mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-11-03 09:22:01 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			2444 lines
		
	
	
		
			104 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			2444 lines
		
	
	
		
			104 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
#!/usr/bin/env python3
 | 
						|
 | 
						|
from __future__ import annotations
 | 
						|
 | 
						|
import argparse
 | 
						|
import contextlib
 | 
						|
import json
 | 
						|
import os
 | 
						|
import re
 | 
						|
import sys
 | 
						|
from abc import ABC, abstractmethod
 | 
						|
from enum import IntEnum
 | 
						|
from pathlib import Path
 | 
						|
from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterator, Sequence, TypeVar, cast
 | 
						|
 | 
						|
import numpy as np
 | 
						|
import torch
 | 
						|
 | 
						|
if TYPE_CHECKING:
 | 
						|
    from torch import Tensor
 | 
						|
 | 
						|
if 'NO_LOCAL_GGUF' not in os.environ:
 | 
						|
    sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
 | 
						|
import gguf
 | 
						|
 | 
						|
from convert import LlamaHfVocab, permute
 | 
						|
 | 
						|
 | 
						|
###### MODEL DEFINITIONS ######
 | 
						|
 | 
						|
class SentencePieceTokenTypes(IntEnum):
 | 
						|
    NORMAL = 1
 | 
						|
    UNKNOWN = 2
 | 
						|
    CONTROL = 3
 | 
						|
    USER_DEFINED = 4
 | 
						|
    UNUSED = 5
 | 
						|
    BYTE = 6
 | 
						|
 | 
						|
 | 
						|
AnyModel = TypeVar("AnyModel", bound="type[Model]")
 | 
						|
 | 
						|
 | 
						|
class Model(ABC):
 | 
						|
    _model_classes: dict[str, type[Model]] = {}
 | 
						|
 | 
						|
    def __init__(self, dir_model: Path, ftype: int, fname_out: Path, is_big_endian: bool):
 | 
						|
        self.dir_model = dir_model
 | 
						|
        self.ftype = ftype
 | 
						|
        self.fname_out = fname_out
 | 
						|
        self.is_big_endian = is_big_endian
 | 
						|
        self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
 | 
						|
        self.is_safetensors = self._is_model_safetensors()
 | 
						|
        self.num_parts = Model.count_model_parts(self.dir_model, ".safetensors" if self.is_safetensors else ".bin")
 | 
						|
        self.part_names = self._get_part_names()
 | 
						|
        self.hparams = Model.load_hparams(self.dir_model)
 | 
						|
        self.gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=False)
 | 
						|
        self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer"])
 | 
						|
 | 
						|
    @property
 | 
						|
    @abstractmethod
 | 
						|
    def model_arch(self) -> gguf.MODEL_ARCH:
 | 
						|
        pass
 | 
						|
 | 
						|
    def find_hparam(self, keys: Sequence[str], optional: bool = False) -> Any:
 | 
						|
        key = next((k for k in keys if k in self.hparams), None)
 | 
						|
        if key is not None:
 | 
						|
            return self.hparams[key]
 | 
						|
        if optional:
 | 
						|
            return None
 | 
						|
        raise KeyError(f"could not find any of: {keys}")
 | 
						|
 | 
						|
    def set_vocab(self):
 | 
						|
        self._set_vocab_gpt2()
 | 
						|
 | 
						|
    def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
 | 
						|
        for part_name in self.part_names:
 | 
						|
            print(f"gguf: loading model part '{part_name}'")
 | 
						|
            ctx: ContextManager[Any]
 | 
						|
            if self.is_safetensors:
 | 
						|
                from safetensors import safe_open
 | 
						|
                ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu"))
 | 
						|
            else:
 | 
						|
                ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
 | 
						|
 | 
						|
            with ctx as model_part:
 | 
						|
                for name in model_part.keys():
 | 
						|
                    data = model_part.get_tensor(name) if self.is_safetensors else model_part[name]
 | 
						|
                    yield name, data
 | 
						|
 | 
						|
    def set_gguf_parameters(self):
 | 
						|
        self.gguf_writer.add_name(self.dir_model.name)
 | 
						|
        self.gguf_writer.add_block_count(self.block_count)
 | 
						|
 | 
						|
        if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx"], optional=True)) is not None:
 | 
						|
            self.gguf_writer.add_context_length(n_ctx)
 | 
						|
            print(f"gguf: context length = {n_ctx}")
 | 
						|
 | 
						|
        n_embd = self.find_hparam(["hidden_size", "n_embd"])
 | 
						|
        self.gguf_writer.add_embedding_length(n_embd)
 | 
						|
        print(f"gguf: embedding length = {n_embd}")
 | 
						|
 | 
						|
        if (n_ff := self.find_hparam(["intermediate_size", "n_inner"], optional=True)) is not None:
 | 
						|
            self.gguf_writer.add_feed_forward_length(n_ff)
 | 
						|
            print(f"gguf: feed forward length = {n_ff}")
 | 
						|
 | 
						|
        n_head = self.find_hparam(["num_attention_heads", "n_head"])
 | 
						|
        self.gguf_writer.add_head_count(n_head)
 | 
						|
        print(f"gguf: head count = {n_head}")
 | 
						|
 | 
						|
        if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None:
 | 
						|
            self.gguf_writer.add_head_count_kv(n_head_kv)
 | 
						|
            print(f"gguf: key-value head count = {n_head_kv}")
 | 
						|
 | 
						|
        if (rope_theta := self.hparams.get("rope_theta")) is not None:
 | 
						|
            self.gguf_writer.add_rope_freq_base(rope_theta)
 | 
						|
            print(f"gguf: rope theta = {rope_theta}")
 | 
						|
        if (f_rms_eps := self.hparams.get("rms_norm_eps")) is not None:
 | 
						|
            self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
 | 
						|
            print(f"gguf: rms norm epsilon = {f_rms_eps}")
 | 
						|
        if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
 | 
						|
            self.gguf_writer.add_layer_norm_eps(f_norm_eps)
 | 
						|
            print(f"gguf: layer norm epsilon = {f_norm_eps}")
 | 
						|
        if (n_experts := self.hparams.get("num_local_experts")) is not None:
 | 
						|
            self.gguf_writer.add_expert_count(n_experts)
 | 
						|
            print(f"gguf: expert count = {n_experts}")
 | 
						|
        if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
 | 
						|
            self.gguf_writer.add_expert_used_count(n_experts_used)
 | 
						|
            print(f"gguf: experts used count = {n_experts_used}")
 | 
						|
 | 
						|
        self.gguf_writer.add_file_type(self.ftype)
 | 
						|
        print(f"gguf: file type = {self.ftype}")
 | 
						|
 | 
						|
    def write_tensors(self):
 | 
						|
        block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
 | 
						|
        tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
 | 
						|
        for name, data_torch in self.get_tensors():
 | 
						|
            # we don't need these
 | 
						|
            if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
 | 
						|
                continue
 | 
						|
 | 
						|
            old_dtype = data_torch.dtype
 | 
						|
 | 
						|
            # convert any unsupported data types to float32
 | 
						|
            if data_torch.dtype not in (torch.float16, torch.float32):
 | 
						|
                data_torch = data_torch.to(torch.float32)
 | 
						|
 | 
						|
            data = data_torch.squeeze().numpy()
 | 
						|
 | 
						|
            # map tensor names
 | 
						|
            new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
 | 
						|
            if new_name is None:
 | 
						|
                print(f"Can not map tensor {name!r}")
 | 
						|
                sys.exit()
 | 
						|
 | 
						|
            n_dims = len(data.shape)
 | 
						|
            data_dtype = data.dtype
 | 
						|
 | 
						|
            # if f32 desired, convert any float16 to float32
 | 
						|
            if self.ftype == 0 and data_dtype == np.float16:
 | 
						|
                data = data.astype(np.float32)
 | 
						|
 | 
						|
            # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
 | 
						|
            if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
 | 
						|
                data = data.astype(np.float32)
 | 
						|
 | 
						|
            # if f16 desired, convert any float32 2-dim weight tensors to float16
 | 
						|
            if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
 | 
						|
                data = data.astype(np.float16)
 | 
						|
 | 
						|
            print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
 | 
						|
 | 
						|
            self.gguf_writer.add_tensor(new_name, data)
 | 
						|
 | 
						|
    def write(self):
 | 
						|
        self.write_tensors()
 | 
						|
        self.gguf_writer.write_header_to_file()
 | 
						|
        self.gguf_writer.write_kv_data_to_file()
 | 
						|
        self.gguf_writer.write_tensors_to_file()
 | 
						|
        self.gguf_writer.close()
 | 
						|
 | 
						|
    def write_vocab(self):
 | 
						|
        self.gguf_writer.write_header_to_file()
 | 
						|
        self.gguf_writer.write_kv_data_to_file()
 | 
						|
        self.gguf_writer.close()
 | 
						|
 | 
						|
    @staticmethod
 | 
						|
    def count_model_parts(dir_model: Path, prefix: str) -> int:
 | 
						|
        num_parts = 0
 | 
						|
        for filename in os.listdir(dir_model):
 | 
						|
            if filename.endswith(prefix):
 | 
						|
                num_parts += 1
 | 
						|
 | 
						|
        return num_parts
 | 
						|
 | 
						|
    @staticmethod
 | 
						|
    def load_hparams(dir_model):
 | 
						|
        with open(dir_model / "config.json", "r", encoding="utf-8") as f:
 | 
						|
            return json.load(f)
 | 
						|
 | 
						|
    @classmethod
 | 
						|
    def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
 | 
						|
        assert names
 | 
						|
 | 
						|
        def func(modelcls: type[Model]):
 | 
						|
            for name in names:
 | 
						|
                cls._model_classes[name] = modelcls
 | 
						|
            return modelcls
 | 
						|
        return func
 | 
						|
 | 
						|
    @classmethod
 | 
						|
    def from_model_architecture(cls, arch):
 | 
						|
        try:
 | 
						|
            return cls._model_classes[arch]
 | 
						|
        except KeyError:
 | 
						|
            raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
 | 
						|
 | 
						|
    def _is_model_safetensors(self) -> bool:
 | 
						|
        return Model.count_model_parts(self.dir_model, ".safetensors") > 0
 | 
						|
 | 
						|
    def _get_part_names(self):
 | 
						|
        if self.is_safetensors:
 | 
						|
            if self.num_parts == 1:  # there's only one .safetensors file
 | 
						|
                return ("model.safetensors",)
 | 
						|
            return (f"model-{n:05}-of-{self.num_parts:05}.safetensors" for n in range(1, self.num_parts + 1))
 | 
						|
 | 
						|
        if self.num_parts == 1:  # there's only one .bin file
 | 
						|
            return ("pytorch_model.bin",)
 | 
						|
        return (f"pytorch_model-{n:05}-of-{self.num_parts:05}.bin" for n in range(1, self.num_parts + 1))
 | 
						|
 | 
						|
    def _set_vocab_gpt2(self):
 | 
						|
        dir_model = self.dir_model
 | 
						|
        hparams = self.hparams
 | 
						|
        tokens: list[str] = []
 | 
						|
        toktypes: list[int] = []
 | 
						|
 | 
						|
        from transformers import AutoTokenizer
 | 
						|
        tokenizer = AutoTokenizer.from_pretrained(dir_model)
 | 
						|
        vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
 | 
						|
        assert max(tokenizer.vocab.values()) < vocab_size
 | 
						|
 | 
						|
        reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
 | 
						|
        added_vocab = tokenizer.get_added_vocab()
 | 
						|
 | 
						|
        for i in range(vocab_size):
 | 
						|
            if i not in reverse_vocab:
 | 
						|
                tokens.append(f"[PAD{i}]")
 | 
						|
                toktypes.append(gguf.TokenType.USER_DEFINED)
 | 
						|
            elif reverse_vocab[i] in added_vocab:
 | 
						|
                tokens.append(reverse_vocab[i])
 | 
						|
                if tokenizer.added_tokens_decoder[i].special:
 | 
						|
                    toktypes.append(gguf.TokenType.CONTROL)
 | 
						|
                else:
 | 
						|
                    toktypes.append(gguf.TokenType.USER_DEFINED)
 | 
						|
            else:
 | 
						|
                tokens.append(reverse_vocab[i])
 | 
						|
                toktypes.append(gguf.TokenType.NORMAL)
 | 
						|
 | 
						|
        self.gguf_writer.add_tokenizer_model("gpt2")
 | 
						|
        self.gguf_writer.add_token_list(tokens)
 | 
						|
        self.gguf_writer.add_token_types(toktypes)
 | 
						|
 | 
						|
        special_vocab = gguf.SpecialVocab(dir_model, load_merges=True)
 | 
						|
        special_vocab.add_to_gguf(self.gguf_writer)
 | 
						|
 | 
						|
    def _set_vocab_qwen(self):
 | 
						|
        dir_model = self.dir_model
 | 
						|
        hparams = self.hparams
 | 
						|
        tokens: list[str] = []
 | 
						|
        toktypes: list[int] = []
 | 
						|
 | 
						|
        from transformers import AutoTokenizer
 | 
						|
        tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
 | 
						|
        vocab_size = hparams["vocab_size"]
 | 
						|
        assert max(tokenizer.get_vocab().values()) < vocab_size
 | 
						|
 | 
						|
        merges = []
 | 
						|
        vocab = {}
 | 
						|
        mergeable_ranks = tokenizer.mergeable_ranks
 | 
						|
        for token, rank in mergeable_ranks.items():
 | 
						|
            vocab[QwenModel.token_bytes_to_string(token)] = rank
 | 
						|
            if len(token) == 1:
 | 
						|
                continue
 | 
						|
            merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
 | 
						|
            assert len(merged) == 2
 | 
						|
            merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
 | 
						|
 | 
						|
        # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
 | 
						|
        added_vocab = tokenizer.special_tokens
 | 
						|
        reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in (vocab | added_vocab).items()}
 | 
						|
 | 
						|
        for i in range(vocab_size):
 | 
						|
            if i not in reverse_vocab:
 | 
						|
                tokens.append(f"[PAD{i}]")
 | 
						|
                toktypes.append(gguf.TokenType.USER_DEFINED)
 | 
						|
            elif reverse_vocab[i] in added_vocab:
 | 
						|
                tokens.append(reverse_vocab[i])
 | 
						|
                toktypes.append(gguf.TokenType.CONTROL)
 | 
						|
            else:
 | 
						|
                tokens.append(reverse_vocab[i])
 | 
						|
                toktypes.append(gguf.TokenType.NORMAL)
 | 
						|
 | 
						|
        self.gguf_writer.add_tokenizer_model("gpt2")
 | 
						|
        self.gguf_writer.add_token_list(tokens)
 | 
						|
        self.gguf_writer.add_token_types(toktypes)
 | 
						|
 | 
						|
        special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
 | 
						|
        special_vocab.merges = merges
 | 
						|
        # only add special tokens when they were not already loaded from config.json
 | 
						|
        if len(special_vocab.special_token_ids) == 0:
 | 
						|
            special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
 | 
						|
            special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
 | 
						|
