mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-29 08:41:22 +00:00 
			
		
		
		
	 d48ccf3ad4
			
		
	
	d48ccf3ad4
	
	
	
		
			
			* sync : ggml ggml-ci * cuda : move GGML_CUDA_DMMV constants to dmmv.cuh --------- Co-authored-by: slaren <slarengh@gmail.com>
		
			
				
	
	
		
			986 lines
		
	
	
		
			36 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			986 lines
		
	
	
		
			36 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| #include "ggml-alloc.h"
 | |
| #include "ggml-backend-impl.h"
 | |
| #include "ggml.h"
 | |
| #include "ggml-impl.h"
 | |
| #include <assert.h>
 | |
| #include <limits.h>
 | |
| #include <stdarg.h>
 | |
| #include <stdio.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| 
 | |
| #define MAX(a, b) ((a) > (b) ? (a) : (b))
 | |
| #define MAX_FREE_BLOCKS 256
 | |
| 
 | |
| //#define GGML_ALLOCATOR_DEBUG
 | |
| 
 | |
| //#define AT_PRINTF(...) fprintf(stderr, __VA_ARGS__)
 | |
| #define AT_PRINTF(...)
 | |
| 
 | |
| 
 | |
| static bool ggml_is_view(const struct ggml_tensor * t) {
 | |
|     return t->view_src != NULL;
 | |
| }
 | |
| 
 | |
| static bool ggml_are_same_layout(const struct ggml_tensor * a, const struct ggml_tensor * b) {
 | |
|     if (a->type != b->type) {
 | |
|         return false;
 | |
|     }
 | |
|     for (int i = 0; i < GGML_MAX_DIMS; i++) {
 | |
|         if (a->ne[i] != b->ne[i]) {
 | |
|             return false;
 | |
|         }
 | |
|         if (a->nb[i] != b->nb[i]) {
 | |
|             return false;
 | |
|         }
 | |
|     }
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| static bool ggml_op_can_inplace(enum ggml_op op) {
 | |
|     switch (op) {
 | |
|         case GGML_OP_SCALE:
 | |
|         case GGML_OP_DIAG_MASK_ZERO:
 | |
|         case GGML_OP_DIAG_MASK_INF:
 | |
|         case GGML_OP_ADD:
 | |
|         case GGML_OP_ADD1:
 | |
|         case GGML_OP_SUB:
 | |
|         case GGML_OP_MUL:
 | |
|         case GGML_OP_DIV:
 | |
|         case GGML_OP_SQR:
 | |
|         case GGML_OP_SQRT:
 | |
|         case GGML_OP_LOG:
 | |
|         case GGML_OP_UNARY:
 | |
|         case GGML_OP_ROPE:
 | |
|         case GGML_OP_RMS_NORM:
 | |
|         case GGML_OP_SOFT_MAX:
 | |
|             return true;
 | |
| 
 | |
|         default:
 | |
|             return false;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static size_t aligned_offset(const void * buffer, size_t offset, size_t alignment) {
 | |
|     assert(alignment && !(alignment & (alignment - 1))); // power of 2
 | |
|     size_t align = (alignment - (((uintptr_t)buffer + offset) % alignment)) % alignment;
 | |
|     return offset + align;
 | |
| }
 | |
| 
 | |
| // tallocr
 | |
| 
 | |
| struct ggml_tallocr ggml_tallocr_new(ggml_backend_buffer_t buffer) {
 | |
|     void * base = ggml_backend_buffer_get_base(buffer);
 | |
|     size_t align = ggml_backend_buffer_get_alignment(buffer);
 | |
| 
 | |
|     assert(align && !(align & (align - 1))); // power of 2
 | |
| 
 | |
|     struct ggml_tallocr talloc = (struct ggml_tallocr) {
 | |
|         /*.buffer    = */ buffer,
 | |
|         /*.base      = */ base,
 | |
|         /*.alignment = */ align,
 | |
|         /*.offset    = */ aligned_offset(base, 0, align),
 | |
|     };
 | |
|     return talloc;
 | |
| }
 | |
| 
 | |
| void ggml_tallocr_alloc(struct ggml_tallocr * talloc, struct ggml_tensor * tensor) {
 | |
|     size_t size = ggml_backend_buffer_get_alloc_size(talloc->buffer, tensor);
 | |
|     size = GGML_PAD(size, talloc->alignment);
 | |
| 
 | |
|     if (talloc->offset + size > ggml_backend_buffer_get_size(talloc->buffer)) {
 | |
|         fprintf(stderr, "%s: not enough space in the buffer to allocate %s (needed %zu, available %zu)\n",
 | |
|                 __func__, tensor->name, size, ggml_backend_buffer_get_size(talloc->buffer) - talloc->offset);
 | |
|         GGML_ASSERT(!"not enough space in the buffer");
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     void * addr = (char *)ggml_backend_buffer_get_base(talloc->buffer) + talloc->offset;
 | |
|     talloc->offset += size;
 | |
| 
 | |
|     assert(((uintptr_t)addr % talloc->alignment) == 0);
 | |
| 
 | |
|     ggml_backend_tensor_alloc(talloc->buffer, tensor, addr);
 | |
| }
 | |
| 
 | |
| // dynamic tensor allocator
 | |
| 
 | |
| struct free_block {
 | |
|     size_t offset;
 | |
|     size_t size;
 | |
| };
 | |
| 
 | |
| struct ggml_dyn_tallocr {
 | |
|     size_t alignment;
 | |
|     int n_free_blocks;
 | |
|     struct free_block free_blocks[MAX_FREE_BLOCKS];
 | |
|     size_t max_size;
 | |
| 
 | |
| #ifdef GGML_ALLOCATOR_DEBUG
 | |
|     struct {
 | |
|         const struct ggml_tensor * tensor;
 | |
|         size_t offset;
 | |
|     } allocated_tensors[1024];
 | |
| #endif
 | |
| };
 | |
| 
 | |
| #ifdef GGML_ALLOCATOR_DEBUG
 | |
| static void add_allocated_tensor(struct ggml_dyn_tallocr * alloc, size_t offset, const struct ggml_tensor * tensor) {
 | |
|     for (int i = 0; i < 1024; i++) {
 | |
|         if (alloc->allocated_tensors[i].tensor == NULL) {
 | |
|             alloc->allocated_tensors[i].tensor = tensor;
 | |
|             alloc->allocated_tensors[i].offset = offset;
 | |
|             return;
 | |
|         }
 | |
|     }
 | |
|     GGML_ASSERT(!"out of allocated_tensors");
 | |
| }
 | |
| static void remove_allocated_tensor(struct ggml_dyn_tallocr * alloc, size_t offset, const struct ggml_tensor * tensor) {
 | |
|     for (int i = 0; i < 1024; i++) {
 | |
|         if (alloc->allocated_tensors[i].offset == offset) {
