].scale = scale;
 | |
|         } else {
 | |
|             throw std::runtime_error("invalid adapter id");
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return lora;
 | |
| }
 | 
