mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-29 08:41:22 +00:00 
			
		
		
		
	 f578b86b21
			
		
	
	f578b86b21
	
	
	
		
			
			* move BLAS to a separate backend * rename GGML_USE_OPENBLAS to GGML_USE_BLAS * alloc : reuse same buffer when the same buffer type if used multiple times * set number of threads automatically for openblas and blis * sched : print assignments when GGML_SCHED_DEBUG env variable is set * sched : allow ops with weights on an incompatible buffer type This will cause the weight to be copied to a backend that supports the op, which is very costly. The weight should have been stored in a buffer of a backend that can run the op, but llama.cpp cannot do this automatically at the moment. --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
		
			
				
	
	
		
			364 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			364 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #include "ggml-blas.h"
 | |
| #include "ggml-backend-impl.h"
 | |
| 
 | |
| #include <future>
 | |
| #include <vector>
 | |
| 
 | |
| #if defined(GGML_USE_ACCELERATE)
 | |
| #   include <Accelerate/Accelerate.h>
 | |
| #elif defined(GGML_BLAS_USE_MKL)
 | |
| #   include <mkl.h>
 | |
| #else
 | |
| #   include <cblas.h>
 | |
| #   ifdef BLIS_ENABLE_CBLAS
 | |
| #       include <blis.h>
 | |
| #   endif
 | |
| #endif
 | |
| 
 | |
| struct ggml_backend_blas_context {
 | |
|     int n_threads = GGML_DEFAULT_N_THREADS;
 | |
|     std::unique_ptr<char[]> work_data;
 | |
|     size_t work_size = 0;
 | |
| #ifndef GGML_USE_OPENMP
 | |
|     std::vector<std::future<void>> tasks;
 | |
| #endif
 | |
| };
 | |
| 
 | |
| // helper function to determine if it is better to use BLAS or not
 | |
| // for large matrices, BLAS is faster
 | |
| static bool ggml_backend_blas_use_blas(const struct ggml_tensor * dst) {
 | |
|     const struct ggml_tensor * src0 = dst->src[0];
 | |
|     const struct ggml_tensor * src1 = dst->src[1];
 | |
| 
 | |
|     const int64_t ne10 = src1->ne[0];
 | |
| 
 | |
|     const int64_t ne0 = dst->ne[0];
 | |
|     const int64_t ne1 = dst->ne[1];
 | |
| 
 | |
|     // TODO: find the optimal values for these
 | |
|     if (ggml_is_contiguous(src0) &&
 | |
|         ggml_is_contiguous(src1) &&
 | |
|         src1->type == GGML_TYPE_F32 &&
 | |
|         (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
 | |
| 
 | |
|         /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| static void ggml_backend_blas_mul_mat(ggml_backend_blas_context * ctx, struct ggml_tensor * dst) {
 | |
|     const struct ggml_tensor * src0 = dst->src[0];
 | |
|     const struct ggml_tensor * src1 = dst->src[1];
 | |
| 
 | |
|     GGML_TENSOR_BINARY_OP_LOCALS
 | |
| 
 | |
|     const enum ggml_type type = src0->type;
 | |
| 
 | |
|     GGML_ASSERT(ne0 == ne01);
 | |
|     GGML_ASSERT(ne1 == ne11);
 | |
|     GGML_ASSERT(ne2 == ne12);
 | |
|     GGML_ASSERT(ne3 == ne13);
 | |
| 
 | |
|     // we don't support permuted src0 or src1
 | |
|     GGML_ASSERT(nb00 == ggml_type_size(type));
 | |
|     GGML_ASSERT(nb10 == ggml_type_size(src1->type));
 | |
| 
 | |
|     // dst cannot be transposed or permuted
 | |
|     GGML_ASSERT(nb0 == sizeof(float));
 | |
|     GGML_ASSERT(nb0 <= nb1);
 | |
|     GGML_ASSERT(nb1 <= nb2);
 | |
|     GGML_ASSERT(nb2 <= nb3);
 | |
| 
 | |
|     // broadcast factors
 | |
|     const int64_t r2 = ne12/ne02;
 | |
|     const int64_t r3 = ne13/ne03;
 | |
| 
 | |
|     const int64_t ne_plane      = ne01*ne00;
 | |
|     const size_t  desired_wsize = type == GGML_TYPE_F32 ? 0 : ne03*ne02*ne_plane*sizeof(float);
 | |
| 
 | |
|     if (ctx->work_size < desired_wsize) {
 | |
|         ctx->work_data.reset(new char[desired_wsize]);
 | |
|         ctx->work_size = desired_wsize;
 | |
|     }
 | |
|     void * wdata = ctx->work_data.get();
 | |
| 
 | |
|     // convert src0 to float
 | |
|     if (type != GGML_TYPE_F32) {
 | |