 | |
|             alloc->allocated_tensors[i].tensor = NULL;
 | |
|             return;
 | |
|         }
 | |
|     }
 | |
|     fprintf(stderr, "tried to free tensor %s not found\n", tensor->name);
 | |
|     GGML_ASSERT(!"tensor not found");
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static size_t ggml_dyn_tallocr_alloc(struct ggml_dyn_tallocr * alloc, size_t size, const struct ggml_tensor * tensor) {
 | |
|     size = aligned_offset(NULL, size, alloc->alignment);
 | |
| 
 | |
|     AT_PRINTF("%s: allocating %s (%zu bytes) - ", __func__, tensor->name, size);
 | |
| 
 | |
|     size_t max_avail = 0;
 | |
| 
 | |
|     // find the best fitting free block besides the last block
 | |
|     int best_fit_block = -1;
 | |
|     size_t best_fit_size = SIZE_MAX;
 | |
|     for (int i = 0; i < alloc->n_free_blocks - 1; i++) {
 | |
|         struct free_block * block = &alloc->free_blocks[i];
 | |
|         max_avail = MAX(max_avail, block->size);
 | |
|         if (block->size >= size && block->size <= best_fit_size) {
 | |
|             best_fit_block = i;
 | |
|             best_fit_size = block->size;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (best_fit_block == -1) {
 | |
|         // the last block is our last resort
 | |
|         struct free_block * block = &alloc->free_blocks[alloc->n_free_blocks - 1];
 | |
|         max_avail = MAX(max_avail, block->size);
 | |
|         if (block->size >= size) {
 | |
|             best_fit_block = alloc->n_free_blocks - 1;
 | |
|         } else {
 | |
|             // this should never happen
 | |
|             fprintf(stderr, "%s: not enough space in the buffer to allocate %zu bytes, largest block available %zu bytes\n",
 | |
|                     __func__, size, max_avail);
 | |
|             GGML_ASSERT(!"not enough space in the buffer");
 | |
|             GGML_UNREACHABLE();
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     struct free_block * block = &alloc->free_blocks[best_fit_block];
 | |
|     size_t offset = block->offset;
 | |
|     block->offset = offset + size;
 | |
|     block->size -= size;
 | |
|     if (block->size == 0) {
 | |
|         // remove block if empty
 | |
|         alloc->n_free_blocks--;
 | |
|         for (int j = best_fit_block; j < alloc->n_free_blocks; j++) {
 | |
|             alloc->free_blocks[j] = alloc->free_blocks[j+1];
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     AT_PRINTF("block %d, offset %zu\n", best_fit_block, offset);
 | |
| 
 | |
| #ifdef GGML_ALLOCATOR_DEBUG
 | |
|     add_allocated_tensor(alloc, offset, tensor);
 | |
|     size_t cur_max = offset + size;
 | |
|     if (cur_max > alloc->max_size) {
 | |
|         // sort allocated_tensors by offset
 | |
|         for (int i = 0; i < 1024; i++) {
 | |
|             for (int j = i + 1; j < 1024; j++) {
 | |
|                 if (alloc->allocated_tensors[i].offset > alloc->allocated_tensors[j].offset) {
 | |
|                     const struct ggml_tensor * tmp_tensor = alloc->allocated_tensors[i].tensor;
 | |
|                     size_t tmp_offset = alloc->allocated_tensors[i].offset;
 | |
|                     alloc->allocated_tensors[i].tensor = alloc->allocated_tensors[j].tensor;
 | |
|                     alloc->allocated_tensors[i].offset = alloc->allocated_tensors[j].offset;
 | |
|                     alloc->allocated_tensors[j].tensor = tmp_tensor;
 | |
|                     alloc->allocated_tensors[j].offset = tmp_offset;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         fprintf(stderr, "max_size = %.2f MB: tensors: ", cur_max / 1024.0 / 1024.0);
 | |
|         for (int i = 0; i < 1024; i++) {
 | |
|             if (alloc->allocated_tensors[i].tensor) {
 | |
|                 fprintf(stderr, "%s [%zx-%zx] (%.2f MB) ", alloc->allocated_tensors[i].tensor->name,
 | |
|                     alloc->allocated_tensors[i].offset,
 | |
|                     alloc->allocated_tensors[i].offset + ggml_nbytes(alloc->allocated_tensors[i].tensor),
 | |
|                     ggml_nbytes(alloc->allocated_tensors[i].tensor) / 1024.0 / 1024.0);
 | |
|             }
 | |
|         }
 | |
|         fprintf(stderr, "\n");
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     alloc->max_size = MAX(alloc->max_size, offset + size);
 | |
| 
 | |
|     return offset;
 | |
| 
 | |
|     GGML_UNUSED(tensor);
 | |
| }
 | |
| 
 | |
| // this is a very naive implementation, but for our case the number of free blocks should be very small
 | |
| static void ggml_dyn_tallocr_free_tensor(struct ggml_dyn_tallocr * alloc, size_t offset, size_t size, const struct ggml_tensor * tensor) {
 | |
|     size = aligned_offset(NULL, size, alloc->alignment);
 | |
| 
 | |
|     AT_PRINTF("%s: freeing %s at %zu (%zu bytes) - n_free_blocks = %d\n", __func__, tensor->name, offset, size, alloc->n_free_blocks);
 | |
| 
 | |
| #ifdef GGML_ALLOCATOR_DEBUG
 | |
|     remove_allocated_tensor(alloc, offset, tensor);
 | |
| #endif
 | |
| 
 | |
|     // see if we can merge with an existing block
 | |
|     for (int i = 0; i < alloc->n_free_blocks; i++) {
 | |
|         struct free_block * block = &alloc->free_blocks[i];
 | |
|         // check if ptr is at the end of the block
 | |
|         if (block->offset + block->size == offset) {
 | |
|             block->size += size;
 | |
|             // check if we can merge with the next block
 | |
|             if (i < alloc->n_free_blocks - 1 && block->offset + block->size == alloc->free_blocks[i+1].offset) {
 | |