        # this one is usually not in config.json anyway
 | 
						|
        special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
 | 
						|
        special_vocab.add_to_gguf(self.gguf_writer)
 | 
						|
 | 
						|
    def _set_vocab_sentencepiece(self):
 | 
						|
        from sentencepiece import SentencePieceProcessor
 | 
						|
 | 
						|
        tokenizer_path = self.dir_model / 'tokenizer.model'
 | 
						|
 | 
						|
        tokens: list[bytes] = []
 | 
						|
        scores: list[float] = []
 | 
						|
        toktypes: list[int] = []
 | 
						|
 | 
						|
        if not tokenizer_path.is_file():
 | 
						|
            raise FileNotFoundError(f"File not found: {tokenizer_path}")
 | 
						|
 | 
						|
        tokenizer = SentencePieceProcessor(str(tokenizer_path))
 | 
						|
        vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
 | 
						|
 | 
						|
        for token_id in range(tokenizer.vocab_size()):
 | 
						|
            piece = tokenizer.id_to_piece(token_id)
 | 
						|
            text = piece.encode("utf-8")
 | 
						|
            score = tokenizer.get_score(token_id)
 | 
						|
 | 
						|
            toktype = SentencePieceTokenTypes.NORMAL
 | 
						|
            if tokenizer.is_unknown(token_id):
 | 
						|
                toktype = SentencePieceTokenTypes.UNKNOWN
 | 
						|
            elif tokenizer.is_control(token_id):
 | 
						|
                toktype = SentencePieceTokenTypes.CONTROL
 | 
						|
            elif tokenizer.is_unused(token_id):
 | 
						|
                toktype = SentencePieceTokenTypes.UNUSED
 | 
						|
            elif tokenizer.is_byte(token_id):
 | 
						|
                toktype = SentencePieceTokenTypes.BYTE
 | 
						|
 | 
						|
            tokens.append(text)
 | 
						|
            scores.append(score)
 | 
						|
            toktypes.append(toktype)
 | 
						|
 | 
						|
        added_tokens_file = self.dir_model / 'added_tokens.json'
 | 
						|
        if added_tokens_file.is_file():
 | 
						|
            with open(added_tokens_file, "r", encoding="utf-8") as f:
 | 
						|
                added_tokens_json = json.load(f)
 | 
						|
 | 
						|
                for key in added_tokens_json:
 | 
						|
                    key = key.encode("utf-8")
 | 
						|
                    if key not in tokens:
 | 
						|
                        tokens.append(key)
 | 
						|
                        scores.append(-1000.0)
 | 
						|
                        toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
 | 
						|
 | 
						|
        assert len(tokens) == vocab_size
 | 
						|
 | 
						|
        self.gguf_writer.add_tokenizer_model("llama")
 | 
						|
        self.gguf_writer.add_token_list(tokens)
 | 
						|
        self.gguf_writer.add_token_scores(scores)
 | 
						|
        self.gguf_writer.add_token_types(toktypes)
 | 
						|
 | 
						|
        special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
 | 
						|
        special_vocab.add_to_gguf(self.gguf_writer)
 | 
						|
 | 
						|
    def _set_vocab_llama_hf(self):
 | 
						|
        vocab = LlamaHfVocab(self.dir_model)
 | 
						|
        tokens = []
 | 
						|
        scores = []
 | 
						|
        toktypes = []
 | 
						|
 | 
						|
        for text, score, toktype in vocab.all_tokens():
 | 
						|
            tokens.append(text)
 | 
						|
            scores.append(score)
 | 
						|
            toktypes.append(toktype)
 | 
						|
 | 
						|
        assert len(tokens) == vocab.vocab_size
 | 
						|
 | 
						|
        self.gguf_writer.add_tokenizer_model("llama")
 | 
						|
        self.gguf_writer.add_token_list(tokens)
 | 
						|
        self.gguf_writer.add_token_scores(scores)
 | 
						|
        self.gguf_writer.add_token_types(toktypes)
 | 
						|
 | 
						|
        special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
 | 
						|
        special_vocab.add_to_gguf(self.gguf_writer)
 | 
						|
 | 
						|
 | 
						|
@Model.register("GPTNeoXForCausalLM")
 | 
						|
class GPTNeoXModel(Model):
 | 
						|
    model_arch = gguf.MODEL_ARCH.GPTNEOX
 | 
						|
 | 
						|
    def set_gguf_parameters(self):
 | 
						|
        block_count = self.hparams["num_hidden_layers"]
 | 
						|
 | 
						|
        self.gguf_writer.add_name(self.dir_model.name)
 | 
						|
        self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
 | 
						|
        self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
 | 
						|
        self.gguf_writer.add_block_count(block_count)
 | 
						|
        self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
 | 
						|
        self.gguf_writer.add_rope_dimension_count(
 | 
						|
            int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
 | 
						|
        )
 | 
						|
        self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
 | 
						|
        self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
 | 
						|
        self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
 | 
						|
 | 
						|
 | 
						|
@Model.register("BloomForCausalLM")
 | 
						|
class BloomModel(Model):
 | 
						|
    model_arch = gguf.MODEL_ARCH.BLOOM
 | 
						|
 | 
						|
    def set_gguf_parameters(self):
 | 
						|
        self.gguf_writer.add_name("Bloom")
 | 
						|
        n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
 | 
						|
        n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
 | 
						|
        self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
 | 
						|
        self.gguf_writer.add_embedding_length(n_embed)
 | 
						|
        self.gguf_writer.add_feed_forward_length(4 * n_embed)
 | 
						|
        self.gguf_writer.add_block_count(self.hparams["n_layer"])
 | 
						|
        self.gguf_writer.add_head_count(n_head)
 | 
						|
        self.gguf_writer.add_head_count_kv(n_head)
 | 
						|
        self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
 | 
						|
        self.gguf_writer.add_file_type(self.ftype)
 | 
						|
 | 
						|
    def write_tensors(self):
 | 
						|
        block_count = self.hparams["n_layer"]
 | 
						|
        tensors = dict(self.get_tensors())
 | 
						|
        tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
 | 
						|
        has_lm_head = True
 | 
						|
        n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
 | 
						|
        n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
 | 
						|
 | 
						|
        for name, data_torch in tensors.items():
 | 
						|
            if "lm_head.weight" not in tensors.keys() and "output.weight" not in tensors.keys():
 | 
						|
                has_lm_head = False
 | 
						|
 | 
						|
            name = re.sub(r'transformer\.', '', name)
 | 
						|
 | 
						|
            old_dtype = data_torch.dtype
 | 
						|
 | 
						|
            # convert any unsupported data types to float32
 | 
						|
            if data_torch.dtype not in (torch.float16, torch.float32):
 | 
						|
                data_torch = data_torch.to(torch.float32)
 | 
						|
 | 
						|
            data = data_torch.squeeze().numpy()
 | 
						|
 | 
						|
            if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
 | 
						|
                # Map bloom-style qkv_linear to gpt-style qkv_linear
 | 
						|
                # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252  # noqa
 | 
						|
                # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312  # noqa
 | 
						|
                qkv_weights = data.reshape((n_head, 3, n_embed // n_head, n_embed))
 | 
						|
                data = np.concatenate(
 | 
						|
                    (
 | 
						|
                        qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
 | 
						|
                        qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
 | 
						|
                        qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
 | 
						|
                    ),
 | 
						|
                    axis=0,
 | 
						|
                )
 | 
						|
                print("re-format attention.linear_qkv.weight")
 | 
						|
            elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
 | 
						|
                qkv_bias = data.reshape((n_head, 3, n_embed // n_head))
 | 
						|
                data = np.concatenate(
 | 
						|
                    (
 | 
						|
                        qkv_bias[:, 0, :].reshape((n_embed,)),
 | 
						|
                        qkv_bias[:, 1, :].reshape((n_embed,)),
 | 
						|
                        qkv_bias[:, 2, :].reshape((n_embed,)),
 | 
						|
                    ),
 | 
						|
                    axis=0,
 | 
						|
                )
 | 
						|
                print("re-format attention.linear_qkv.bias")
 | 
						|
 | 
						|
            # map tensor names
 | 
						|
            new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
 | 
						|
            if new_name is None:
 | 
						|
                print(f"Can not map tensor {name!r}")
 | 
						|
                sys.exit()
 | 
						|
 | 
						|
            n_dims = len(data.shape)
 | 
						|
            data_dtype = data.dtype
 | 
						|
 | 
						|
            # if f32 desired, convert any float16 to float32
 | 
						|
            if self.ftype == 0 and data_dtype == np.float16:
 | 
						|
                data = data.astype(np.float32)
 | 
						|
 | 
						|
            # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
 | 
						|
            if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
 | 
						|
                data = data.astype(np.float32)
 | 
						|
 | 
						|
            # if f16 desired, convert any float32 2-dim weight tensors to float16
 | 
						|
            if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
 | 
						|
                data = data.astype(np.float16)
 | 
						|
 | 
						|
            print(f"=> {new_name}, shape = {data.shape}, {old_dtype} --> {data.dtype}")
 | 
						|
 | 
						|
            self.gguf_writer.add_tensor(new_name, data)
 | 
						|
 | 
						|
            if not has_lm_head and name == "word_embeddings.weight":
 | 
						|
                self.gguf_writer.add_tensor("output.weight", data)
 | 
						|
                print(name, f"=> output.weight, shape = {data.shape}, {old_dtype} --> {data.dtype}")
 | 
						|
 | 
						|
 | 
						|
@Model.register("MPTForCausalLM")
 | 
						|
class MPTModel(Model):
 | 
						|
    model_arch = gguf.MODEL_ARCH.MPT
 | 
						|
 | 
						|
    def set_vocab(self):
 | 
						|
        try:
 | 
						|
            self._set_vocab_gpt2()
 | 
						|
        except Exception:
 | 
						|
            # Fallback for SEA-LION model
 | 
						|
            self._set_vocab_sentencepiece()
 | 
						|
            self.gguf_writer.add_add_bos_token(False)
 | 
						|
            self.gguf_writer.add_pad_token_id(3)
 | 
						|
            self.gguf_writer.add_eos_token_id(1)
 | 
						|
            self.gguf_writer.add_unk_token_id(0)
 | 
						|
 | 
						|
    def set_gguf_parameters(self):
 | 
						|
        block_count = self.hparams["n_layers"]
 | 
						|
        self.gguf_writer.add_name(self.dir_model.name)
 | 
						|
        self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
 | 
						|
        self.gguf_writer.add_embedding_length(self.hparams["d_model"])
 | 
						|
        self.gguf_writer.add_block_count(block_count)
 | 
						|
        self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
 | 
						|
        self.gguf_writer.add_head_count(self.hparams["n_heads"])
 | 
						|
        if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
 | 
						|
            self.gguf_writer.add_head_count_kv(kv_n_heads)
 | 
						|
        self.gguf_writer.add_layer_norm_eps(1e-5)
 | 
						|
        if self.hparams["attn_config"]["clip_qkv"] is not None:
 | 
						|
            self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
 | 
						|
        if self.hparams["attn_config"]["alibi"]:
 | 
						|
            self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
 | 
						|
        else:
 | 
						|
            self.gguf_writer.add_max_alibi_bias(0.0)
 | 
						|
 | 
						|
    def write_tensors(self):
 | 
						|
        block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers"))
 | 
						|
        tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
 | 
						|
        for name, data_torch in self.get_tensors():
 | 
						|
            # we don't need these
 | 
						|
            if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
 | 
						|
                continue
 | 
						|
 | 
						|
            old_dtype = data_torch.dtype
 | 
						|
 | 
						|
            # convert any unsupported data types to float32
 | 
						|
            if data_torch.dtype not in (torch.float16, torch.float32):
 | 
						|
                data_torch = data_torch.to(torch.float32)
 | 
						|
 | 
						|
            data = data_torch.squeeze().numpy()
 | 
						|
 | 
						|
            # map tensor names
 | 
						|
            if "scales" in name:
 | 
						|
                new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias", ".scales"))
 | 
						|
                if new_name is not None:
 | 
						|
                    new_name = new_name.replace("scales", "act.scales")
 | 
						|
            else:
 | 
						|
                new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
 | 
						|
            if new_name is None:
 | 
						|
                print(f"Can not map tensor {name!r}")
 | 
						|
                sys.exit()
 | 
						|
 | 
						|
            n_dims = len(data.shape)
 | 
						|
            data_dtype = data.dtype
 | 
						|
 | 
						|
            # if f32 desired, convert any float16 to float32
 | 
						|
            if self.ftype == 0 and data_dtype == np.float16:
 | 
						|
                data = data.astype(np.float32)
 | 
						|
 | 
						|
            # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
 | 
						|
            if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
 | 
						|
                data = data.astype(np.float32)
 | 
						|
 | 
						|
            # if f16 desired, convert any float32 2-dim weight tensors to float16
 | 
						|
            if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
 | 
						|
                data = data.astype(np.float16)
 | 
						|
 | 
						|
            print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
 | 
						|
 | 
						|
            self.gguf_writer.add_tensor(new_name, data)
 | 
						|
 | 
						|
 | 
						|
@Model.register("OrionForCausalLM")
 | 
						|
class OrionModel(Model):
 | 
						|
    model_arch = gguf.MODEL_ARCH.ORION
 | 
						|
 | 
						|
    def set_vocab(self):
 | 
						|
        self._set_vocab_sentencepiece()
 | 
						|
 | 
						|
    def set_gguf_parameters(self):
 | 
						|
        block_count = self.hparams["num_hidden_layers"]
 | 
						|
        head_count = self.hparams["num_attention_heads"]
 | 
						|
        head_count_kv = self.hparams.get("num_key_value_heads", head_count)
 | 
						|
        hf_repo = self.hparams.get("_name_or_path", "")
 | 
						|
 | 
						|
        ctx_length = 0
 | 
						|
        if "max_sequence_length" in self.hparams:
 | 
						|
            ctx_length = self.hparams["max_sequence_length"]
 | 
						|
        elif "max_position_embeddings" in self.hparams:
 | 
						|
            ctx_length = self.hparams["max_position_embeddings"]
 | 
						|
        elif "model_max_length" in self.hparams:
 | 
						|
            ctx_length = self.hparams["model_max_length"]
 | 
						|
        else:
 | 
						|
            print("gguf: can not find ctx length parameter.")