|         ggml_type_traits_t type_traits = ggml_internal_get_type_traits(type);
 | |
|         ggml_to_float_t const to_float = type_traits.to_float;
 | |
| 
 | |
|         for (int64_t i03 = 0; i03 < ne03; i03++) {
 | |
|             for (int64_t i02 = 0; i02 < ne02; i02++) {
 | |
|                 const void  *       x      = (char *)  src0->data + i02*nb02          + i03*nb03;
 | |
|                       float * const wplane = (float *) wdata      + i02*ne_plane      + i03*ne02*ne_plane;
 | |
| 
 | |
|                 const int min_cols_per_thread = 4096;
 | |
|                 const int min_rows_per_thread = std::max((int)(min_cols_per_thread/ne00), 1);
 | |
|                 const int n_threads = std::max(std::min(ctx->n_threads, (int)(ne01/min_rows_per_thread)), 1);
 | |
| 
 | |
| #ifdef GGML_USE_OPENMP
 | |
|                 #pragma omp parallel for num_threads(n_threads)
 | |
|                 for (int64_t i01 = 0; i01 < ne01; i01++) {
 | |
|                     to_float((const char *) x + i01*nb01, wplane + i01*ne00, ne00);
 | |
|                 }
 | |
| #else
 | |
|                 for (int i = 1; i < n_threads; i++) {
 | |
|                     const int64_t start =       i*ne01/n_threads;
 | |
|                     const int64_t end   = (i + 1)*ne01/n_threads;
 | |
|                     if (start < end) {
 | |
|                         ctx->tasks.push_back(std::async(std::launch::async, [=]() {
 | |
|                             for (int64_t i01 = start; i01 < end; i01++) {
 | |
|                                 to_float((const char *) x + i01*nb01, wplane + i01*ne00, ne00);
 | |
|                             }
 | |
|                         }));
 | |
|                     }
 | |
|                 }
 | |
|                 {
 | |
|                     // reuse the current thread for the first task
 | |
|                     const int64_t start = 0;
 | |
|                     const int64_t end   = ne01/n_threads;
 | |
|                     for (int64_t i01 = start; i01 < end; i01++) {
 | |
|                         to_float((const char *) x + i01*nb01, wplane + i01*ne00, ne00);
 | |
|                     }
 | |
|                 }
 | |
| #endif
 | |
|             }
 | |
|         }
 | |
| 
 | |
| #ifndef GGML_USE_OPENMP
 | |
|         // wait for all tasks to finish
 | |
|         for (auto & task : ctx->tasks) {
 | |
|             task.get();
 | |
|         }
 | |
|         ctx->tasks.clear();
 | |
| #endif
 | |
|     }
 | |
| 
 | |
| #if defined(OPENBLAS_VERSION)
 | |
|     openblas_set_num_threads(ctx->n_threads);
 | |
| #endif
 | |
| 
 | |
| #if defined(BLIS_ENABLE_CBLAS)
 | |
|     bli_thread_set_num_threads(ctx->n_threads);
 | |
| #endif
 | |
| 
 | |
|     for (int64_t i13 = 0; i13 < ne13; i13++) {
 | |
|         for (int64_t i12 = 0; i12 < ne12; i12++) {
 | |
|             const int64_t i03 = i13/r3;
 | |
|             const int64_t i02 = i12/r2;
 | |
| 
 | |
|             const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
 | |
|             const float * y = (float *) ((char *) src1->data + i12*nb12 + i13*nb13);
 | |
|                   float * d = (float *) ((char *)  dst->data + i12*nb2  + i13*nb3);
 | |
| 
 | |
|             if (type != GGML_TYPE_F32) {
 | |
|                 x = (float *) wdata + i02*ne_plane + i03*ne02*ne_plane;
 | |
|             }
 | |
| 
 | |
|             cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
 | |
|                         ne1, ne01, ne10,
 | |
|                         1.0f,   y, ne10,
 | |
|                                 x, ne00,
 | |
|                         0.0f,   d, ne01);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void ggml_backend_blas_out_prod(ggml_backend_blas_context * ctx, struct ggml_tensor * dst) {
 | |
|     const struct ggml_tensor * src0 = dst->src[0];
 | |
|     const struct ggml_tensor * src1 = dst->src[1];
 | |
| 
 | |
|     GGML_TENSOR_BINARY_OP_LOCALS