|                 block->size += alloc->free_blocks[i+1].size;
 | |
|                 alloc->n_free_blocks--;
 | |
|                 for (int j = i+1; j < alloc->n_free_blocks; j++) {
 | |
|                     alloc->free_blocks[j] = alloc->free_blocks[j+1];
 | |
|                 }
 | |
|             }
 | |
|             return;
 | |
|         }
 | |
|         // check if ptr is at the beginning of the block
 | |
|         if (offset + size == block->offset) {
 | |
|             block->offset = offset;
 | |
|             block->size += size;
 | |
|             // check if we can merge with the previous block
 | |
|             if (i > 0 && alloc->free_blocks[i-1].offset + alloc->free_blocks[i-1].size == block->offset) {
 | |
|                 alloc->free_blocks[i-1].size += block->size;
 | |
|                 alloc->n_free_blocks--;
 | |
|                 for (int j = i; j < alloc->n_free_blocks; j++) {
 | |
|                     alloc->free_blocks[j] = alloc->free_blocks[j+1];
 | |
|                 }
 | |
|             }
 | |
|             return;
 | |
|         }
 | |
|     }
 | |
|     // otherwise, add a new block
 | |
|     GGML_ASSERT(alloc->n_free_blocks < MAX_FREE_BLOCKS && "out of free blocks");
 | |
|     // insert the new block in the correct position to keep the array sorted by address (to make merging blocks faster)
 | |
|     int insert_pos = 0;
 | |
|     while (insert_pos < alloc->n_free_blocks && alloc->free_blocks[insert_pos].offset < offset) {
 | |
|         insert_pos++;
 | |
|     }
 | |
|     // shift all blocks from insert_pos onward to make room for the new block
 | |
|     for (int i = alloc->n_free_blocks; i > insert_pos; i--) {
 | |
|         alloc->free_blocks[i] = alloc->free_blocks[i-1];
 | |
|     }
 | |
|     // insert the new block
 | |
|     alloc->free_blocks[insert_pos].offset = offset;
 | |
|     alloc->free_blocks[insert_pos].size = size;
 | |
|     alloc->n_free_blocks++;
 | |
| 
 | |
|     GGML_UNUSED(tensor);
 | |
| }
 | |
| 
 | |
| static void ggml_dyn_tallocr_reset(struct ggml_dyn_tallocr * alloc) {
 | |
|     alloc->n_free_blocks = 1;
 | |
|     alloc->free_blocks[0].offset = 0;
 | |
|     alloc->free_blocks[0].size = SIZE_MAX/2; // restrict maximum size of a measure allocator to half size_t max to avoid overflows
 | |
|     alloc->max_size = 0;
 | |
| }
 | |
| 
 | |
| static struct ggml_dyn_tallocr * ggml_dyn_tallocr_new(size_t alignment) {
 | |
|     struct ggml_dyn_tallocr * alloc = (struct ggml_dyn_tallocr *)malloc(sizeof(struct ggml_dyn_tallocr));
 | |
| 
 | |
|     *alloc = (struct ggml_dyn_tallocr) {
 | |
|         /*.alignment     = */ alignment,
 | |
|         /*.n_free_blocks = */ 0,
 | |
|         /*.free_blocks   = */ {{0}},
 | |
|         /*.max_size      = */ 0,
 | |
| #ifdef GGML_ALLOCATOR_DEBUG
 | |
|         /*.allocated_tensors = */ {{0}},
 | |
| #endif
 | |
|     };
 | |
| 
 | |
|     ggml_dyn_tallocr_reset(alloc);
 | |
| 
 | |
|     return alloc;
 | |
| }
 | |
| 
 | |
| static void ggml_dyn_tallocr_free(struct ggml_dyn_tallocr * alloc) {
 | |
|     free(alloc);
 | |
| }
 | |
| 
 | |
| static size_t ggml_dyn_tallocr_max_size(struct ggml_dyn_tallocr * alloc) {
 | |
|     return alloc->max_size;
 | |
| }
 | |
| 
 | |
| 
 | |
| /////////////////////////////////////
 | |
| 
 | |
| // graph allocator
 | |
| 
 | |
| struct hash_node {
 | |
|     int n_children;
 | |
|     int n_views;
 | |
|     int buffer_id;
 | |
|     size_t offset; // offset within the buffer
 | |
|     bool allocated;
 | |
| };
 | |
| 
 | |
| struct tensor_alloc {
 | |
|     size_t offset;
 | |
|     size_t size_max; // 0 = pre-allocated, unused, or view
 | |
| };
 | |
| 
 | |
| struct leaf_alloc {
 | |
|     int buffer_id;
 | |
|     struct tensor_alloc leaf;
 | |
| };
 | |
| 
 | |
| struct node_alloc {
 | |
|     int buffer_id;
 | |
|     struct tensor_alloc dst;
 | |
|     struct tensor_alloc src[GGML_MAX_SRC];
 | |
| };
 | |
| 
 | |
| struct ggml_gallocr {
 | |
|     ggml_backend_buffer_type_t * bufts; // [n_buffers]
 | |
|     ggml_backend_buffer_t * buffers; // [n_buffers]
 | |
|     struct ggml_dyn_tallocr ** buf_tallocs; // [n_buffers]
 | |
|     int n_buffers;
 | |
| 
 | |
|     struct ggml_hash_set hash_set;
 | |
|     struct hash_node * hash_values; // [hash_set.size]
 | |
| 
 | |
|     struct node_alloc * node_allocs; // [n_nodes]
 | |
|     int n_nodes;
 | |
| 
 | |
|     struct leaf_alloc * leaf_allocs; // [n_leafs]
 | |
|     int n_leafs;
 | |
| };
 | |
| 
 | |
| ggml_gallocr_t ggml_gallocr_new_n(ggml_backend_buffer_type_t * bufts, int n_bufs) {
 | |
|     ggml_gallocr_t galloc = (ggml_gallocr_t)calloc(sizeof(struct ggml_gallocr), 1);
 | |
|     GGML_ASSERT(galloc != NULL);
 | |
| 
 | |
|     galloc->bufts = calloc(sizeof(ggml_backend_buffer_type_t) * n_bufs, 1);
 | |
|     GGML_ASSERT(galloc->bufts != NULL);
 | |
| 
 | |
|     galloc->buffers = calloc(sizeof(ggml_backend_buffer_t) * n_bufs, 1);
 | |
|     GGML_ASSERT(galloc->buffers != NULL);
 | |
| 
 | |
|     galloc->buf_tallocs = calloc(sizeof(struct ggml_dyn_tallocr *) * n_bufs, 1);
 | |
|     GGML_ASSERT(galloc->buf_tallocs != NULL);
 | |
| 
 | |
|     for (int i = 0; i < n_bufs; i++) {
 | |
|         galloc->bufts[i] = bufts[i];
 | |
|         galloc->buffers[i] = NULL;
 | |
|         size_t alignment = ggml_backend_buft_get_alignment(bufts[i]);
 | |
|         galloc->buf_tallocs[i] = ggml_dyn_tallocr_new(alignment);
 | |
|     }
 | |
|     galloc->n_buffers = n_bufs;
 | |
| 
 | |
|     return galloc;
 | |
| }
 | |
| 