 | 
						|
            sys.exit()
 | 
						|
 | 
						|
        self.gguf_writer.add_file_type(self.ftype)
 | 
						|
        self.gguf_writer.add_name(self.dir_model.name)
 | 
						|
        self.gguf_writer.add_source_hf_repo(hf_repo)
 | 
						|
        self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
 | 
						|
        self.gguf_writer.add_context_length(ctx_length)
 | 
						|
        self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
 | 
						|
        self.gguf_writer.add_block_count(block_count)
 | 
						|
        self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
 | 
						|
        self.gguf_writer.add_head_count(head_count)
 | 
						|
        self.gguf_writer.add_head_count_kv(head_count_kv)
 | 
						|
        # note: config provides rms norm but it is actually layer norm
 | 
						|
        # ref:  https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
 | 
						|
        self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
 | 
						|
 | 
						|
    def write_tensors(self):
 | 
						|
        # Collect tensors from generator object
 | 
						|
        model_kv = dict(self.get_tensors())
 | 
						|
        block_count = self.hparams["num_hidden_layers"]
 | 
						|
        tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
 | 
						|
 | 
						|
        for name, data_torch in model_kv.items():
 | 
						|
            # we don't need these
 | 
						|
            if name.endswith(".rotary_emb.inv_freq"):
 | 
						|
                continue
 | 
						|
 | 
						|
            old_dtype = data_torch.dtype
 | 
						|
 | 
						|
            # convert any unsupported data types to float32
 | 
						|
            if data_torch.dtype not in (torch.float16, torch.float32):
 | 
						|
                data_torch = data_torch.to(torch.float32)
 | 
						|
 | 
						|
            data = data_torch.squeeze().numpy()
 | 
						|
 | 
						|
            # map tensor names
 | 
						|
            new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
 | 
						|
            if new_name is None:
 | 
						|
                print(f"Can not map tensor {name!r}")
 | 
						|
                sys.exit()
 | 
						|
 | 
						|
            n_dims = len(data.shape)
 | 
						|
            data_dtype = data.dtype
 | 
						|
 | 
						|
            # if f32 desired, convert any float16 to float32
 | 
						|
            if self.ftype == 0 and data_dtype == np.float16:
 | 
						|
                data = data.astype(np.float32)
 | 
						|
 | 
						|
            # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
 | 
						|
            if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
 | 
						|
                data = data.astype(np.float32)
 | 
						|
 | 
						|
            # if f16 desired, convert any float32 2-dim weight tensors to float16
 | 
						|
            if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
 | 
						|
                data = data.astype(np.float16)
 | 
						|
 | 
						|
            print(f"{name} -> {new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
 | 
						|
            self.gguf_writer.add_tensor(new_name, data)
 | 
						|
 | 
						|
 | 
						|
@Model.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
 | 
						|
class BaichuanModel(Model):
 | 
						|
    model_arch = gguf.MODEL_ARCH.BAICHUAN
 | 
						|
 | 
						|
    def set_vocab(self):
 | 
						|
        self._set_vocab_sentencepiece()
 | 
						|
 | 
						|
    def set_gguf_parameters(self):
 | 
						|
        block_count = self.hparams["num_hidden_layers"]
 | 
						|
        head_count = self.hparams["num_attention_heads"]
 | 
						|
        head_count_kv = self.hparams.get("num_key_value_heads", head_count)
 | 
						|
        hf_repo = self.hparams.get("_name_or_path", "")
 | 
						|
 | 
						|
        ctx_length = 0
 | 
						|
        if "max_sequence_length" in self.hparams:
 | 
						|
            ctx_length = self.hparams["max_sequence_length"]
 | 
						|
        elif "max_position_embeddings" in self.hparams:
 | 
						|
            ctx_length = self.hparams["max_position_embeddings"]
 | 
						|
        elif "model_max_length" in self.hparams:
 | 
						|
            ctx_length = self.hparams["model_max_length"]
 | 
						|
        else:
 | 
						|
            print("gguf: can not find ctx length parameter.")
 | 
						|
            sys.exit()
 | 
						|
 | 
						|
        self.gguf_writer.add_name(self.dir_model.name)
 | 
						|
        self.gguf_writer.add_source_hf_repo(hf_repo)
 | 
						|
        self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
 | 
						|
        self.gguf_writer.add_context_length(ctx_length)
 | 
						|
        self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
 | 
						|
        self.gguf_writer.add_block_count(block_count)
 | 
						|
        self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
 | 
						|
        self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
 | 
						|
        self.gguf_writer.add_head_count(head_count)
 | 
						|
        self.gguf_writer.add_head_count_kv(head_count_kv)
 | 
						|
        self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
 | 
						|
 | 
						|
        if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
 | 
						|
            if self.hparams["rope_scaling"].get("type") == "linear":
 | 
						|
                self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
 | 
						|
                self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
 | 
						|
 | 
						|
    def write_tensors(self):
 | 
						|
        # Collect tensors from generator object
 | 
						|
        model_kv = dict(self.get_tensors())
 | 
						|
        block_count = self.hparams["num_hidden_layers"]
 | 
						|
        head_count = self.hparams["num_attention_heads"]
 | 
						|
        tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
 | 
						|
        head_count_kv = self.hparams.get("num_key_value_heads", head_count)
 | 
						|
 | 
						|
        for i in range(block_count):
 | 
						|
            if (w := model_kv.get(f"model.layers.{i}.self_attn.W_pack.weight")) is not None:
 | 
						|
                print(f"Unpacking and permuting layer {i}")
 | 
						|
                model_kv[f"model.layers.{i}.self_attn.q_proj.weight"] = \
 | 
						|
                    self._reverse_hf_permute_part(w, 0, head_count, head_count)
 | 
						|
                model_kv[f"model.layers.{i}.self_attn.k_proj.weight"] = \
 | 
						|
                    self._reverse_hf_permute_part(w, 1, head_count, head_count_kv)
 | 
						|
                model_kv[f"model.layers.{i}.self_attn.v_proj.weight"] = \
 | 
						|
                    self._reverse_hf_part(w, 2)
 | 
						|
                del model_kv[f"model.layers.{i}.self_attn.W_pack.weight"]
 | 
						|
 | 
						|
        for name, data_torch in model_kv.items():
 | 
						|
            # we don't need these
 | 
						|
            if name.endswith(".rotary_emb.inv_freq"):
 | 
						|
                continue
 | 
						|
 | 
						|
            old_dtype = data_torch.dtype
 | 
						|
 | 
						|
            # convert any unsupported data types to float32
 | 
						|
            if data_torch.dtype not in (torch.float16, torch.float32):
 | 
						|
                data_torch = data_torch.to(torch.float32)
 | 
						|
 | 
						|
            data = data_torch.squeeze().numpy()
 | 
						|
 | 
						|
            # map tensor names
 | 
						|
            new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
 | 
						|
            if new_name is None:
 | 
						|
                print(f"Can not map tensor {name!r}")
 | 
						|
                sys.exit()
 | 
						|
 | 
						|
            n_dims = len(data.shape)
 | 
						|
            data_dtype = data.dtype
 | 
						|
 | 
						|
            # if f32 desired, convert any float16 to float32
 | 
						|
            if self.ftype == 0 and data_dtype == np.float16:
 | 
						|
                data = data.astype(np.float32)
 | 
						|
 | 
						|
            # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
 | 
						|
            if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
 | 
						|
                data = data.astype(np.float32)
 | 
						|
 | 
						|
            # if f16 desired, convert any float32 2-dim weight tensors to float16
 | 
						|
            if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
 | 
						|
                data = data.astype(np.float16)
 | 
						|
 | 
						|
            print(f"{name} -> {new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
 | 
						|
            self.gguf_writer.add_tensor(new_name, data)
 | 
						|
 | 
						|
    def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
 | 
						|
        if n_kv_head is not None and n_head != n_kv_head:
 | 
						|
            n_head //= n_kv_head
 | 
						|
 | 
						|
        return (
 | 
						|
            weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
 | 
						|
            .swapaxes(1, 2)
 | 
						|
            .reshape(weights.shape)
 | 
						|
        )
 | 
						|
 | 
						|
    def _reverse_hf_permute_part(
 | 
						|
        self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
 | 
						|
    ) -> Tensor:
 | 
						|
        r = weights.shape[0] // 3
 | 
						|
        return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
 | 
						|
 | 
						|
    def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
 | 
						|
        r = weights.shape[0] // 3
 | 
						|
        return weights[r * n_part:r * n_part + r, ...]
 | 
						|
 | 
						|
 | 
						|
@Model.register("XverseForCausalLM")
 | 
						|
class XverseModel(Model):
 | 
						|
    model_arch = gguf.MODEL_ARCH.XVERSE
 | 
						|
 | 
						|
    def set_vocab(self):
 | 
						|
        assert (self.dir_model / "tokenizer.json").is_file()
 | 
						|
        dir_model = self.dir_model
 | 
						|
        hparams = self.hparams
 | 
						|
 | 
						|
        tokens: list[bytearray] = []
 | 
						|
        toktypes: list[int] = []
 | 
						|
 | 
						|
        from transformers import AutoTokenizer
 | 
						|
        tokenizer = AutoTokenizer.from_pretrained(dir_model)
 | 
						|
        vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
 | 
						|
        assert max(tokenizer.vocab.values()) < vocab_size
 | 
						|
 | 
						|
        reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
 | 
						|
        added_vocab = tokenizer.get_added_vocab()
 | 
						|
 | 
						|
        for token_id in range(vocab_size):
 | 
						|
            token_text = reverse_vocab[token_id].encode('utf-8')
 | 
						|
            # replace "\x00" to string with length > 0
 | 
						|
            if token_text == b"\x00":
 | 
						|
                toktype = gguf.TokenType.BYTE  # special
 | 
						|
                token_text = f"<{token_text}>".encode('utf-8')
 | 
						|
            elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
 | 
						|
                toktype = gguf.TokenType.BYTE  # special
 | 
						|
            elif reverse_vocab[token_id] in added_vocab:
 | 
						|
                if tokenizer.added_tokens_decoder[token_id].special:
 | 
						|
                    toktype = gguf.TokenType.CONTROL
 | 
						|
                else:
 | 
						|
                    toktype = gguf.TokenType.USER_DEFINED
 | 
						|
            else:
 | 
						|
                toktype = gguf.TokenType.NORMAL
 | 
						|
 | 
						|
            tokens.append(token_text)
 | 
						|
            toktypes.append(toktype)
 | 
						|
 | 
						|
        self.gguf_writer.add_tokenizer_model("llama")
 | 
						|
        self.gguf_writer.add_token_list(tokens)
 | 
						|
        self.gguf_writer.add_token_types(toktypes)
 | 
						|
 | 
						|
        special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
 | 
						|
        special_vocab.add_to_gguf(self.gguf_writer)
 | 
						|
 | 
						|
    def set_gguf_parameters(self):
 | 
						|
        block_count = self.hparams["num_hidden_layers"]
 | 
						|
        head_count = self.hparams["num_attention_heads"]
 | 
						|
        head_count_kv = self.hparams.get("num_key_value_heads", head_count)
 | 
						|
        hf_repo = self.hparams.get("_name_or_path", "")
 | 
						|
 | 
						|
        ctx_length = 0
 | 
						|
        if "max_sequence_length" in self.hparams:
 | 
						|
            ctx_length = self.hparams["max_sequence_length"]
 | 
						|
        elif "max_position_embeddings" in self.hparams:
 | 
						|
            ctx_length = self.hparams["max_position_embeddings"]
 | 
						|
        elif "model_max_length" in self.hparams:
 | 
						|
            ctx_length = self.hparams["model_max_length"]
 | 
						|
        else:
 | 
						|
            print("gguf: can not find ctx length parameter.")
