mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-11-03 09:22:01 +00:00 
			
		
		
		
	* lookup: evaluation tools, use corpus/previous gens * fixup! lookup: evaluation tools, use corpus/previous gens * fixup! lookup: evaluation tools, use corpus/previous gens * fixup! lookup: evaluation tools, use corpus/previous gens * fixup! lookup: evaluation tools, use corpus/previous gens
		
			
				
	
	
		
			95 lines
		
	
	
		
			3.6 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			95 lines
		
	
	
		
			3.6 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
#pragma once
 | 
						|
 | 
						|
#include "llama.h"
 | 
						|
 | 
						|
#include <unordered_map>
 | 
						|
#include <string>
 | 
						|
#include <vector>
 | 
						|
 | 
						|
#define LLAMA_NGRAM_MIN    1
 | 
						|
#define LLAMA_NGRAM_MAX    4
 | 
						|
#define LLAMA_NGRAM_STATIC 2
 | 
						|
 | 
						|
// Data structures to map n-grams to empirical token probabilities:
 | 
						|
 | 
						|
struct llama_ngram {
 | 
						|
    llama_token tokens[LLAMA_NGRAM_MAX];
 | 
						|
 | 
						|
    llama_ngram() {
 | 
						|
        for (int i = 0; i < LLAMA_NGRAM_MAX; ++i) {
 | 
						|
            tokens[i] = -1;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    llama_ngram(const llama_token * input, const int ngram_size) {
 | 
						|
        for (int i = 0; i < LLAMA_NGRAM_MAX; ++i) {
 | 
						|
            tokens[i] = i < ngram_size ? input[i] : -1;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    bool operator==(const llama_ngram & other) const {
 | 
						|
        for (int i = 0; i < LLAMA_NGRAM_MAX; ++i) {
 | 
						|
            if (tokens[i] != other.tokens[i]) {
 | 
						|
                return false;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
};
 | 
						|
 | 
						|
struct llama_ngram_hash_function {
 | 
						|
    size_t operator()(const llama_ngram & ngram) const {
 | 
						|
        size_t hash = 0;
 | 
						|
        for (int i = 0; i < LLAMA_NGRAM_MAX; ++i) {
 | 
						|
            hash ^= std::hash<llama_token>{}(ngram.tokens[i]);
 | 
						|
        }
 | 
						|
        return hash;
 | 
						|
    }
 | 
						|
};
 | 
						|
 | 
						|
// token -> number of times token has been seen
 | 
						|
typedef std::unordered_map<llama_token, int32_t> llama_ngram_cache_part;
 | 
						|
 | 
						|
// n-gram -> empirical distribution of following tokens
 | 
						|
typedef std::unordered_map<llama_ngram, llama_ngram_cache_part, llama_ngram_hash_function> llama_ngram_cache;
 | 
						|
 | 
						|
 | 
						|
// Update an ngram cache with tokens.
 | 
						|
// ngram_cache:         the cache to modify.
 | 
						|
// ngram_min/ngram_max: the min/max size of the ngrams to extract from inp_data.
 | 
						|
// inp_data:            the token sequence with which to update ngram_cache.
 | 
						|
// nnew:                how many new tokens have been appended to inp_data since the last call to this function.
 | 
						|
// print_progress:      whether to print progress to stderr.
 | 
						|
//
 | 
						|
// In order to get correct results inp_data can ONLY BE APPENDED TO.
 | 
						|
// Changes in the middle need a complete rebuild.
 | 
						|
void llama_ngram_cache_update(
 | 
						|
    llama_ngram_cache & ngram_cache, int ngram_min, int ngram_max, std::vector<llama_token> & inp_data, int nnew, bool print_progress);
 | 
						|
 | 
						|
// Try to draft tokens from ngram caches.
 | 
						|
// inp:                the tokens generated so far.
 | 
						|
// draft:              the token sequence to draft. Expected to initially contain the previously sampled token.
 | 
						|
// n_draft:            maximum number of tokens to add to draft.
 | 
						|
// ngram_min/gram_max: the min/max size of the ngrams in nc_context and nc_dynamic.
 | 
						|
// nc_context:         ngram cache based on current context.
 | 
						|
// nc_dynamic:         ngram cache based on previous user generations.
 | 
						|
// nc_static:          ngram cache generated from a large text corpus, used for validation.
 | 
						|
void llama_ngram_cache_draft(
 | 
						|
    std::vector<llama_token> & inp, std::vector<llama_token> & draft, int n_draft, int ngram_min, int ngram_max,
 | 
						|
    llama_ngram_cache & nc_context, llama_ngram_cache & nc_dynamic, llama_ngram_cache & nc_static);
 | 
						|
 | 
						|
// Save an ngram cache to a file.
 | 
						|
// ngram_cache: the ngram cache to save.
 | 
						|
// filename:    the path under which to save the ngram cache.
 | 
						|
void llama_ngram_cache_save(llama_ngram_cache & ngram_cache, std::string & filename);
 | 
						|
 | 
						|
// Load an ngram cache saved with llama_ngram_cache_save.
 | 
						|
// filename: the path from which to load the ngram cache.
 | 
						|
// returns:  an ngram cache containing the information saved to filename.
 | 
						|
llama_ngram_cache llama_ngram_cache_load(std::string & filename);
 | 
						|
 | 
						|
// Merge two ngram caches.
 | 
						|
// ngram_cache_target: the ngram cache to which to add the information from ngram_cache_add.
 | 
						|
// ngram_cache_add:    the ngram cache to add to ngram_cache_target.
 | 
						|
void llama_ngram_cache_merge(llama_ngram_cache & ngram_cache_target, llama_ngram_cache & ngram_cache_add);
 |