 | |
| ggml_gallocr_t ggml_gallocr_new(ggml_backend_buffer_type_t buft) {
 | |
|     return ggml_gallocr_new_n(&buft, 1);
 | |
| }
 | |
| 
 | |
| void ggml_gallocr_free(ggml_gallocr_t galloc) {
 | |
|     if (galloc == NULL) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     for (int i = 0; i < galloc->n_buffers; i++) {
 | |
|         if (galloc->buffers != NULL) {
 | |
|             ggml_backend_buffer_free(galloc->buffers[i]);
 | |
|         }
 | |
|         if (galloc->buf_tallocs != NULL) {
 | |
|             ggml_dyn_tallocr_free(galloc->buf_tallocs[i]);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     free(galloc->hash_set.keys);
 | |
|     free(galloc->hash_values);
 | |
|     free(galloc->bufts);
 | |
|     free(galloc->buffers);
 | |
|     free(galloc->buf_tallocs);
 | |
|     free(galloc->node_allocs);
 | |
|     free(galloc->leaf_allocs);
 | |
|     free(galloc);
 | |
| }
 | |
| 
 | |
| typedef struct ggml_gallocr * ggml_gallocr_t;
 | |
| 
 | |
| static struct hash_node * ggml_gallocr_hash_get(ggml_gallocr_t galloc, struct ggml_tensor * t) {
 | |
|     size_t i = ggml_hash_find_or_insert(galloc->hash_set, t);
 | |
|     return &galloc->hash_values[i];
 | |
| }
 | |
| 
 | |
| static bool ggml_gallocr_is_own(ggml_gallocr_t galloc, struct ggml_tensor * t) {
 | |
|     return ggml_gallocr_hash_get(galloc, t)->allocated;
 | |
| }
 | |
| 
 | |
| static void ggml_gallocr_set_node_offset(ggml_gallocr_t galloc, struct ggml_tensor * node, int buffer_id, size_t offset) {
 | |
|     struct hash_node * hn = ggml_gallocr_hash_get(galloc, node);
 | |
|     hn->buffer_id = buffer_id;
 | |
|     hn->offset = offset;
 | |
|     hn->allocated = true;
 | |
| }
 | |
| 
 | |
| static bool ggml_gallocr_is_allocated(ggml_gallocr_t galloc, struct ggml_tensor * t) {
 | |
|     return t->data != NULL || ggml_gallocr_hash_get(galloc, t)->allocated;
 | |
| }
 | |
| 
 | |
| static void ggml_gallocr_allocate_node(ggml_gallocr_t galloc, struct ggml_tensor * node, int buffer_id) {
 | |
|     struct hash_node * hn = ggml_gallocr_hash_get(galloc, node);
 | |
| 
 | |
|     if (!ggml_gallocr_is_allocated(galloc, node) && !ggml_is_view(node)) {
 | |
|         hn->allocated = true;
 | |
|         assert(hn->offset == 0);
 | |
| 
 | |
|         // try to reuse a parent's buffer (inplace)
 | |
|         if (ggml_op_can_inplace(node->op)) {
 | |
|             for (int i = 0; i < GGML_MAX_SRC; i++) {
 | |
|                 struct ggml_tensor * parent = node->src[i];
 | |
|                 if (parent == NULL) {
 | |
|                     continue;
 | |
|                 }
 | |
| 
 | |
|                 // if the node's data is external, then we cannot re-use it
 | |
|                 if (!ggml_gallocr_is_own(galloc, parent)) {
 | |
|                     AT_PRINTF("not reusing parent %s for %s as %p is external\n", parent->name, node->name, parent->data);
 | |
|                     continue;
 | |
|                 }
 | |
| 
 | |
|                 // outputs cannot be reused
 | |
|                 if (parent->flags & GGML_TENSOR_FLAG_OUTPUT || (parent->view_src != NULL && parent->view_src->flags & GGML_TENSOR_FLAG_OUTPUT)) {
 | |
|                     AT_PRINTF("not reusing parent %s for %s as it is an output\n", parent->name, node->name);
 | |
|                     continue;
 | |
|                 }
 | |
| 
 | |
|                 if (!ggml_are_same_layout(node, parent)) {
 | |
|                     AT_PRINTF("not reusing parent %s for %s as layouts are different\n", parent->name, node->name);
 | |
|                     continue;
 | |
|                 }
 | |
| 
 | |
|                 struct hash_node * p_hn = ggml_gallocr_hash_get(galloc, parent);
 | |
|                 if (p_hn->n_children == 1 && p_hn->n_views == 0) {
 | |
|                     if (ggml_is_view(parent)) {
 | |
|                         struct ggml_tensor * view_src = parent->view_src;
 | |
|                         struct hash_node * view_src_hn = ggml_gallocr_hash_get(galloc, view_src);
 | |
|                         if (view_src_hn->n_views == 1 && view_src_hn->n_children == 0 && view_src->data == parent->data) {
 | |
|                             AT_PRINTF("reusing view parent %s (%s) for %s\n", parent->name, view_src->name, node->name);
 | |
|                             assert(view_src_hn->offset == p_hn->offset);
 | |
|                             hn->buffer_id = p_hn->buffer_id;
 | |
|                             hn->offset = p_hn->offset;
 | |
|                             p_hn->allocated = false; // avoid freeing the parent
 | |
|                             view_src_hn->allocated = false;
 | |
|                             return;
 | |
|                         }
 | |
|                     } else {
 | |
|                         AT_PRINTF("reusing parent %s for %s\n", parent->name, node->name);
 | |
|                         hn->buffer_id = p_hn->buffer_id;
 | |
|                         hn->offset = p_hn->offset;
 | |
|                         p_hn->allocated = false; // avoid freeing the parent
 | |
|                         return;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         // allocate tensor from the buffer
 | |
|         struct ggml_dyn_tallocr * alloc = galloc->buf_tallocs[buffer_id];
 | |
|         ggml_backend_buffer_type_t buft = galloc->bufts[buffer_id];
 | |
|         size_t size = ggml_backend_buft_get_alloc_size(buft, node);
 | |
|         size_t offset = ggml_dyn_tallocr_alloc(alloc, size, node);
 | |
|         hn->buffer_id = buffer_id;