 | 
						|
            sys.exit()
 | 
						|
 | 
						|
        self.gguf_writer.add_name(self.dir_model.name)
 | 
						|
        self.gguf_writer.add_source_hf_repo(hf_repo)
 | 
						|
        self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
 | 
						|
        self.gguf_writer.add_context_length(ctx_length)
 | 
						|
        self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
 | 
						|
        self.gguf_writer.add_block_count(block_count)
 | 
						|
        self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
 | 
						|
        self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
 | 
						|
        self.gguf_writer.add_head_count(head_count)
 | 
						|
        self.gguf_writer.add_head_count_kv(head_count_kv)
 | 
						|
        self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
 | 
						|
 | 
						|
        if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
 | 
						|
            if self.hparams["rope_scaling"].get("type") == "linear":
 | 
						|
                self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
 | 
						|
                self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
 | 
						|
 | 
						|
    def write_tensors(self):
 | 
						|
        # Collect tensors from generator object
 | 
						|
        model_kv = dict(self.get_tensors())
 | 
						|
        block_count = self.hparams["num_hidden_layers"]
 | 
						|
        head_count = self.hparams["num_attention_heads"]
 | 
						|
        tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
 | 
						|
        head_count_kv = self.hparams.get("num_key_value_heads", head_count)
 | 
						|
 | 
						|
        for name, data_torch in model_kv.items():
 | 
						|
            # we don't need these
 | 
						|
            if name.endswith(".rotary_emb.inv_freq"):
 | 
						|
                continue
 | 
						|
 | 
						|
            old_dtype = data_torch.dtype
 | 
						|
 | 
						|
            # convert any unsupported data types to float32
 | 
						|
            if data_torch.dtype not in (torch.float16, torch.float32):
 | 
						|
                data_torch = data_torch.to(torch.float32)
 | 
						|
 | 
						|
            # HF models permute some of the tensors, so we need to undo that
 | 
						|
            if name.endswith(("q_proj.weight")):
 | 
						|
                data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
 | 
						|
            if name.endswith(("k_proj.weight")):
 | 
						|
                data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
 | 
						|
 | 
						|
            data = data_torch.squeeze().numpy()
 | 
						|
 | 
						|
            # map tensor names
 | 
						|
            new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
 | 
						|
            if new_name is None:
 | 
						|
                print(f"Can not map tensor {name!r}")
 | 
						|
                sys.exit()
 | 
						|
 | 
						|
            n_dims = len(data.shape)
 | 
						|
            data_dtype = data.dtype
 | 
						|
 | 
						|
            # if f32 desired, convert any float16 to float32
 | 
						|
            if self.ftype == 0 and data_dtype == np.float16:
 | 
						|
                data = data.astype(np.float32)
 | 
						|
 | 
						|
            # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
 | 
						|
            if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
 | 
						|
                data = data.astype(np.float32)
 | 
						|
 | 
						|
            # if f16 desired, convert any float32 2-dim weight tensors to float16
 | 
						|
            if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
 | 
						|
                data = data.astype(np.float16)
 | 
						|
 | 
						|
            print(f"{name} -> {new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
 | 
						|
            self.gguf_writer.add_tensor(new_name, data)
 | 
						|
 | 
						|
    def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
 | 
						|
        if n_kv_head is not None and n_head != n_kv_head:
 | 
						|
            n_head //= n_kv_head
 | 
						|
 | 
						|
        return (
 | 
						|
            weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
 | 
						|
            .swapaxes(1, 2)
 | 
						|
            .reshape(weights.shape)
 | 
						|
        )
 | 
						|
 | 
						|
 | 
						|
@Model.register("FalconForCausalLM", "RWForCausalLM")
 | 
						|
class FalconModel(Model):
 | 
						|
    model_arch = gguf.MODEL_ARCH.FALCON
 | 
						|
 | 
						|
    def set_gguf_parameters(self):
 | 
						|
        block_count = self.hparams.get("num_hidden_layers")
 | 
						|
        if block_count is None:
 | 
						|
            block_count = self.hparams["n_layer"]  # old name
 | 
						|
 | 
						|
        n_head = self.hparams.get("num_attention_heads")
 | 
						|
        if n_head is None:
 | 
						|
            n_head = self.hparams["n_head"]  # old name
 | 
						|
 | 
						|
        n_head_kv = self.hparams.get("num_kv_heads")
 | 
						|
        if n_head_kv is None:
 | 
						|
            n_head_kv = self.hparams.get("n_head_kv", 1)  # old name
 | 
						|
 | 
						|
        self.gguf_writer.add_name("Falcon")
 | 
						|
        self.gguf_writer.add_context_length(2048)  # not in config.json
 | 
						|
        self.gguf_writer.add_tensor_data_layout("jploski")  # qkv tensor transform
 | 
						|
        self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
 | 
						|
        self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
 | 
						|
        self.gguf_writer.add_block_count(block_count)
 | 
						|
        self.gguf_writer.add_head_count(n_head)
 | 
						|
        self.gguf_writer.add_head_count_kv(n_head_kv)
 | 
						|
        self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
 | 
						|
        self.gguf_writer.add_file_type(self.ftype)
 | 
						|
 | 
						|
    def write_tensors(self):
 | 
						|
        block_count = self.hparams.get("num_hidden_layers")
 | 
						|
        if block_count is None:
 | 
						|
            block_count = self.hparams["n_layer"]  # old name
 | 
						|
 | 
						|
        n_head = self.hparams.get("num_attention_heads")
 | 
						|
        if n_head is None:
 | 
						|
            n_head = self.hparams["n_head"]  # old name
 | 
						|
 | 
						|
        n_head_kv = self.hparams.get("num_kv_heads")
 | 
						|
        if n_head_kv is None:
 | 
						|
            n_head_kv = self.hparams.get("n_head_kv", 1)  # old name
 | 
						|
 | 
						|
        head_dim = self.hparams["hidden_size"] // n_head
 | 
						|
        tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
 | 
						|
 | 
						|
        for name, data_torch in self.get_tensors():
 | 
						|
            old_dtype = data_torch.dtype
 | 
						|
 | 
						|
            # convert any unsupported data types to float32
 | 
						|
            if data_torch.dtype not in (torch.float16, torch.float32):
 | 
						|
                data_torch = data_torch.to(torch.float32)
 | 
						|
 | 
						|
            # QKV tensor transform
 | 
						|
            # The original query_key_value tensor contains n_head_kv "kv groups",
 | 
						|
            # each consisting of n_head/n_head_kv query weights followed by one key
 | 
						|
            # and one value weight (shared by all query heads in the kv group).
 | 
						|
            # This layout makes it a big pain to work with in GGML.
 | 
						|
            # So we rearrange them here,, so that we have n_head query weights
 | 
						|
            # followed by n_head_kv key weights followed by n_head_kv value weights,
 | 
						|
            # in contiguous fashion.
 | 
						|
            # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
 | 
						|
 | 
						|
            if "query_key_value" in name:
 | 
						|
                qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
 | 
						|
                q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
 | 
						|
                k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
 | 
						|
                v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
 | 
						|
                data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
 | 
						|
 | 
						|
            data = data_torch.squeeze().numpy()
 | 
						|
 | 
						|
            # map tensor names
 | 
						|
            new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
 | 
						|
            if new_name is None:
 | 
						|
                print(f"Can not map tensor {name!r}")
 | 
						|
                sys.exit()
 | 
						|
 | 
						|
            n_dims = len(data.shape)
 | 
						|
            data_dtype = data.dtype
 | 
						|
 | 
						|
            # if f32 desired, convert any float16 to float32
 | 
						|
            if self.ftype == 0 and data_dtype == np.float16:
 | 
						|
                data = data.astype(np.float32)
 | 
						|
 | 
						|
            # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
 | 
						|
            if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
 | 
						|
                data = data.astype(np.float32)
 | 
						|
 | 
						|
            # if f16 desired, convert any float32 2-dim weight tensors to float16
 | 
						|
            if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
 | 
						|
                data = data.astype(np.float16)
 | 
						|
 | 
						|
            print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
 | 
						|
 | 
						|
            self.gguf_writer.add_tensor(new_name, data)
 | 
						|
 | 
						|
 | 
						|
@Model.register("GPTBigCodeForCausalLM")
 | 
						|
class StarCoderModel(Model):
 | 
						|
    model_arch = gguf.MODEL_ARCH.STARCODER
 | 
						|
 | 
						|
    def set_gguf_parameters(self):
 | 
						|
        block_count = self.hparams["n_layer"]
 | 
						|
 | 
						|
        self.gguf_writer.add_name("StarCoder")
 | 
						|
        self.gguf_writer.add_context_length(self.hparams["n_positions"])
 | 
						|
        self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
 | 
						|
        self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
 | 
						|
        self.gguf_writer.add_block_count(block_count)
 | 
						|
        self.gguf_writer.add_head_count(self.hparams["n_head"])
 | 
						|
        self.gguf_writer.add_head_count_kv(1)
 | 
						|
        self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
 | 
						|
        self.gguf_writer.add_file_type(self.ftype)
 | 
						|
 | 
						|
 | 
						|
@Model.register("GPTRefactForCausalLM")
 | 
						|
class RefactModel(Model):
 | 
						|
    model_arch = gguf.MODEL_ARCH.REFACT
 | 
						|
 | 
						|
    def set_gguf_parameters(self):
 | 
						|
        hidden_dim = self.hparams["n_embd"]
 | 
						|
        inner_dim = 4 * hidden_dim
 | 
						|
        hidden_dim = int(2 * inner_dim / 3)
 | 
						|
        multiple_of = 256
 | 
						|
        ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
 | 
						|
 | 
						|
        block_count = self.hparams["n_layer"]
 | 
						|
 | 
						|
        self.gguf_writer.add_name("Refact")
 | 
						|
        # refact uses Alibi. So this is from config.json which might be used by training.
 | 
						|
        self.gguf_writer.add_context_length(self.hparams["n_positions"])
 | 
						|
        self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
 | 
						|
 | 
						|
        self.gguf_writer.add_feed_forward_length(ff_dim)
 | 
						|
        self.gguf_writer.add_block_count(block_count)
 | 
						|
        self.gguf_writer.add_head_count(self.hparams["n_head"])
 | 
						|
        self.gguf_writer.add_head_count_kv(1)
 | 
						|
        self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
 | 
						|
        self.gguf_writer.add_file_type(self.ftype)
 | 
						|
 | 
						|
    def write_tensors(self):
 | 
						|
        hidden_dim = self.hparams["n_embd"]
 | 
						|
        inner_dim = 4 * hidden_dim
 | 
						|
        hidden_dim = int(2 * inner_dim / 3)
 | 
						|
        multiple_of = 256
 | 
						|
        ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
 | 
						|
        n_head = self.hparams["n_head"]
 | 
						|
        n_head_kv = 1
 | 
						|
        head_dim = self.hparams["n_embd"] // n_head
 | 
						|
        block_count = self.hparams["n_layer"]
 | 
						|
 | 
						|
        tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
 | 
						|
 | 
						|
        tensors = dict(self.get_tensors())
 | 
						|
        for i in range(block_count):
 | 
						|
            if (w := tensors.get(f"transformer.h.{i}.attn.kv.weight")) is not None:
 | 
						|
                tensors[f"model.layers.{i}.self_attn.k_proj.weight"] = w[:n_head_kv * head_dim]
 | 
						|
                tensors[f"model.layers.{i}.self_attn.v_proj.weight"] = w[n_head_kv * head_dim:]
 | 
						|
                del tensors[f"transformer.h.{i}.attn.kv.weight"]
 | 
						|
            if (w := tensors.get(f"transformer.h.{i}.attn.q.weight")) is not None:
 | 
						|
                tensors[f"model.layers.{i}.self_attn.q_proj.weight"] = w
 | 
						|
                del tensors[f"transformer.h.{i}.attn.q.weight"]
 | 
						|
            if (w := tensors.get(f"transformer.h.{i}.mlp.gate_up_proj.weight")) is not None:
 | 
						|
                tensors[f"model.layers.{i}.mlp.gate_proj.weight"] = w[:ff_dim]
 | 
						|
                tensors[f"model.layers.{i}.mlp.up_proj.weight"] = w[ff_dim:]
 | 
						|
                del tensors[f"transformer.h.{i}.mlp.gate_up_proj.weight"]
 | 
						|
 | 
						|
        for name, data_torch in tensors.items():
 | 
						|
            old_dtype = data_torch.dtype
 | 
						|
 | 
						|
            # convert any unsupported data types to float32
 | 
						|
            if data_torch.dtype not in (torch.float16, torch.float32):
 | 
						|
                data_torch = data_torch.to(torch.float32)
 | 
						|
 | 
						|
            data = data_torch.squeeze().numpy()
 | 
						|
 | 
						|
            # map tensor names
 | 
						|
            new_name = tensor_map.get_name(name, try_suffixes=(".weight",))
 | 
						|
            if new_name is None:
 | 
						|
                print(f"Can not map tensor {name!r}")
 | 
						|
                sys.exit()
 | 
						|
 | 
						|
            n_dims = len(data.shape)
 | 
						|
            data_dtype = data.dtype
 | 
						|
 | 
						|
            # if f32 desired, convert any float16 to float32
 | 
						|
            if self.ftype == 0 and data_dtype == np.float16:
 | 
						|
                data = data.astype(np.float32)
 | 
						|
 | 
						|
            # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
 | 
						|
            if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
 | 
						|
                data = data.astype(np.float32)
 | 
						|
 | 
						|
            # if f16 desired, convert any float32 2-dim weight tensors to float16
 | 
						|
            if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
 | 
						|
                data = data.astype(np.float16)
 | 
						|
 | 
						|
            print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
 | 
						|
 | 
						|
            self.gguf_writer.add_tensor(new_name, data)
 | 
						|
 | 
						|
 | 
						|
@Model.register("PersimmonForCausalLM")
 | 
						|
class PersimmonModel(Model):
 | 
						|
    model_arch = gguf.MODEL_ARCH.PERSIMMON
 | 
						|
 | 
						|
    def set_gguf_parameters(self):
 | 
						|
        block_count = self.hparams.get("num_layers", self.hparams.get("num_hidden_layers"))
 | 
						|
        head_count = self.hparams["num_attention_heads"]
 | 
						|
        head_count_kv = head_count
 | 
						|
        hidden_size = self.hparams["hidden_size"]
 | 
						|
 | 
						|
        self.gguf_writer.add_name('persimmon-8b-chat')
 | 
						|
        self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
 | 
						|
        self.gguf_writer.add_embedding_length(hidden_size)
 | 
						|
        self.gguf_writer.add_block_count(block_count)