 | |
| 
 | |
|     GGML_ASSERT(ne0  == ne00);
 | |
|     GGML_ASSERT(ne1  == ne10);
 | |
|     GGML_ASSERT(ne2  == ne02);
 | |
|     GGML_ASSERT(ne02 == ne12);
 | |
|     GGML_ASSERT(ne3  == ne13);
 | |
|     GGML_ASSERT(ne03 == ne13);
 | |
| 
 | |
|     // we don't support permuted src0 or src1
 | |
|     GGML_ASSERT(nb00 == sizeof(float));
 | |
| 
 | |
|     // dst cannot be transposed or permuted
 | |
|     GGML_ASSERT(nb0 == sizeof(float));
 | |
|     // GGML_ASSERT(nb0 <= nb1);
 | |
|     // GGML_ASSERT(nb1 <= nb2);
 | |
|     // GGML_ASSERT(nb2 <= nb3);
 | |
| 
 | |
|     // Arguments to ggml_compute_forward_out_prod (expressed as major,minor)
 | |
|     // src0: (k,n)
 | |
|     // src1: (k,m)
 | |
|     // dst:  (m,n)
 | |
|     //
 | |
|     // Arguments to sgemm (see https://github.com/Reference-LAPACK/lapack/blob/master/BLAS/SRC/sgemm.f)
 | |
|     // Also expressed as (major,minor)
 | |
|     // a: (m,k): so src1 transposed
 | |
|     // b: (k,n): so src0
 | |
|     // c: (m,n)
 | |
|     //
 | |
|     // However, if ggml_is_transposed(src1) is true, then
 | |
|     // src1->data already contains a transposed version, so sgemm mustn't
 | |
|     // transpose it further.
 | |
| 
 | |
|     int n = src0->ne[0];
 | |
|     int k = src0->ne[1];
 | |
|     int m = src1->ne[0];
 | |
| 
 | |
|     CBLAS_TRANSPOSE transposeA;
 | |
|     int lda;
 | |
| 
 | |
|     if (!ggml_is_transposed(src1)) {
 | |
|         transposeA = CblasTrans;
 | |
|         lda = m;
 | |
|     } else {
 | |
|         transposeA = CblasNoTrans;
 | |
|         lda = k;
 | |
|     }
 | |
| 
 | |
|     float * a = (float *) ((char *) src1->data);
 | |
|     float * b = (float *) ((char *) src0->data);
 | |
|     float * c = (float *) ((char *) dst->data);
 | |
| 
 | |
|     cblas_sgemm(CblasRowMajor, transposeA, CblasNoTrans, m, n, k, 1.0, a, lda, b, n, 0.0, c, n);
 | |
| 
 | |
|     GGML_UNUSED(ctx);
 | |
| }
 | |
| 
 | |
| // backend interface
 | |
| 
 | |
| GGML_CALL static const char * ggml_backend_blas_name(ggml_backend_t backend) {
 | |
|     return "BLAS";
 | |
| 
 | |
|     GGML_UNUSED(backend);
 | |
| }
 | |
| 
 | |
| GGML_CALL static void ggml_backend_blas_free(ggml_backend_t backend) {
 | |
|     ggml_backend_blas_context * ctx = (ggml_backend_blas_context *)backend->context;
 | |
|     delete ctx;
 | |
|     delete backend;
 | |
| }
 | |
| 
 | |
| GGML_CALL static ggml_backend_buffer_type_t ggml_backend_blas_get_default_buffer_type(ggml_backend_t backend) {
 | |
|     return ggml_backend_cpu_buffer_type();
 | |
| 
 | |
|     GGML_UNUSED(backend);
 | |
| }
 | |
| 
 | |
| GGML_CALL static enum ggml_status ggml_backend_blas_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
 | |
|     ggml_backend_blas_context * ctx = (ggml_backend_blas_context *)backend->context;
 | |
| 
 | |
|     for (int i = 0; i < cgraph->n_nodes; i++) {
 | |
|         struct ggml_tensor * node = cgraph->nodes[i];
 | |
| 
 | |
|         switch (node->op) {
 | |
|             case GGML_OP_MUL_MAT:
 | |
|                 ggml_backend_blas_mul_mat(ctx, node);
 | |
|                 break;
 | |
| 
 | |
|             case GGML_OP_OUT_PROD:
 | |
|                 ggml_backend_blas_out_prod(ctx, node);
 | |
|                 break;
 | |
| 
 | |
|             case GGML_OP_NONE:
 | |
|             case GGML_OP_RESHAPE:
 | |
|             case GGML_OP_VIEW:
 | |
|             case GGML_OP_PERMUTE:
 | |
|             case GGML_OP_TRANSPOSE:
 | |
|                 break;
 | |
| 
 | |
|             default:
 | |
|                 fprintf(stderr, "%s: unsupported op %s\n", __func__, ggml_op_desc(node));
 | |
|                 GGML_ASSERT(false);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return GGML_STATUS_SUCCESS;
 | |
| 
 | |
|     GGML_UNUSED(backend);
 | |
| }
 | |
| 
 | |
| GGML_CALL static bool ggml_backend_blas_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