 | |
|         hn->offset = offset;
 | |
|         return;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void ggml_gallocr_free_node(ggml_gallocr_t galloc, struct ggml_tensor * node, int buffer_id) {
 | |
|     // graph outputs are never freed
 | |
|     if (node->flags & GGML_TENSOR_FLAG_OUTPUT) {
 | |
|         AT_PRINTF("not freeing output %s\n", node->name);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     struct ggml_dyn_tallocr * alloc = galloc->buf_tallocs[buffer_id];
 | |
|     ggml_backend_buffer_type_t buft = galloc->bufts[buffer_id];
 | |
|     struct hash_node * hn = ggml_gallocr_hash_get(galloc, node);
 | |
|     size_t offset = hn->offset;
 | |
|     size_t size = ggml_backend_buft_get_alloc_size(buft, node);
 | |
|     ggml_dyn_tallocr_free_tensor(alloc, offset, size, node);
 | |
|     hn->allocated = false;
 | |
| }
 | |
| 
 | |
| static int get_node_buffer_id(const int * node_buffer_ids, int i) {
 | |
|     return node_buffer_ids ? node_buffer_ids[i] : 0;
 | |
| }
 | |
| 
 | |
| static void ggml_gallocr_alloc_graph_impl(ggml_gallocr_t galloc, struct ggml_cgraph * graph, const int * node_buffer_ids, const int * leaf_buffer_ids) {
 | |
|     // clear hash tables
 | |
|     memset(galloc->hash_set.keys, 0, galloc->hash_set.size * sizeof(struct ggml_tensor *));
 | |
|     memset(galloc->hash_values,   0, galloc->hash_set.size * sizeof(struct hash_node));
 | |
| 
 | |
|     // allocate leafs
 | |
|     // these may be tensors that the application is not using in the graph, but may still want to allocate for other purposes
 | |
|     for (int i = 0; i < graph->n_leafs; i++) {
 | |
|         struct ggml_tensor * leaf = graph->leafs[i];
 | |
|         ggml_gallocr_allocate_node(galloc, leaf, get_node_buffer_id(leaf_buffer_ids, i));
 | |
|     }
 | |
| 
 | |
|     // count number of children and views
 | |
|     // allocate other graph inputs and leafs first to avoid overwriting them
 | |
|     for (int i = 0; i < graph->n_nodes; i++) {
 | |
|         struct ggml_tensor * node = graph->nodes[i];
 | |
| 
 | |
|         // TODO: better way to add external dependencies
 | |
|         // GGML_OP_NONE does not appear normally in the graph nodes, but is used by ggml-backend to add dependencies to
 | |
|         // control when some tensors are allocated and freed. in this case, the dependencies are in `src`, but the node
 | |
|         // itself is never used and should not be considered a dependency
 | |
|         if (ggml_is_view(node) && node->op != GGML_OP_NONE) {
 | |
|             struct ggml_tensor * view_src = node->view_src;
 | |
|             ggml_gallocr_hash_get(galloc, view_src)->n_views += 1;
 | |
|         }
 | |
| 
 | |
|         if (node->flags & GGML_TENSOR_FLAG_INPUT) {
 | |
|             ggml_gallocr_allocate_node(galloc, graph->nodes[i], get_node_buffer_id(node_buffer_ids, i));
 | |
|         }
 | |
| 
 | |
|         for (int j = 0; j < GGML_MAX_SRC; j++) {
 | |
|             struct ggml_tensor * src = node->src[j];
 | |
|             if (src == NULL) {
 | |
|                 continue;
 | |
|             }
 | |
| 
 | |
|             ggml_gallocr_hash_get(galloc, src)->n_children += 1;
 | |
| 
 | |
|             // allocate explicit inputs
 | |
|             if (src->flags & GGML_TENSOR_FLAG_INPUT) {
 | |
|                 ggml_gallocr_allocate_node(galloc, src, get_node_buffer_id(node_buffer_ids, i));
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // allocate tensors
 | |
|     for (int i = 0; i < graph->n_nodes; i++) {
 | |
|         struct ggml_tensor * node = graph->nodes[i];
 | |
|         int buffer_id = get_node_buffer_id(node_buffer_ids, i);
 | |
| 
 | |
|         // allocate parents (only leafs need to be allocated at this point)
 | |
|         for (int j = 0; j < GGML_MAX_SRC; j++) {
 | |
|             struct ggml_tensor * parent = node->src[j];
 | |
|             if (parent == NULL) {
 | |
|                 continue;
 | |
|             }
 | |
|             ggml_gallocr_allocate_node(galloc, parent, buffer_id);
 | |
|         }
 | |
| 
 | |
|         // allocate node
 | |
|         ggml_gallocr_allocate_node(galloc, node, buffer_id);
 | |
| 
 | |
|         AT_PRINTF("exec: %s (%s) <= ", ggml_op_desc(node), node->name);
 | |
|         for (int j = 0; j < GGML_MAX_SRC; j++) {
 | |
|             struct ggml_tensor * parent = node->src[j];
 | |
|             if (parent == NULL) {
 | |
|                 continue;
 | |
|             }
 | |
|             AT_PRINTF("%s", parent->name);
 | |
|             if (j < GGML_MAX_SRC - 1 && node->src[j + 1] != NULL) {
 | |
|                 AT_PRINTF(", ");
 | |
|             }
 | |
|         }
 | |
|         AT_PRINTF("\n");
 | |
| 
 | |
|         // update parents
 | |
|         for (int j = 0; j < GGML_MAX_SRC; j++) {
 | |
|             struct ggml_tensor * parent = node->src[j];
 | |
|             if (parent == NULL) {
 | |
|                 continue;
 | |
|             }
 | |
|             struct hash_node * p_hn = ggml_gallocr_hash_get(galloc, parent);
 | |
|             p_hn->n_children -= 1;
 | |
| 
 | |
|             AT_PRINTF("parent %s: %d children, %d views, allocated: %d\n",
 | |
|                 parent->name, p_hn->n_children, p_hn->n_views, p_hn->allocated);
 | |
| 
 | |
|             if (p_hn->n_children == 0 && p_hn->n_views == 0) {
 | |
|                 if (ggml_is_view(parent)) {
 | |
|                     struct ggml_tensor * view_src = parent->view_src;
 | |