 | 
						|
        self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
 | 
						|
 | 
						|
        # NOTE: not sure about this change - why does the model not have a rope dimension count when it is smaller
 | 
						|
        #       than the head size?
 | 
						|
        #       ref: https://github.com/ggerganov/llama.cpp/pull/4889
 | 
						|
        # self.gguf_writer.add_rope_dimension_count(hidden_size // head_count)
 | 
						|
        self.gguf_writer.add_rope_dimension_count(hidden_size // head_count // 2)
 | 
						|
 | 
						|
        self.gguf_writer.add_head_count(head_count)
 | 
						|
        self.gguf_writer.add_head_count_kv(head_count_kv)
 | 
						|
        self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
 | 
						|
        self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
 | 
						|
 | 
						|
    def set_vocab(self):
 | 
						|
        self._set_vocab_sentencepiece()
 | 
						|
        # self.gguf_writer.add_bos_token_id(71013)
 | 
						|
        # self.gguf_writer.add_eos_token_id(71013)
 | 
						|
 | 
						|
    def write_tensors(self):
 | 
						|
        block_count = self.hparams.get("num_layers", self.hparams.get("num_hidden_layers"))
 | 
						|
        tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
 | 
						|
 | 
						|
        for name, data_torch in self.get_tensors():
 | 
						|
            if name.endswith(".self_attention.rotary_emb.inv_freq"):
 | 
						|
                continue
 | 
						|
            old_dtype = data_torch.dtype
 | 
						|
            # TODO: FP16 conversion produces garbage outputs. (Q8_0 does not, so..?)
 | 
						|
            data = data_torch.to(torch.float32).squeeze().numpy()
 | 
						|
            new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
 | 
						|
            if new_name is None:
 | 
						|
                print(f"Can not map tensor {name!r}")
 | 
						|
                sys.exit()
 | 
						|
            n_dims = len(data.shape)
 | 
						|
            print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
 | 
						|
            self.gguf_writer.add_tensor(new_name, data)
 | 
						|
 | 
						|
 | 
						|
@Model.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
 | 
						|
class StableLMModel(Model):
 | 
						|
    model_arch = gguf.MODEL_ARCH.STABLELM
 | 
						|
 | 
						|
    def set_vocab(self):
 | 
						|
        if (self.dir_model / "tokenizer.json").is_file():
 | 
						|
            self._set_vocab_gpt2()
 | 
						|
        else:
 | 
						|
            # StableLM 2 1.6B uses a vocab in a similar format to Qwen's vocab
 | 
						|
            self._set_vocab_qwen()
 | 
						|
 | 
						|
    def set_gguf_parameters(self):
 | 
						|
        hparams = self.hparams
 | 
						|
        block_count = hparams["num_hidden_layers"]
 | 
						|
 | 
						|
        self.gguf_writer.add_name(self.dir_model.name)
 | 
						|
        self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
 | 
						|
        self.gguf_writer.add_embedding_length(hparams["hidden_size"])
 | 
						|
        self.gguf_writer.add_block_count(block_count)
 | 
						|
        self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
 | 
						|
        rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
 | 
						|
        self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
 | 
						|
        self.gguf_writer.add_head_count(hparams["num_attention_heads"])
 | 
						|
        self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
 | 
						|
        self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
 | 
						|
 | 
						|
 | 
						|
@Model.register("LlamaForCausalLM", "MistralForCausalLM", "MixtralForCausalLM")
 | 
						|
class LlamaModel(Model):
 | 
						|
    model_arch = gguf.MODEL_ARCH.LLAMA
 | 
						|
 | 
						|
    def set_vocab(self):
 | 
						|
        try:
 | 
						|
            self. _set_vocab_sentencepiece()
 | 
						|
        except FileNotFoundError:
 | 
						|
            self._set_vocab_llama_hf()
 | 
						|
 | 
						|
    def set_gguf_parameters(self):
 | 
						|
        super().set_gguf_parameters()
 | 
						|
        hparams = self.hparams
 | 
						|
        self.gguf_writer.add_vocab_size(hparams["vocab_size"])
 | 
						|
        self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
 | 
						|
 | 
						|
    # Same as super class, but permuting q_proj, k_proj
 | 
						|
    def write_tensors(self):
 | 
						|
        block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
 | 
						|
        tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
 | 
						|
        n_head = self.hparams.get("num_attention_heads")
 | 
						|
        n_kv_head = self.hparams.get("num_key_value_heads")
 | 
						|
        n_experts = self.hparams.get("num_local_experts")
 | 
						|
        experts = dict()
 | 
						|
        for name, data_torch in self.get_tensors():
 | 
						|
            # we don't need these
 | 
						|
            if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
 | 
						|
                continue
 | 
						|
 | 
						|
            old_dtype = data_torch.dtype
 | 
						|
 | 
						|
            # convert any unsupported data types to float32
 | 
						|
            if data_torch.dtype not in (torch.float16, torch.float32):
 | 
						|
                data_torch = data_torch.to(torch.float32)
 | 
						|
 | 
						|
            data = data_torch.numpy()
 | 
						|
 | 
						|
            if name.endswith("q_proj.weight"):
 | 
						|
                data = permute(data, n_head, n_head)
 | 
						|
            if name.endswith("k_proj.weight"):
 | 
						|
                data = permute(data, n_head, n_kv_head)
 | 
						|
 | 
						|
            data = data.squeeze()
 | 
						|
 | 
						|
            # process the experts separately
 | 
						|
            if name.find("block_sparse_moe.experts") != -1:
 | 
						|
                experts[name] = data
 | 
						|
                if len(experts) >= n_experts:
 | 
						|
                    # merge the experts into a single 3d tensor
 | 
						|
                    for bid in range(block_count):
 | 
						|
                        for wid in range(1, 4):
 | 
						|
                            full = True
 | 
						|
                            for xid in range(n_experts):
 | 
						|
                                ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.w{wid}.weight"
 | 
						|
                                if ename not in experts:
 | 
						|
                                    full = False
 | 
						|
                                    break
 | 
						|
                            if not full:
 | 
						|
                                continue
 | 
						|
 | 
						|
                            datas = []
 | 
						|
                            for xid in range(n_experts):
 | 
						|
                                ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.w{wid}.weight"
 | 
						|
                                datas.append(experts[ename])
 | 
						|
                                del experts[ename]
 | 
						|
 | 
						|
                            data = np.stack(datas, axis=0)
 | 
						|
                            data_dtype = data.dtype
 | 
						|
 | 
						|
                            if self.ftype == 0 and data_dtype == np.float16:
 | 
						|
                                data = data.astype(np.float32)
 | 
						|
 | 
						|
                            if self.ftype == 1 and data_dtype == np.float32:
 | 
						|
                                data = data.astype(np.float16)
 | 
						|
 | 
						|
                            merged_name = f"layers.{bid}.feed_forward.experts.w{wid}.weight"
 | 
						|
 | 
						|
                            new_name = tensor_map.get_name(merged_name, try_suffixes=(".weight", ".bias"))
 | 
						|
                            if new_name is None:
 | 
						|
                                print(f"Can not map tensor {name!r}")
 | 
						|
                                sys.exit()
 | 
						|
 | 
						|
                            print(f"{new_name}, n_dims = {len(data.shape)}, shape = {data.shape} --> {data.dtype}")
 | 
						|
 | 
						|
                            self.gguf_writer.add_tensor(new_name, data)
 | 
						|
                continue
 | 
						|
 | 
						|
            # map tensor names
 | 
						|
            new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
 | 
						|
            if new_name is None:
 | 
						|
                print(f"Can not map tensor {name!r}")
 | 
						|
                sys.exit()
 | 
						|
 | 
						|
            n_dims = len(data.shape)
 | 
						|
            data_dtype = data.dtype
 | 
						|
 | 
						|
            # if f32 desired, convert any float16 to float32
 | 
						|
            if self.ftype == 0 and data_dtype == np.float16:
 | 
						|
                data = data.astype(np.float32)
 | 
						|
 | 
						|
            # 1d tensors need to be converted to float32
 | 
						|
            if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
 | 
						|
                data = data.astype(np.float32)
 | 
						|
 | 
						|
            # if f16 desired, convert any float32 2-dim weight tensors to float16
 | 
						|
            if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
 | 
						|
                data = data.astype(np.float16)
 | 
						|
 | 
						|
            print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
 | 
						|
 | 
						|
            self.gguf_writer.add_tensor(new_name, data)
 | 
						|
 | 
						|
        if len(experts) > 0:
 | 
						|
            raise ValueError(f"Unprocessed experts: {experts.keys()}")
 | 
						|
 | 
						|
 | 
						|
@Model.register("GrokForCausalLM")
 | 
						|
class GrokModel(Model):
 | 
						|
    model_arch = gguf.MODEL_ARCH.GROK
 | 
						|
 | 
						|
    def set_vocab(self):
 | 
						|
        self._set_vocab_sentencepiece()
 | 
						|
 | 
						|
    def __init__(self, *args, **kwargs):
 | 
						|
        super().__init__(*args, **kwargs)
 | 
						|
 | 
						|
    def set_gguf_parameters(self):
 | 
						|
        super().set_gguf_parameters()
 | 
						|
        self.gguf_writer.add_name("Grok")
 | 
						|
 | 
						|
    def write_tensors(self):
 | 
						|
        block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
 | 
						|
        tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
 | 
						|
        n_experts = self.hparams.get("num_local_experts")
 | 
						|
        experts = dict()
 | 
						|
        for name, data_torch in self.get_tensors():
 | 
						|
            # we don't need these
 | 
						|
            if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
 | 
						|
                continue
 | 
						|
 | 
						|
            old_dtype = data_torch.dtype
 | 
						|
 | 
						|
            # convert any unsupported data types to float32
 | 
						|
            if data_torch.dtype not in (torch.float16, torch.float32):
 | 
						|
                data_torch = data_torch.to(torch.float32)
 | 
						|
 | 
						|
            data = data_torch.squeeze().numpy()
 | 
						|
 | 
						|
            # process the experts separately
 | 
						|
            if name.find(".moe.") != -1:
 | 
						|
                experts[name] = data
 | 
						|
                if len(experts) >= n_experts:
 | 
						|
                    # merge the experts into a single 3d tensor
 | 
						|
                    for bid in range(block_count):
 | 
						|
                        for wid in ["linear", "linear_1", "linear_v"]:
 | 
						|
                            full = True
 | 
						|
                            for xid in range(n_experts):
 | 
						|
                                ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight"
 | 
						|
                                if ename not in experts:
 | 
						|
                                    full = False
 | 
						|
                                    break
 | 
						|
                            if not full:
 | 
						|
                                continue
 | 
						|
 | 
						|
                            datas = []
 | 
						|
                            for xid in range(n_experts):
 | 
						|
                                ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight"
 | 
						|
                                datas.append(experts[ename])
 | 
						|
                                del experts[ename]
 | 
						|
 | 
						|
                            data = np.stack(datas, axis=0)
 | 
						|
                            data_dtype = data.dtype
 | 
						|
 | 
						|
                            if self.ftype == 0 and data_dtype == np.float16:
 | 
						|
                                data = data.astype(np.float32)
 | 
						|
 | 
						|
                            if self.ftype == 1 and data_dtype == np.float32:
 | 
						|
                                data = data.astype(np.float16)
 | 
						|
 | 
						|
                            merged_name = f"transformer.decoder_layer.{bid}.moe.{wid}.weight"
 | 
						|
 | 
						|
                            new_name = tensor_map.get_name(merged_name, try_suffixes=(".weight", ".bias"))
 | 
						|
                            if new_name is None:
 | 
						|
                                print(f"Can not map tensor {name!r}")
 | 
						|
                                sys.exit()
 | 
						|
 | 
						|
                            print(f"{new_name}, n_dims = {len(data.shape)}, shape = {data.shape} --> {data.dtype}")
 | 
						|
 | 
						|
                            self.gguf_writer.add_tensor(new_name, data)
 | 
						|
                continue
 | 
						|
 | 
						|
            # map tensor names
 | 
						|
            new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
 | 
						|
            if new_name is None:
 | 
						|
                print(f"Can not map tensor {name!r}")
 | 
						|
                sys.exit()
 | 
						|
 | 
						|
            n_dims = len(data.shape)
 | 
						|
            data_dtype = data.dtype
 | 
						|
 | 
						|
            # if f32 desired, convert any float16 to float32
 | 
						|
            if self.ftype == 0 and data_dtype == np.float16:
 | 
						|
                data = data.astype(np.float32)
 | 
						|
 | 
						|
            # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
 | 
						|
            if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
 | 
						|
                data = data.astype(np.float32)
 | 
						|
 | 
						|
            # if f16 desired, convert any float32 2-dim weight tensors to float16
 | 
						|
            if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
 | 
						|
                data = data.astype(np.float16)
 | 
						|
 | 
						|
            print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
 | 
						|
 | 
						|
            self.gguf_writer.add_tensor(new_name, data)
 | 
						|
 | 
						|
 | 
						|
@Model.register("MiniCPMForCausalLM")
 | 
						|
class MiniCPMModel(Model):
 | 
						|
    model_arch = gguf.MODEL_ARCH.MINICPM
 | 
						|
 | 
						|
    def set_gguf_parameters(self):
 | 
						|
        block_count = self.hparams["num_hidden_layers"]
 | 
						|
        self.gguf_writer.add_name("MiniCPM")
 | 
						|
        self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
 | 
						|
        self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
 | 
						|
        self.gguf_writer.add_block_count(block_count)
 | 
						|
        self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
 | 
						|
        self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
 | 
						|
        self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
 | 
						|
        self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
 | 
						|
        self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
 | 
						|
        self.gguf_writer.add_file_type(self.ftype)
 | 
						|
 | 
						|
    def set_vocab(self):
 | 
						|
        self._set_vocab_llama_hf()
 | 
						|
 | 
						|
    def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
 | 
						|
        if n_kv_head is not None and n_head != n_kv_head:
 | 
						|
            n_head //= n_kv_head
 | 
						|
 | 
						|
        return (
 | 
						|
            weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
 | 
						|
            .swapaxes(1, 2)
 | 
						|
            .reshape(weights.shape)
 | 
						|
        )
 | 
						|
 | 
						|
    def write_tensors(self):
 | 
						|
        block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
 | 
						|
        tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
 | 
						|
        n_head = self.hparams.get("num_attention_heads")
 | 
						|
        n_kv_head = self.hparams.get("num_key_value_heads")
 | 
						|
        for name, data_torch in self.get_tensors():
 | 
						|
            # we don't need these
 | 
						|
            if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
 | 
						|
                continue
 | 
						|
 | 
						|
            old_dtype = data_torch.dtype
 | 
						|
 | 
						|
            # convert any unsupported data types to float32
 | 
						|
            if data_torch.dtype not in (torch.float16, torch.float32):
 | 
						|
                data_torch = data_torch.to(torch.float32)
 | 
						|
 | 
						|
            # HF models permute some of the tensors, so we need to undo that
 | 
						|
            if name.endswith(("q_proj.weight")):
 | 
						|
                data_torch = self._reverse_hf_permute(data_torch, n_head, n_head)
 | 
						|
            if name.endswith(("k_proj.weight")):
 | 
						|
                data_torch = self._reverse_hf_permute(data_torch, n_head, n_kv_head)
 | 
						|
 | 
						|
            data = data_torch.squeeze().numpy()
 | 
						|
 | 
						|
            # map tensor names
 | 
						|
            new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
 | 
						|
            if new_name is None:
 | 
						|
                print(f"Can not map tensor {name!r}")
 | 
						|
                sys.exit()
 | 
						|
 | 
						|
            n_dims = len(data.shape)