 | |
|     const struct ggml_tensor * src0 = op->src[0];
 | |
|     const struct ggml_tensor * src1 = op->src[1];
 | |
| 
 | |
|     return (op->op == GGML_OP_MUL_MAT  && ggml_backend_blas_use_blas(op)) ||
 | |
|            (op->op == GGML_OP_OUT_PROD && op->src[0]->type == GGML_TYPE_F32 &&
 | |
|                                           op->src[1]->type == GGML_TYPE_F32 &&
 | |
|                                           ggml_is_matrix(src0) &&
 | |
|                                           ggml_is_matrix(src1) &&
 | |
|                                           ggml_is_contiguous(src0) &&
 | |
|                                           (ggml_is_contiguous(src1) || ggml_is_transposed(src1)));
 | |
| 
 | |
|     GGML_UNUSED(backend);
 | |
| }
 | |
| 
 | |
| GGML_CALL static bool ggml_backend_blas_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft) {
 | |
|     return ggml_backend_buft_is_host(buft);
 | |
| 
 | |
|     GGML_UNUSED(backend);
 | |
| }
 | |
| 
 | |
| static struct ggml_backend_i blas_backend_i = {
 | |
|     /* .get_name                = */ ggml_backend_blas_name,
 | |
|     /* .free                    = */ ggml_backend_blas_free,
 | |
|     /* .get_default_buffer_type = */ ggml_backend_blas_get_default_buffer_type,
 | |
|     /* .set_tensor_async        = */ NULL,
 | |
|     /* .get_tensor_async        = */ NULL,
 | |
|     /* .cpy_tensor_async        = */ NULL,
 | |
|     /* .synchronize             = */ NULL,
 | |
|     /* .graph_plan_create       = */ NULL,
 | |
|     /* .graph_plan_free         = */ NULL,
 | |
|     /* .graph_plan_update       = */ NULL,
 | |
|     /* .graph_plan_compute      = */ NULL,
 | |
|     /* .graph_compute           = */ ggml_backend_blas_graph_compute,
 | |
|     /* .supports_op             = */ ggml_backend_blas_supports_op,
 | |
|     /* .supports_buft           = */ ggml_backend_blas_supports_buft,
 | |
|     /* .offload_op              = */ NULL,
 | |
|     /* .event_new               = */ NULL,
 | |
|     /* .event_free              = */ NULL,
 | |
|     /* .event_record            = */ NULL,
 | |
|     /* .event_wait              = */ NULL,
 | |
|     /* .event_synchronize       = */ NULL,
 | |
| };
 | |
| 
 | |
| static ggml_guid_t ggml_backend_blas_guid(void) {
 | |
|     static ggml_guid guid = { 0x12, 0xa8, 0xae, 0xf4, 0xc0, 0x1e, 0x61, 0x97, 0x8f, 0xeb, 0x33, 0x04, 0xa1, 0x33, 0x51, 0x2d };
 | |
|     return &guid;
 | |
| }
 | |
| 
 | |
| ggml_backend_t ggml_backend_blas_init(void) {
 | |
|     ggml_backend_blas_context * ctx = new ggml_backend_blas_context;
 | |
| 
 | |
|     ggml_backend_t backend = new ggml_backend {
 | |
|         /* .guid      = */ ggml_backend_blas_guid(),
 | |
|         /* .interface = */ blas_backend_i,
 | |
|         /* .context   = */ ctx,
 | |
|     };
 | |
| 
 | |
| #if !defined(NDEBUG) && defined(OPENBLAS_VERSION) && defined(GGML_USE_OPENMP)
 | |
|     if (openblas_get_parallel() != OPENBLAS_OPENMP) {
 | |
|         fprintf(stderr, "%s: warning: ggml is using OpenMP, but OpenBLAS was compiled without OpenMP support\n", __func__);
 | |
|     }
 | |
| #endif
 | |
| 
 | |
| #if !defined(NDEBUG) && defined(BLIS_ENABLE_CBLAS) && defined(GGML_USE_OPENMP) && !defined(BLIS_ENABLE_OPENMP)
 | |
|     fprintf(stderr, "%s: warning: ggml is using OpenMP, but BLIS was compiled without OpenMP support\n", __func__);
 | |
| #endif
 | |
| 
 | |
|     return backend;
 | |
| }
 | |
| 
 | |
| GGML_CALL bool ggml_backend_is_blas(ggml_backend_t backend) {
 | |
|     return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_blas_guid());
 | |
| }
 | |
| 
 | |
| void ggml_backend_blas_set_n_threads(ggml_backend_t backend_blas, int n_threads) {
 | |
|     GGML_ASSERT(ggml_backend_is_blas(backend_blas));
 | |
| 
 | |
|     ggml_backend_blas_context * ctx = (ggml_backend_blas_context *)backend_blas->context;
 | |
|     ctx->n_threads = n_threads;
 | |
| }
 |