|                     struct hash_node * view_src_hn = ggml_gallocr_hash_get(galloc, view_src);
 | |
|                     view_src_hn->n_views -= 1;
 | |
|                     AT_PRINTF("view_src %s: %d children, %d views\n",
 | |
|                         view_src->name, view_src_hn->n_children, view_src_hn->n_views);
 | |
|                     if (view_src_hn->n_views == 0 && view_src_hn->n_children == 0 && view_src_hn->allocated) {
 | |
|                         ggml_gallocr_free_node(galloc, view_src, buffer_id);
 | |
|                     }
 | |
|                 }
 | |
|                 else if (p_hn->allocated) {
 | |
|                     ggml_gallocr_free_node(galloc, parent, buffer_id);
 | |
|                 }
 | |
|             }
 | |
|             AT_PRINTF("\n");
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| bool ggml_gallocr_reserve_n(ggml_gallocr_t galloc, struct ggml_cgraph * graph, const int * node_buffer_ids, const int * leaf_buffer_ids) {
 | |
|     size_t hash_size = graph->visited_hash_table.size;
 | |
| 
 | |
|     // initialize hash table
 | |
|     if (galloc->hash_set.size < hash_size) {
 | |
|         free(galloc->hash_set.keys);
 | |
|         free(galloc->hash_values);
 | |
|         galloc->hash_set.size = hash_size;
 | |
|         galloc->hash_set.keys = calloc(sizeof(struct ggml_tensor *), hash_size);
 | |
|         galloc->hash_values   = calloc(sizeof(struct hash_node), hash_size);
 | |
|         GGML_ASSERT(galloc->hash_set.keys != NULL);
 | |
|         GGML_ASSERT(galloc->hash_values != NULL);
 | |
|     } else {
 | |
|         // reset hash table
 | |
|         memset(galloc->hash_set.keys, 0, sizeof(struct ggml_tensor *) * galloc->hash_set.size);
 | |
|         memset(galloc->hash_values,   0, sizeof(struct hash_node) * galloc->hash_set.size);
 | |
|     }
 | |
| 
 | |
|     // reset allocators
 | |
|     for (int i = 0; i < galloc->n_buffers; i++) {
 | |
|         ggml_dyn_tallocr_reset(galloc->buf_tallocs[i]);
 | |
|     }
 | |
| 
 | |
|     // allocate in hash table
 | |
|     ggml_gallocr_alloc_graph_impl(galloc, graph, node_buffer_ids, leaf_buffer_ids);
 | |
| 
 | |
|     // set the node_allocs from the hash table
 | |
|     if (galloc->n_nodes < graph->n_nodes) {
 | |
|         free(galloc->node_allocs);
 | |
|         galloc->node_allocs = calloc(sizeof(struct node_alloc), graph->n_nodes);
 | |
|         GGML_ASSERT(galloc->node_allocs != NULL);
 | |
|     }
 | |
|     galloc->n_nodes = graph->n_nodes;
 | |
|     for (int i = 0; i < graph->n_nodes; i++) {
 | |
|         struct ggml_tensor * node = graph->nodes[i];
 | |
|         struct node_alloc * node_alloc = &galloc->node_allocs[i];
 | |
|         node_alloc->buffer_id = get_node_buffer_id(node_buffer_ids, i);
 | |
|         if (node->view_src || node->data) {
 | |
|             node_alloc->dst.offset = SIZE_MAX;
 | |
|             node_alloc->dst.size_max = 0;
 | |
|         } else {
 | |
|             struct hash_node * hn = ggml_gallocr_hash_get(galloc, node);
 | |
|             node_alloc->dst.offset   = hn->offset;
 | |
|             node_alloc->dst.size_max = ggml_backend_buft_get_alloc_size(galloc->bufts[hn->buffer_id], node);
 | |
|         }
 | |
|         for (int j = 0; j < GGML_MAX_SRC; j++) {
 | |
|             struct ggml_tensor * src = node->src[j];
 | |
|             if (!src || src->view_src || src->data) {
 | |
|                 node_alloc->src[j].offset = SIZE_MAX;
 | |
|                 node_alloc->src[j].size_max = 0;
 | |
|             } else {
 | |
|                 struct hash_node * hn = ggml_gallocr_hash_get(galloc, src);
 | |
|                 node_alloc->src[j].offset   = hn->offset;
 | |
|                 node_alloc->src[j].size_max = ggml_backend_buft_get_alloc_size(galloc->bufts[hn->buffer_id], src);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     if (galloc->n_leafs < graph->n_leafs) {
 | |
|         free(galloc->leaf_allocs);
 | |
|         galloc->leaf_allocs = calloc(sizeof(galloc->leaf_allocs[0]), graph->n_leafs);
 | |
|         GGML_ASSERT(galloc->leaf_allocs != NULL);
 | |
|     }
 | |
|     galloc->n_leafs = graph->n_leafs;
 | |
|     for (int i = 0; i < graph->n_leafs; i++) {
 | |
|         struct ggml_tensor * leaf = graph->leafs[i];
 | |
|         struct hash_node * hn = ggml_gallocr_hash_get(galloc, leaf);
 | |
|         galloc->leaf_allocs[i].buffer_id = hn->buffer_id;
 | |
|         if (leaf->view_src || leaf->data) {
 | |
|             galloc->leaf_allocs[i].leaf.offset = SIZE_MAX;
 | |
|             galloc->leaf_allocs[i].leaf.size_max = 0;
 | |
|         } else {
 | |
|             galloc->leaf_allocs[i].leaf.offset = hn->offset;
 | |
|             galloc->leaf_allocs[i].leaf.size_max = ggml_backend_buft_get_alloc_size(galloc->bufts[hn->buffer_id], leaf);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // reallocate buffers if needed
 | |
|     for (int i = 0; i < galloc->n_buffers; i++) {
 | |
|         size_t cur_size = galloc->buffers[i] ? ggml_backend_buffer_get_size(galloc->buffers[i]) : 0;
 | |
|         size_t new_size = ggml_dyn_tallocr_max_size(galloc->buf_tallocs[i]);
 | |
| 
 | |
|         // even if there are no tensors allocated in this buffer, we still need to allocate it to initialize views
 | |
|         if (new_size > cur_size || galloc->buffers[i] == NULL) {
 | |
| #ifndef NDEBUG
 | |
|             fprintf(stderr, "%s: reallocating %s buffer from size %.02f MiB to %.02f MiB\n", __func__, ggml_backend_buft_name(galloc->bufts[i]), cur_size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0);