 | 
						|
            data_dtype = data.dtype
 | 
						|
 | 
						|
            # if f32 desired, convert any float16 to float32
 | 
						|
            if self.ftype == 0 and data_dtype == np.float16:
 | 
						|
                data = data.astype(np.float32)
 | 
						|
 | 
						|
            # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
 | 
						|
            if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
 | 
						|
                data = data.astype(np.float32)
 | 
						|
 | 
						|
            # if f16 desired, convert any float32 2-dim weight tensors to float16
 | 
						|
            if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
 | 
						|
                data = data.astype(np.float16)
 | 
						|
 | 
						|
            print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
 | 
						|
 | 
						|
            self.gguf_writer.add_tensor(new_name, data)
 | 
						|
 | 
						|
 | 
						|
@Model.register("QWenLMHeadModel")
 | 
						|
class QwenModel(Model):
 | 
						|
    model_arch = gguf.MODEL_ARCH.QWEN
 | 
						|
 | 
						|
    @staticmethod
 | 
						|
    def token_bytes_to_string(b):
 | 
						|
        from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
 | 
						|
        byte_encoder = bytes_to_unicode()
 | 
						|
        return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
 | 
						|
 | 
						|
    @staticmethod
 | 
						|
    def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
 | 
						|
        parts = [bytes([b]) for b in token]
 | 
						|
        while True:
 | 
						|
            min_idx = None
 | 
						|
            min_rank = None
 | 
						|
            for i, pair in enumerate(zip(parts[:-1], parts[1:])):
 | 
						|
                rank = mergeable_ranks.get(pair[0] + pair[1])
 | 
						|
                if rank is not None and (min_rank is None or rank < min_rank):
 | 
						|
                    min_idx = i
 | 
						|
                    min_rank = rank
 | 
						|
            if min_rank is None or (max_rank is not None and min_rank >= max_rank):
 | 
						|
                break
 | 
						|
            assert min_idx is not None
 | 
						|
            parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
 | 
						|
        return parts
 | 
						|
 | 
						|
    def set_vocab(self):
 | 
						|
        self._set_vocab_qwen()
 | 
						|
 | 
						|
    def set_gguf_parameters(self):
 | 
						|
        self.gguf_writer.add_name("Qwen")
 | 
						|
        self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
 | 
						|
        self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
 | 
						|
        self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
 | 
						|
        self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
 | 
						|
        self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
 | 
						|
        self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
 | 
						|
        self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
 | 
						|
        self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
 | 
						|
 | 
						|
    def write_tensors(self):
 | 
						|
        block_count = self.hparams["num_hidden_layers"]
 | 
						|
        model_kv = dict(self.get_tensors())
 | 
						|
        tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
 | 
						|
        for name, data_torch in model_kv.items():
 | 
						|
            # we don't need these
 | 
						|
            if name.endswith(".rotary_emb.inv_freq"):
 | 
						|
                continue
 | 
						|
 | 
						|
            old_dtype = data_torch.dtype
 | 
						|
 | 
						|
            # convert any unsupported data types to float32
 | 
						|
            if data_torch.dtype not in (torch.float16, torch.float32):
 | 
						|
                data_torch = data_torch.to(torch.float32)
 | 
						|
 | 
						|
            data = data_torch.squeeze().numpy()
 | 
						|
 | 
						|
            # map tensor names
 | 
						|
            new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
 | 
						|
            if new_name is None:
 | 
						|
                print(f"Can not map tensor {name!r}")
 | 
						|
                sys.exit()
 | 
						|
 | 
						|
            n_dims = len(data.shape)
 | 
						|
            data_dtype = data.dtype
 | 
						|
 | 
						|
            # if f32 desired, convert any float16 to float32
 | 
						|
            if self.ftype == 0 and data_dtype == np.float16:
 | 
						|
                data = data.astype(np.float32)
 | 
						|
 | 
						|
            # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
 | 
						|
            if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
 | 
						|
                data = data.astype(np.float32)
 | 
						|
 | 
						|
            # if f16 desired, convert any float32 2-dim weight tensors to float16
 | 
						|
            if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
 | 
						|
                data = data.astype(np.float16)
 | 
						|
 | 
						|
            print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
 | 
						|
            self.gguf_writer.add_tensor(new_name, data)
 | 
						|
 | 
						|
 | 
						|
@Model.register("Qwen2ForCausalLM")
 | 
						|
class Qwen2Model(Model):
 | 
						|
    model_arch = gguf.MODEL_ARCH.QWEN2
 | 
						|
 | 
						|
 | 
						|
@Model.register("GPT2LMHeadModel")
 | 
						|
class GPT2Model(Model):
 | 
						|
    model_arch = gguf.MODEL_ARCH.GPT2
 | 
						|
 | 
						|
    def set_gguf_parameters(self):
 | 
						|
        self.gguf_writer.add_name(self.dir_model.name)
 | 
						|
        self.gguf_writer.add_block_count(self.hparams["n_layer"])
 | 
						|
        self.gguf_writer.add_context_length(self.hparams["n_ctx"])
 | 
						|
        self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
 | 
						|
        self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
 | 
						|
        self.gguf_writer.add_head_count(self.hparams["n_head"])
 | 
						|
        self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
 | 
						|
        self.gguf_writer.add_file_type(self.ftype)
 | 
						|
 | 
						|
    def write_tensors(self):
 | 
						|
        block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
 | 
						|
        tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
 | 
						|
 | 
						|
        for name, data_torch in self.get_tensors():
 | 
						|
            # we don't need these
 | 
						|
            if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq", ".attn.bias", ".attn.masked_bias")):
 | 
						|
                continue
 | 
						|
 | 
						|
            if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
 | 
						|
                data_torch = data_torch.transpose(1, 0)
 | 
						|
 | 
						|
            old_dtype = data_torch.dtype
 | 
						|
 | 
						|
            # convert any unsupported data types to float32
 | 
						|
            if data_torch.dtype not in (torch.float16, torch.float32):
 | 
						|
                data_torch = data_torch.to(torch.float32)
 | 
						|
 | 
						|
            data = data_torch.squeeze().numpy()
 | 
						|
 | 
						|
            # map tensor names
 | 
						|
            new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
 | 
						|
            if new_name is None:
 | 
						|
                print(f"Can not map tensor {name!r}")
 | 
						|
                sys.exit()
 | 
						|
 | 
						|
            n_dims = len(data.shape)
 | 
						|
            data_dtype = data.dtype
 | 
						|
 | 
						|
            # if f32 desired, convert any float16 to float32
 | 
						|
            if self.ftype == 0 and data_dtype == np.float16:
 | 
						|
                data = data.astype(np.float32)
 | 
						|
 | 
						|
            # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
 | 
						|
            if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
 | 
						|
                data = data.astype(np.float32)
 | 
						|
 | 
						|
            # if f16 desired, convert any float32 2-dim weight tensors to float16
 | 
						|
            if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
 | 
						|
                data = data.astype(np.float16)
 | 
						|
 | 
						|
            print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
 | 
						|
 | 
						|
            self.gguf_writer.add_tensor(new_name, data)
 | 
						|
 | 
						|
            # note: GPT2 output is tied to (same as) wte in original model
 | 
						|
            if new_name == "token_embd.weight":
 | 
						|
                print(f"output.weight, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
 | 
						|
                self.gguf_writer.add_tensor("output.weight", data)
 | 
						|
 | 
						|
 | 
						|
@Model.register("PhiForCausalLM")
 | 
						|
class Phi2Model(Model):
 | 
						|
    model_arch = gguf.MODEL_ARCH.PHI2
 | 
						|
 | 
						|
    def set_gguf_parameters(self):
 | 
						|
        block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
 | 
						|
 | 
						|
        rot_pct = self.find_hparam(["partial_rotary_factor"])
 | 
						|
        n_embd = self.find_hparam(["hidden_size", "n_embd"])
 | 
						|
        n_head = self.find_hparam(["num_attention_heads", "n_head"])
 | 
						|
 | 
						|
        self.gguf_writer.add_name("Phi2")
 | 
						|
        self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
 | 
						|
 | 
						|
        self.gguf_writer.add_embedding_length(n_embd)
 | 
						|
        self.gguf_writer.add_feed_forward_length(4 * n_embd)
 | 
						|
        self.gguf_writer.add_block_count(block_count)
 | 
						|
        self.gguf_writer.add_head_count(n_head)
 | 
						|
        self.gguf_writer.add_head_count_kv(n_head)
 | 
						|
        self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
 | 
						|
        self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
 | 
						|
        self.gguf_writer.add_file_type(self.ftype)
 | 
						|
        self.gguf_writer.add_add_bos_token(False)
 | 
						|
 | 
						|
 | 
						|
@Model.register("PlamoForCausalLM")
 | 
						|
class PlamoModel(Model):
 | 
						|
    model_arch = gguf.MODEL_ARCH.PLAMO
 | 
						|
 | 
						|
    def set_vocab(self):
 | 
						|
        self._set_vocab_sentencepiece()
 | 
						|
 | 
						|
    def set_gguf_parameters(self):
 | 
						|
        hparams = self.hparams
 | 
						|
        block_count = hparams["num_hidden_layers"]
 | 
						|
 | 
						|
        self.gguf_writer.add_name("PLaMo")
 | 
						|
        self.gguf_writer.add_context_length(4096)  # not in config.json
 | 
						|
        self.gguf_writer.add_embedding_length(hparams["hidden_size"])
 | 
						|
        self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
 | 
						|
        self.gguf_writer.add_block_count(block_count)
 | 
						|
        self.gguf_writer.add_head_count(hparams["num_attention_heads"])
 | 
						|
        self.gguf_writer.add_head_count_kv(5)  # hparams["num_key_value_heads"]) is wrong
 | 
						|
        self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
 | 
						|
 | 
						|
    def shuffle_attn_q_weight(self, data_torch):
 | 
						|
        assert data_torch.size() == (5120, 5120)
 | 
						|
        data_torch = data_torch.reshape(8, 5, 128, 5120)
 | 
						|
        data_torch = torch.permute(data_torch, (1, 0, 2, 3))
 | 
						|
        data_torch = torch.reshape(data_torch, (5120, 5120))
 | 
						|
        return data_torch
 | 
						|
 | 
						|
    def shuffle_attn_output_weight(self, data_torch):
 | 
						|
        assert data_torch.size() == (5120, 5120)
 | 
						|
        data_torch = data_torch.reshape(5120, 8, 5, 128)
 | 
						|
        data_torch = torch.permute(data_torch, (0, 2, 1, 3))
 | 
						|
        data_torch = torch.reshape(data_torch, (5120, 5120))
 | 
						|
        return data_torch
 | 
						|
 | 
						|
    def write_tensors(self):
 | 
						|
        block_count = self.hparams.get("num_layers", self.hparams.get("num_hidden_layers"))
 | 
						|
        tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
 | 
						|
 | 
						|
        for name, data_torch in self.get_tensors():
 | 
						|
            if "self_attn.rotary_emb.inv_freq" in name:
 | 
						|
                continue
 | 
						|
 | 
						|
            # map tensor names
 | 
						|
            new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
 | 
						|
            if new_name is None:
 | 
						|
                print(f"Can not map tensor {name!r}")
 | 
						|
                sys.exit()
 | 
						|
 | 
						|
            # shuffle for broadcasting of gqa in ggml_mul_mat
 | 
						|
            if new_name.endswith("attn_q.weight"):
 | 
						|
                data_torch = self.shuffle_attn_q_weight(data_torch)
 | 
						|
            elif new_name.endswith("attn_output.weight"):
 | 
						|
                data_torch = self.shuffle_attn_output_weight(data_torch)
 | 
						|
 | 
						|
            old_dtype = data_torch.dtype
 | 
						|
 | 
						|
            # convert any unsupported data types to float32
 | 
						|
            if data_torch.dtype not in (torch.float16, torch.float32):
 | 
						|
                data_torch = data_torch.to(torch.float32)
 | 
						|
 | 
						|
            data = data_torch.squeeze().numpy()
 | 
						|
 | 
						|
            n_dims = len(data.shape)
 | 
						|
            data_dtype = data.dtype
 | 
						|
 | 
						|
            # if f32 desired, convert any float16 to float32
 | 
						|
            if self.ftype == 0 and data_dtype == np.float16:
 | 
						|
                data = data.astype(np.float32)
 | 
						|
 | 
						|
            # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
 | 
						|
            if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
 | 
						|
                data = data.astype(np.float32)
 | 
						|
 | 
						|
            # if f16 desired, convert any float32 2-dim weight tensors to float16
 | 
						|
            if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
 | 
						|
                data = data.astype(np.float16)
 | 
						|
 | 
						|
            print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
 | 
						|
 | 
						|
            self.gguf_writer.add_tensor(new_name, data)
 | 
						|
 | 
						|
 | 
						|
@Model.register("CodeShellForCausalLM")
 | 
						|
class CodeShellModel(Model):
 | 
						|
    model_arch = gguf.MODEL_ARCH.CODESHELL
 | 
						|
 | 
						|
    def set_gguf_parameters(self):
 | 
						|
        block_count = self.hparams["n_layer"]
 | 
						|
 | 
						|
        self.gguf_writer.add_name("CodeShell")
 | 
						|
        self.gguf_writer.add_context_length(self.hparams["n_positions"])
 | 
						|
        self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
 | 
						|
        self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
 | 
						|
        self.gguf_writer.add_block_count(block_count)
 | 
						|
        self.gguf_writer.add_head_count(self.hparams["n_head"])
 | 
						|
        self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
 | 
						|
        self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
 | 
						|
        self.gguf_writer.add_file_type(self.ftype)
 | 
						|
        self.gguf_writer.add_rope_freq_base(10000.0)
 | 
						|
        self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
 | 
						|
        self.gguf_writer.add_rope_scaling_factor(1.0)
 | 
						|
 | 
						|
    def write_tensors(self):
 | 
						|
        block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
 | 
						|
        tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
 | 
						|
        tensors = dict(self.get_tensors())
 | 
						|
        has_lm_head = "lm_head.weight" in tensors.keys() or "output.weight" in tensors.keys()
 | 
						|
        for name, data_torch in tensors.items():
 | 
						|
            # we don't need these
 | 
						|
            if name.endswith((".attn.rotary_emb.inv_freq")):
 | 
						|
                continue
 | 
						|
 | 
						|
            old_dtype = data_torch.dtype
 | 
						|
 | 
						|
            # convert any unsupported data types to float32
 | 
						|
            if data_torch.dtype not in (torch.float16, torch.float32):
 | 
						|
                data_torch = data_torch.to(torch.float32)
 | 
						|
 | 
						|
            data = data_torch.squeeze().numpy()
 | 
						|
 | 
						|
            # map tensor names
 | 
						|
            new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
 | 
						|
            if new_name is None:
 | 
						|
                print(f"Can not map tensor {name!r}")
 | 
						|
                sys.exit()
 | 
						|
 | 
						|
            n_dims = len(data.shape)
 | 
						|
            data_dtype = data.dtype
 | 
						|
 | 
						|
            # if f32 desired, convert any float16 to float32
 | 
						|
            if self.ftype == 0 and data_dtype == np.float16:
 | 
						|
                data = data.astype(np.float32)
 | 
						|
 | 
						|
            # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
 | 
						|
            if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
 | 
						|
                data = data.astype(np.float32)
 | 
						|
 | 
						|
            # if f16 desired, convert any float32 2-dim weight tensors to float16
 | 
						|
            if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
 | 
						|
                data = data.astype(np.float16)
 | 
						|
 | 
						|
            print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
 | 
						|
 | 
						|
            self.gguf_writer.add_tensor(new_name, data)
 | 
						|
 | 
						|
            if not has_lm_head and name == "transformer.wte.weight":
 | 
						|
                self.gguf_writer.add_tensor("output.weight", data)
 | 
						|
                print(name, f"=> output.weight, shape = {data.shape}, {old_dtype} --> {data.dtype}")
 | 
						|
 | 
						|
 | 
						|
@Model.register("InternLM2ForCausalLM")
 | 
						|
class InternLM2Model(Model):
 | 
						|
    model_arch = gguf.MODEL_ARCH.INTERNLM2
 | 
						|
 | 
						|
    def set_vocab(self):
 | 
						|
        # (TODO): Is there a better way?
 | 
						|
        # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
 | 
						|
        # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
 | 
						|
        # recognized as an empty string in C++.
 | 
						|
        from sentencepiece import SentencePieceProcessor
 | 
						|
        from sentencepiece import sentencepiece_model_pb2 as model
 | 
						|
 | 
						|
        tokenizer_path = self.dir_model / 'tokenizer.model'
 | 
						|
 | 
						|
        tokens: list[bytes] = []
 | 
						|
        scores: list[float] = []
 | 
						|
        toktypes: list[int] = []
 | 
						|
 | 
						|
        if not tokenizer_path.is_file():
 | 
						|
            print(f'Error: Missing {tokenizer_path}', file=sys.stderr)
 | 
						|
            sys.exit(1)
 | 
						|
 | 
						|
        sentencepiece_model = model.ModelProto()
 | 
						|
        sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
 | 
						|
        add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
 | 
						|
 | 
						|
        tokenizer = SentencePieceProcessor(str(tokenizer_path))
 | 
						|
        vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
 | 
						|
 | 
						|
        for token_id in range(vocab_size):
 | 
						|
            piece = tokenizer.id_to_piece(token_id)
 | 
						|
            text = piece.encode("utf-8")
 | 
						|
            score = tokenizer.get_score(token_id)
 | 
						|
            if text == b"\x00":
 | 
						|
                # (TODO): fixme
 | 
						|
                # Hack here and replace the \x00 characters.
 | 
						|
                print(f"InternLM2 convert token '{text}' to '🐉'!")
 | 
						|
                text = "🐉"
 | 
						|
 | 
						|
            toktype = SentencePieceTokenTypes.NORMAL
 | 
						|
            if tokenizer.is_unknown(token_id):
 | 
						|
                toktype = SentencePieceTokenTypes.UNKNOWN
 | 
						|
            elif tokenizer.is_control(token_id):
 | 
						|
                toktype = SentencePieceTokenTypes.CONTROL
 | 
						|
            elif tokenizer.is_unused(token_id):
 | 
						|
                toktype = SentencePieceTokenTypes.UNUSED
 | 
						|
            elif tokenizer.is_byte(token_id):
 | 
						|
                toktype = SentencePieceTokenTypes.BYTE
 | 
						|
 | 
						|
            tokens.append(text)
 | 
						|
            scores.append(score)
 | 
						|
            toktypes.append(toktype)
 | 
						|
 | 
						|
        added_tokens_file = self.dir_model / 'added_tokens.json'
 | 
						|
        if added_tokens_file.is_file():
 | 
						|
            with open(added_tokens_file, "r", encoding="utf-8") as f:
 | 
						|
                added_tokens_json = json.load(f)
 | 
						|
 | 
						|
                for key in added_tokens_json:
 | 
						|
                    tokens.append(key.encode("utf-8"))
 | 
						|
                    scores.append(-1000.0)
 | 
						|
                    toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
 | 
						|
 | 
						|
        self.gguf_writer.add_tokenizer_model("llama")
 | 
						|
        self.gguf_writer.add_token_list(tokens)
 | 
						|
        self.gguf_writer.add_token_scores(scores)
 | 
						|
        self.gguf_writer.add_token_types(toktypes)
 | 
						|
        self.gguf_writer.add_add_space_prefix(add_prefix)
 | 
						|
 | 
						|
        special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
 | 
						|
        old_eos = special_vocab.special_token_ids["eos"]
 | 
						|
        if "chat" in os.path.basename(self.dir_model.absolute()):
 | 
						|
            # For the chat model, we replace the eos with '<|im_end|>'.
 | 
						|
            special_vocab.special_token_ids["eos"] = self._try_get_sft_eos(tokenizer)
 | 
						|
            print(f"Replace eos:{old_eos} with a special token:{special_vocab.special_token_ids['eos']} \
 | 
						|
in chat mode so that the conversation can end normally.")
 | 
						|
 | 
						|
        special_vocab.add_to_gguf(self.gguf_writer)
 | 
						|
 | 
						|
    def _try_get_sft_eos(self, tokenizer):
 | 
						|
        unused_145_list = tokenizer.encode('[UNUSED_TOKEN_145]')
 | 
						|
        im_end_list = tokenizer.encode('<|im_end|>')
 | 
						|
        assert (len(unused_145_list) == 1) ^ (len(im_end_list) == 1)
 | 
						|
        if len(unused_145_list) == 1:
 | 
						|
            eos_token = unused_145_list[0]
 | 
						|
        if len(im_end_list) == 1:
 | 
						|
            eos_token = im_end_list[0]
 | 
						|
        return eos_token
 | 
						|
 | 
						|
    def _hf_permute_qk(self, weights, n_head: int, n_head_kv: int):
 | 
						|
        if n_head_kv is not None and n_head != n_head_kv:
 | 
						|
            n_head = n_head_kv
 | 
						|
        return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
 | 
						|
                .swapaxes(1, 2)
 | 
						|
                .reshape(weights.shape))
 | 
						|
 | 
						|
    def set_gguf_parameters(self):
 | 
						|
        self.gguf_writer.add_name("InternLM2")
 | 
						|
        self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
 | 
						|
        self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
 | 
						|
        self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
 | 
						|
        self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
 | 
						|
        self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
 | 
						|
        self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
 | 
						|
        self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
 | 
						|
        self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
 | 
						|
 | 
						|
    def post_write_tensors(self, tensor_map, name, data_torch):
 | 
						|
        old_dtype = data_torch.dtype
 | 
						|
 | 
						|
        # convert any unsupported data types to float32
 | 
						|
        if data_torch.dtype not in (torch.float16, torch.float32):
 | 
						|
            data_torch = data_torch.to(torch.float32)
 | 
						|
 | 
						|
        data = data_torch.squeeze().numpy()
 | 
						|
 | 
						|
        # map tensor names
 | 
						|
        new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
 | 
						|
        if new_name is None:
 | 
						|
            print(f"Can not map tensor {name!r}")
 | 
						|
            sys.exit()
 | 
						|
 | 
						|
        n_dims = len(data.shape)
 | 
						|
        data_dtype = data.dtype
 | 
						|
 | 
						|
        # if f32 desired, convert any float16 to float32
 | 
						|
        if self.ftype == 0 and data_dtype == np.float16:
 | 
						|
            data = data.astype(np.float32)
 | 
						|
 | 
						|
        # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
 | 
						|
        if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
 | 
						|
            data = data.astype(np.float32)
 | 
						|
 | 
						|
        # if f16 desired, convert any float32 2-dim weight tensors to float16
 | 
						|
        if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
 | 
						|
            data = data.astype(np.float16)
 | 
						|
 | 
						|
        print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
 | 
						|
        self.gguf_writer.add_tensor(new_name, data)
 | 
						|
 | 
						|
    def write_tensors(self):
 | 
						|
        from einops import rearrange
 | 
						|
 | 
						|
        num_heads = self.hparams.get("num_attention_heads")
 | 
						|
        num_kv_heads = self.hparams.get("num_key_value_heads")
 | 
						|
        hidden_size = self.hparams.get("hidden_size")
 | 
						|
        q_per_kv = num_heads // num_kv_heads
 | 
						|
        head_dim = hidden_size // num_heads
 | 
						|
        num_groups = num_heads // q_per_kv
 | 
						|
 | 
						|
        block_count = self.hparams["num_hidden_layers"]
 | 
						|
        model_kv = dict(self.get_tensors())
 | 
						|
        tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
 | 
						|
        qkv_pattern = r"model\.layers\.(\d+)\.attention\.wqkv"
 | 
						|
        for name, data_torch in model_kv.items():
 | 
						|
            # we don't need these
 | 
						|
            if name.endswith(".rotary_emb.inv_freq"):
 | 
						|
                continue
 | 
						|
 | 
						|
            if re.match(qkv_pattern, name):
 | 
						|
                bid = re.findall(qkv_pattern, name)[0]
 | 
						|
                qkv = data_torch
 | 
						|
                qkv = rearrange(qkv.T, " o (g n i) ->o g n i", g=num_groups, n=q_per_kv + 2, i=head_dim)
 | 
						|
                q, k, v = qkv[..., : q_per_kv, :], qkv[..., q_per_kv: q_per_kv + 1, :], qkv[..., q_per_kv + 1: q_per_kv + 2, :]