 | |
| #endif
 | |
|             ggml_backend_buffer_free(galloc->buffers[i]);
 | |
|             galloc->buffers[i] = ggml_backend_buft_alloc_buffer(galloc->bufts[i], new_size);
 | |
|             if (galloc->buffers[i] == NULL) {
 | |
|                 fprintf(stderr, "%s: failed to allocate %s buffer of size %zu\n", __func__, ggml_backend_buft_name(galloc->bufts[i]), new_size);
 | |
|                 return false;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| bool ggml_gallocr_reserve(ggml_gallocr_t galloc, struct ggml_cgraph *graph) {
 | |
|     return ggml_gallocr_reserve_n(galloc, graph, NULL, NULL);
 | |
| }
 | |
| 
 | |
| static void ggml_gallocr_init_tensor(ggml_gallocr_t galloc, struct ggml_tensor * tensor, int buffer_id, struct tensor_alloc * tensor_alloc) {
 | |
|     assert(tensor->data || tensor->view_src || ggml_backend_buffer_get_alloc_size(galloc->buffers[buffer_id], tensor) <= tensor_alloc->size_max);
 | |
| 
 | |
|     if (tensor->view_src != NULL) {
 | |
|         if (tensor->buffer == NULL) {
 | |
|             assert(tensor_alloc->offset == SIZE_MAX);
 | |
|             if (tensor->view_src->buffer == NULL) {
 | |
|                 // this tensor was allocated without ggml-backend
 | |
|                 return;
 | |
|             }
 | |
|             ggml_backend_view_init(galloc->buffers[buffer_id], tensor);
 | |
|         }
 | |
|     } else {
 | |
|         if (tensor->data == NULL) {
 | |
|             assert(tensor_alloc->offset != SIZE_MAX);
 | |
|             assert(ggml_backend_buffer_get_alloc_size(galloc->buffers[buffer_id], tensor) <= tensor_alloc->size_max);
 | |
|             void * base = ggml_backend_buffer_get_base(galloc->buffers[buffer_id]);
 | |
|             void * addr = (char *)base + tensor_alloc->offset;
 | |
|             ggml_backend_tensor_alloc(galloc->buffers[buffer_id], tensor, addr);
 | |
|         } else {
 | |
|             if (tensor->buffer == NULL) {
 | |
|                 // this tensor was allocated without ggml-backend
 | |
|                 return;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static bool ggml_gallocr_node_needs_realloc(ggml_gallocr_t galloc, struct ggml_tensor * node, struct node_alloc * nalloc, struct tensor_alloc * talloc) {
 | |
|     ggml_backend_buffer_type_t buft = galloc->bufts[nalloc->buffer_id];
 | |
|     size_t node_size = (node->data || node->view_src) ? 0 : ggml_backend_buft_get_alloc_size(buft, node);
 | |
|     return talloc->size_max >= node_size;
 | |
| }
 | |
| 
 | |
| static bool ggml_gallocr_needs_realloc(ggml_gallocr_t galloc, struct ggml_cgraph * graph) {
 | |
|     if (galloc->n_nodes != graph->n_nodes) {
 | |
| #ifndef NDEBUG
 | |
|         fprintf(stderr, "%s: graph has different number of nodes\n", __func__);
 | |
| #endif
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     if (galloc->n_leafs != graph->n_leafs) {
 | |
| #ifndef NDEBUG
 | |
|         fprintf(stderr, "%s: graph has different number of leafs\n", __func__);
 | |
| #endif
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     for (int i = 0; i < graph->n_nodes; i++) {
 | |
|         struct ggml_tensor * node = graph->nodes[i];
 | |
|         struct node_alloc * node_alloc = &galloc->node_allocs[i];
 | |
| 
 | |
|         if (!ggml_gallocr_node_needs_realloc(galloc, node, node_alloc, &node_alloc->dst)) {
 | |
| #ifndef NDEBUG
 | |
|             fprintf(stderr, "%s: node %s is not valid\n", __func__, node->name);
 | |
| #endif
 | |
|             return true;
 | |
|         }
 | |
| 
 | |
|         for (int j = 0; j < GGML_MAX_SRC; j++) {
 | |
|             struct ggml_tensor * src = node->src[j];
 | |
|             if (src == NULL) {
 | |
|                 continue;
 | |
|             }
 | |
|             if (!ggml_gallocr_node_needs_realloc(galloc, src, node_alloc, &node_alloc->src[j])) {
 | |
| #ifndef NDEBUG
 | |
|                 fprintf(stderr, "%s: src %d (%s) of node %s is not valid\n", __func__, j, src->name, node->name);
 | |
| #endif
 | |
|                 return true;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| bool ggml_gallocr_alloc_graph(ggml_gallocr_t galloc, struct ggml_cgraph * graph) {
 | |
|     if (ggml_gallocr_needs_realloc(galloc, graph)) {
 | |
|         if (galloc->n_buffers == 1) {
 | |
| #ifndef NDEBUG
 | |
|             fprintf(stderr, "%s: reallocating buffers automatically\n", __func__);
 | |
| #endif
 | |
|             if (!ggml_gallocr_reserve(galloc, graph)) {
 | |
|                 return false;
 | |
|             }
 | |
|         } else {
 | |
| #ifndef NDEBUG
 | |
|             fprintf(stderr, "%s: cannot reallocate multi buffer graph automatically, call reserve\n", __func__);
 | |
| #endif
 | |
|             return false;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // reset buffers
 | |
|     for (int i = 0; i < galloc->n_buffers; i++) {
 | |
|         if (galloc->buffers[i] != NULL) {
 | |
|             ggml_backend_buffer_reset(galloc->buffers[i]);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // allocate the graph tensors from the previous assignments
 | |
|     // leafs
 | |
|     for (int i = 0; i < graph->n_leafs; i++) {
 | |
|         struct ggml_tensor * leaf = graph->leafs[i];
 | |
|         struct leaf_alloc * leaf_alloc = &galloc->leaf_allocs[i];
 | |
|         ggml_gallocr_init_tensor(galloc, leaf, leaf_alloc->buffer_id, &leaf_alloc->leaf);
 | |
|     }
 | |
|     // nodes
 | |
|     for (int i = 0; i < graph->n_nodes; i++) {
 | |
|         struct ggml_tensor * node = graph->nodes[i];
 | |
|         struct node_alloc * node_alloc = &galloc->node_allocs[i];
 | |
|         for (int j = 0; j < GGML_MAX_SRC; j++) {
 | |
|             struct ggml_tensor * src = node->src[j];
 | |
|             if (src == NULL) {
 | |
|                 continue;
 | |
|             }
 | |
|             ggml_gallocr_init_tensor(galloc, src, node_alloc->buffer_id, &node_alloc->src[j]);
 | |
|         }
 | |
|         ggml_gallocr_init_tensor(galloc, node, node_alloc->buffer_id, &node_alloc->dst);
 | |
|     }
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| size_t ggml_gallocr_get_buffer_size(ggml_gallocr_t galloc, int buffer_id) {
 | |
|     GGML_ASSERT(buffer_id >= 0 && buffer_id < galloc->n_buffers);
 | |
| 
 | |
|     if (galloc->buffers[buffer_id] == NULL) {
 | |
|         return 0;
 | |
|     }
 | |
|     return ggml_backend_buffer_get_size(galloc->buffers[buffer_id]);
 | |
| }
 | |
| 
 | |
| // utils
 | |
| 
 | |
| static bool alloc_tensor_range(struct ggml_context * ctx,
 | |
|         struct ggml_tensor * first, struct ggml_tensor * last,
 | |
|         ggml_backend_buffer_type_t buft, size_t size,
 | |
|         ggml_backend_buffer_t ** buffers, size_t * n_buffers) {
 | |
|     ggml_backend_buffer_t buffer = ggml_backend_buft_alloc_buffer(buft, size);
 | |
|     if (buffer == NULL) {
 | |
| #ifndef NDEBUG
 | |
|         fprintf(stderr, "%s: failed to allocate %s buffer of size %zu\n", __func__, ggml_backend_buft_name(buft), size);
 | |
| #endif
 | |
|         for (size_t i = 0; i < *n_buffers; i++) {
 | |
|             ggml_backend_buffer_free(*buffers[i]);
 | |
|         }
 | |
|         free(*buffers);
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     struct ggml_tallocr tallocr = ggml_tallocr_new(buffer);
 | |
| 
 | |
|     for (struct ggml_tensor * t = first; t != last; t = ggml_get_next_tensor(ctx, t)) {
 | |
|         if (t->data == NULL) {
 | |
|             if (t->view_src == NULL) {
 | |
|                 ggml_tallocr_alloc(&tallocr, t);
 | |
|             } else if (t->buffer == NULL) {
 | |
|                 ggml_backend_view_init(buffer, t);
 | |
|             }
 | |
|         } else {
 | |
|             if (t->view_src != NULL && t->buffer == NULL) {
 | |
|                 // view of a pre-allocated tensor
 | |
|                 ggml_backend_view_init(buffer, t);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     *buffers = realloc(*buffers, sizeof(ggml_backend_buffer_t) * (*n_buffers + 1));
 | |
|     (*buffers)[(*n_buffers)++] = buffer;
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| ggml_backend_buffer_t ggml_backend_alloc_ctx_tensors_from_buft(struct ggml_context * ctx, ggml_backend_buffer_type_t buft) {
 | |
|     GGML_ASSERT(ggml_get_no_alloc(ctx) == true);
 | |
| 
 | |
|     size_t alignment = ggml_backend_buft_get_alignment(buft);
 | |
|     size_t max_size = ggml_backend_buft_get_max_size(buft);
 | |
| 
 | |
|     ggml_backend_buffer_t * buffers = NULL;
 | |
|     size_t n_buffers = 0;
 | |
| 
 | |
|     size_t cur_buf_size = 0;
 | |
|     struct ggml_tensor * first = ggml_get_first_tensor(ctx);
 | |
|     for (struct ggml_tensor * t = first; t != NULL; t = ggml_get_next_tensor(ctx, t)) {
 | |
|         size_t this_size = 0;
 | |
|         if (t->data == NULL && t->view_src == NULL) {
 | |
|             this_size = GGML_PAD(ggml_backend_buft_get_alloc_size(buft, t), alignment);
 | |
|         }
 | |
| 
 | |
|         if (this_size > max_size) {
 | |
|             fprintf(stderr, "%s: tensor %s is too large to fit in a %s buffer (tensor size: %zu, max buffer size: %zu)\n",
 | |
|                     __func__, t->name,
 | |
|                     ggml_backend_buft_name(buft),
 | |
|                     this_size, max_size);
 | |
|             for (size_t i = 0; i < n_buffers; i++) {
 | |
|                 ggml_backend_buffer_free(buffers[i]);
 | |
|             }
 | |
|             free(buffers);
 | |
|             return NULL;
 | |
|         }
 | |
| 
 | |
|         if ((cur_buf_size + this_size) > max_size) {
 | |
|             // allocate tensors in the current buffer
 | |
|             if (!alloc_tensor_range(ctx, first, t, buft, cur_buf_size, &buffers, &n_buffers)) {
 | |
|                 return NULL;
 | |
|             }
 | |
|             first = t;
 | |
|             cur_buf_size = this_size;
 | |
|         } else {
 | |
|             cur_buf_size += this_size;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // allocate remaining tensors
 | |
|     if (cur_buf_size > 0) {
 | |
|         if (!alloc_tensor_range(ctx, first, NULL, buft, cur_buf_size, &buffers, &n_buffers)) {
 | |
|             return NULL;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (n_buffers == 0) {
 | |
| #ifndef NDEBUG
 | |
|         fprintf(stderr, "%s: all tensors in the context are already allocated\n", __func__);
 | |
| #endif
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     ggml_backend_buffer_t buffer;
 | |
|     if (n_buffers == 1) {
 | |
|         buffer = buffers[0];
 | |
|     } else {
 | |
|         buffer = ggml_backend_multi_buffer_alloc_buffer(buffers, n_buffers);
 | |
|     }
 | |
|     free(buffers);
 | |
|     return buffer;
 | |
| }
 | |
| 
 | |
| ggml_backend_buffer_t ggml_backend_alloc_ctx_tensors(struct ggml_context * ctx, ggml_backend_t backend) {
 | |
|     return ggml_backend_alloc_ctx_tensors_from_buft(ctx, ggml_backend_get_default_buffer_type(backend));
 | |
| }
 |