 | 
						|
                # The model weights of q and k equire additional reshape.
 | 
						|
                q = self._hf_permute_qk(rearrange(q, " o g n i ->  o (g n i)").T, num_heads, num_heads)
 | 
						|
                k = self._hf_permute_qk(rearrange(k, " o g n i ->  o (g n i)").T, num_heads, num_kv_heads)
 | 
						|
                v = rearrange(v, " o g n i ->  o (g n i)").T
 | 
						|
                self.post_write_tensors(tensor_map, f"model.layers.{bid}.attention.wq.weight", q)
 | 
						|
                self.post_write_tensors(tensor_map, f"model.layers.{bid}.attention.wk.weight", k)
 | 
						|
                self.post_write_tensors(tensor_map, f"model.layers.{bid}.attention.wv.weight", v)
 | 
						|
            else:
 | 
						|
                self.post_write_tensors(tensor_map, name, data_torch)
 | 
						|
 | 
						|
 | 
						|
@Model.register("BertModel", "CamembertModel")
 | 
						|
class BertModel(Model):
 | 
						|
    model_arch = gguf.MODEL_ARCH.BERT
 | 
						|
 | 
						|
    def __init__(self, *args, **kwargs):
 | 
						|
        super().__init__(*args, **kwargs)
 | 
						|
        self.vocab_size = None
 | 
						|
 | 
						|
    def set_gguf_parameters(self):
 | 
						|
        super().set_gguf_parameters()
 | 
						|
        self.gguf_writer.add_causal_attention(False)
 | 
						|
 | 
						|
        # get pooling path
 | 
						|
        pooling_path = None
 | 
						|
        module_path = self.dir_model / "modules.json"
 | 
						|
        if module_path.is_file():
 | 
						|
            with open(module_path, encoding="utf-8") as f:
 | 
						|
                modules = json.load(f)
 | 
						|
            for mod in modules:
 | 
						|
                if mod["type"] == "sentence_transformers.models.Pooling":
 | 
						|
                    pooling_path = mod["path"]
 | 
						|
                    break
 | 
						|
 | 
						|
        # get pooling type
 | 
						|
        if pooling_path is not None:
 | 
						|
            with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
 | 
						|
                pooling = json.load(f)
 | 
						|
            if pooling["pooling_mode_mean_tokens"]:
 | 
						|
                pooling_type = gguf.PoolingType.MEAN
 | 
						|
            elif pooling["pooling_mode_cls_token"]:
 | 
						|
                pooling_type = gguf.PoolingType.CLS
 | 
						|
            else:
 | 
						|
                raise NotImplementedError("Only MEAN and CLS pooling types supported")
 | 
						|
            self.gguf_writer.add_pooling_type(pooling_type)
 | 
						|
 | 
						|
    def set_vocab(self):
 | 
						|
        # use huggingface vocab to get all tokens
 | 
						|
        vocab = LlamaHfVocab(self.dir_model, ignore_nonllama=True)
 | 
						|
        tokens, scores, toktypes = zip(*vocab.all_tokens())
 | 
						|
        assert len(tokens) == vocab.vocab_size
 | 
						|
        self.vocab_size = vocab.vocab_size
 | 
						|
 | 
						|
        # we need this to validate the size of the token_type embeddings
 | 
						|
        # though currently we are passing all zeros to the token_type embeddings
 | 
						|
        n_token_types = len(set(toktypes))
 | 
						|
        self.gguf_writer.add_token_type_count(n_token_types)
 | 
						|
 | 
						|
        # convert to phantom space vocab
 | 
						|
        def phantom(tok, typ):
 | 
						|
            if tok.startswith(b"[") and tok.endswith(b"]"):
 | 
						|
                return tok
 | 
						|
            if tok.startswith(b"##"):
 | 
						|
                return tok[2:]
 | 
						|
            return b"\xe2\x96\x81" + tok
 | 
						|
        tokens = tuple(phantom(t, y) for t, y in zip(tokens, toktypes))
 | 
						|
 | 
						|
        # set up bos and eos tokens (cls and sep)
 | 
						|
        self.gguf_writer.add_bos_token_id(vocab.tokenizer.cls_token_id)
 | 
						|
        self.gguf_writer.add_eos_token_id(vocab.tokenizer.sep_token_id)
 | 
						|
 | 
						|
        # add vocab to gguf
 | 
						|
        self.gguf_writer.add_tokenizer_model("bert")
 | 
						|
        self.gguf_writer.add_token_list(tokens)
 | 
						|
        self.gguf_writer.add_token_scores(scores)
 | 
						|
        self.gguf_writer.add_token_types(toktypes)
 | 
						|
 | 
						|
        # handle special tokens
 | 
						|
        special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
 | 
						|
        special_vocab.add_to_gguf(self.gguf_writer)
 | 
						|
 | 
						|
    def write_tensors(self):
 | 
						|
        tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
 | 
						|
        tensors = dict(self.get_tensors())
 | 
						|
        for name, data_torch in tensors.items():
 | 
						|
            # we are only using BERT for embeddings so we don't need the pooling layer
 | 
						|
            if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
 | 
						|
                continue  # we don't need these
 | 
						|
 | 
						|
            # map tensor names
 | 
						|
            new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
 | 
						|
            if new_name is None:
 | 
						|
                print(f"Can not map tensor {name!r}")
 | 
						|
                sys.exit()
 | 
						|
 | 
						|
            data = data_torch.squeeze().numpy()
 | 
						|
            n_dims = len(data.shape)
 | 
						|
            new_dtype: type[np.floating[Any]]
 | 
						|
 | 
						|
            if (
 | 
						|
                self.ftype == 1 and name.endswith(".weight") and n_dims == 2
 | 
						|
                and name != "embeddings.token_type_embeddings.weight"  # not used with get_rows, must be F32
 | 
						|
            ):
 | 
						|
                # if f16 desired, convert any float32 2-dim weight tensors to float16
 | 
						|
                new_dtype = np.float16
 | 
						|
            else:
 | 
						|
                # if f32 desired, convert any float16 to float32
 | 
						|
                new_dtype = np.float32
 | 
						|
 | 
						|
            print(f"{new_name}, n_dims = {n_dims}, {data_torch.dtype} --> {new_dtype}")
 | 
						|
 | 
						|
            if data.dtype != new_dtype:
 | 
						|
                data = data.astype(new_dtype)
 | 
						|
 | 
						|
            self.gguf_writer.add_tensor(new_name, data)
 | 
						|
 | 
						|
 | 
						|
@Model.register("NomicBertModel")
 | 
						|
class NomicBertModel(BertModel):
 | 
						|
    model_arch = gguf.MODEL_ARCH.NOMIC_BERT
 | 
						|
 | 
						|
    def __init__(self, *args, **kwargs):
 | 
						|
        super().__init__(*args, **kwargs)
 | 
						|
 | 
						|
        # the HF config claims n_ctx=8192, but it uses RoPE scaling
 | 
						|
        self.hparams["n_ctx"] = 2048
 | 
						|
 | 
						|
        # SwigLU activation
 | 
						|
        assert self.hparams["activation_function"] == "swiglu"
 | 
						|
        # this doesn't do anything in the HF version
 | 
						|
        assert self.hparams["causal"] is False
 | 
						|
        # no bias tensors
 | 
						|
        assert self.hparams["qkv_proj_bias"] is False
 | 
						|
        assert self.hparams["mlp_fc1_bias"] is False
 | 
						|
        assert self.hparams["mlp_fc2_bias"] is False
 | 
						|
        # norm at end of layer
 | 
						|
        assert self.hparams["prenorm"] is False
 | 
						|
        # standard RoPE
 | 
						|
        assert self.hparams["rotary_emb_fraction"] == 1.0
 | 
						|
        assert self.hparams["rotary_emb_interleaved"] is False
 | 
						|
        assert self.hparams["rotary_emb_scale_base"] is None
 | 
						|
 | 
						|
    def set_gguf_parameters(self):
 | 
						|
        super().set_gguf_parameters()
 | 
						|
        self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
 | 
						|
 | 
						|
    def get_tensors(self):
 | 
						|
        assert self.vocab_size is not None
 | 
						|
        for name, data in super().get_tensors():
 | 
						|
            # Nomic Embed's token embeddings tensor is padded, but llama.cpp wants tensor sizes to match exactly.
 | 
						|
            if name == 'embeddings.word_embeddings.weight' and data.shape[1] != self.vocab_size:
 | 
						|
                rounded_vocab_size = (self.vocab_size + 63) // 64 * 64
 | 
						|
                assert data.shape == (rounded_vocab_size, self.hparams["n_embd"])
 | 
						|
                data = data[:self.vocab_size, :]
 | 
						|
            yield name, data
 | 
						|
 | 
						|
 | 
						|
@Model.register("GemmaForCausalLM")
 | 
						|
class GemmaModel(Model):
 | 
						|
    model_arch = gguf.MODEL_ARCH.GEMMA
 | 
						|
 | 
						|
    def set_vocab(self):
 | 
						|
        self._set_vocab_sentencepiece()
 | 
						|
 | 
						|
    def set_gguf_parameters(self):
 | 
						|
        hparams = self.hparams
 | 
						|
        block_count = hparams["num_hidden_layers"]
 | 
						|
 | 
						|
        self.gguf_writer.add_name(self.dir_model.name)
 | 
						|
        self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
 | 
						|
        self.gguf_writer.add_embedding_length(hparams["hidden_size"])
 | 
						|
        self.gguf_writer.add_block_count(block_count)
 | 
						|
        self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
 | 
						|
        self.gguf_writer.add_head_count(hparams["num_attention_heads"])
 | 
						|
        self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
 | 
						|
        self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
 | 
						|
        self.gguf_writer.add_key_length(hparams["head_dim"])
 | 
						|
        self.gguf_writer.add_value_length(hparams["head_dim"])
 | 
						|
        self.gguf_writer.add_file_type(self.ftype)
 | 
						|
 | 
						|
    def write_tensors(self):
 | 
						|
        block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
 | 
						|
        tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
 | 
						|
 | 
						|
        for name, data_torch in self.get_tensors():
 | 
						|
            old_dtype = data_torch.dtype
 | 
						|
 | 
						|
            # convert any unsupported data types to float32
 | 
						|
            if data_torch.dtype not in (torch.float16, torch.float32):
 | 
						|
                data_torch = data_torch.to(torch.float32)
 | 
						|
 | 
						|
            # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
 | 
						|
            if name.endswith("norm.weight"):
 | 
						|
                data_torch = data_torch + 1
 | 
						|
            data = data_torch.squeeze().numpy()
 | 
						|
 | 
						|
            # map tensor names
 | 
						|
            new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
 | 
						|
            if new_name is None:
 | 
						|
                print(f"Can not map tensor {name!r}")
 | 
						|
                sys.exit()
 | 
						|
 | 
						|
            n_dims = len(data.shape)
 | 
						|
            data_dtype = data.dtype
 | 
						|
 | 
						|
            data = data.astype(np.float32)
 | 
						|
 | 
						|
            # if f16 desired, convert any float32 2-dim weight tensors to float16
 | 
						|
            if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
 | 
						|
                data = data.astype(np.float16)
 | 
						|
 | 
						|
            print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
 | 
						|
 | 
						|
            self.gguf_writer.add_tensor(new_name, data)
 | 
						|
 | 
						|
 | 
						|
@Model.register("Starcoder2ForCausalLM")
 | 
						|
class StarCoder2Model(Model):
 | 
						|
    model_arch = gguf.MODEL_ARCH.STARCODER2
 | 
						|
 | 
						|
 | 
						|
@Model.register("MambaForCausalLM", "MambaLMHeadModel")
 | 
						|
class MambaModel(Model):
 | 
						|
    model_arch = gguf.MODEL_ARCH.MAMBA
 | 
						|
 | 
						|
    def set_vocab(self):
 | 
						|
        vocab_size = self.hparams["vocab_size"]
 | 
						|
        # Round vocab size to next multiple of 8
 | 
						|
        pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
 | 
						|
        # pad using ceiling division
 | 
						|
        # ref: https://stackoverflow.com/a/17511341/22827863
 | 
						|
        vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
 | 
						|
        self.hparams["vocab_size"] = vocab_size
 | 
						|
 | 
						|
        if (self.dir_model / "tokenizer.json").is_file():
 | 
						|
            self._set_vocab_gpt2()
 | 
						|
        else:
 | 
						|
            # Use the GPT-NeoX tokenizer when no tokenizer files are present
 | 
						|
            tokenizer_path = Path(sys.path[0]) / "models" / "ggml-vocab-gpt-neox.gguf"
 | 
						|
            print(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
 | 
						|
            neox_reader = gguf.GGUFReader(tokenizer_path, "r")
 | 
						|
 | 
						|
            field = neox_reader.get_field(gguf.Keys.Tokenizer.MODEL)
 | 
						|
            self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]))
 | 
						|
            field = neox_reader.get_field(gguf.Keys.Tokenizer.LIST)
 | 
						|
            self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
 | 
						|
            field = neox_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
 | 
						|
            self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
 | 
						|
            field = neox_reader.get_field(gguf.Keys.Tokenizer.MERGES)
 | 
						|
            self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
 | 
						|
            field = neox_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)
 | 
						|
            self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0])
 | 
						|
            field = neox_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)
 | 
						|
            self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0])
 | 
						|
            field = neox_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)
 | 
						|
            self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0])
 | 
						|
 | 
						|
    def set_gguf_parameters(self):
 | 
						|
        d_model = self.find_hparam(["hidden_size", "d_model"])
 | 
						|
        d_conv  = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
 | 
						|
        d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
 | 
						|
        d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
 | 
						|
        # ceiling division
 | 
						|
        # ref: https://stackoverflow.com/a/17511341/22827863
 | 
						|
        # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
 | 
						|
        dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
 | 
						|
        rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
 | 
						|
 | 
						|
        # Fail early for models which don't have a block expansion factor of 2
 | 
						|
        assert d_inner == 2 * d_model
 | 
						|
 | 
						|
        self.gguf_writer.add_name(self.dir_model.name)
 | 
						|
        self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
 | 
						|
        self.gguf_writer.add_embedding_length(d_model)
 | 
						|
        self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
 | 
						|
        self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
 | 
						|
        self.gguf_writer.add_block_count(self.hparams["n_layer"])
 | 
						|
        self.gguf_writer.add_ssm_conv_kernel(d_conv)
 | 
						|
        self.gguf_writer.add_ssm_inner_size(d_inner)
 | 
						|
        self.gguf_writer.add_ssm_state_size(d_state)
 | 
						|
        self.gguf_writer.add_ssm_time_step_rank(dt_rank)
 | 
						|
        self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
 | 
						|
        self.gguf_writer.add_file_type(self.ftype)
 | 
						|
 | 
						|
    def write_tensors(self):
 | 
						|
        block_count = self.hparams["n_layer"]
 | 
						|
        tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
 | 
						|
 | 
						|
        tok_embd = None
 | 
						|
        tok_embd_name = gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.TOKEN_EMBD] + ".weight"
 | 
						|
        output_name   = gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.OUTPUT]     + ".weight"
 | 
						|
 | 
						|
        for name, data_torch in self.get_tensors():
 | 
						|
            old_dtype = data_torch.dtype
 | 
						|
 | 
						|
            # convert any unsupported data types to float32
 | 
						|
            if data_torch.dtype not in (torch.float16, torch.float32):
 | 
						|
                data_torch = data_torch.to(torch.float32)
 | 
						|
 | 
						|
            # map tensor names
 | 
						|
            new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
 | 
						|
            if new_name is None:
 | 
						|
                print(f"Can not map tensor {name!r}")
 | 
						|
                sys.exit()
 | 
						|
 | 
						|
            if name.endswith(".A_log"):
 | 
						|
                print("A_log --> A ==> " + new_name)
 | 
						|
                data_torch = -torch.exp(data_torch)
 | 
						|
 | 
						|
            # assuming token_embd.weight is seen before output.weight
 | 
						|
            if tok_embd is not None and new_name == output_name:
 | 
						|
                if torch.equal(tok_embd, data_torch):
 | 
						|
                    print(f"{output_name} is equivalent to {tok_embd_name}, omitting")
 | 
						|
                    continue
 | 
						|
            if new_name == tok_embd_name:
 | 
						|
                tok_embd = data_torch
 | 
						|
 | 
						|
            data = data_torch.squeeze().numpy()
 | 
						|
 | 
						|
            n_dims = len(data.shape)
 | 
						|
            data_dtype = data.dtype
 | 
						|
 | 
						|
            # if f32 desired, convert any float16 to float32
 | 
						|
            if self.ftype == 0 and data_dtype == np.float16:
 | 
						|
                data = data.astype(np.float32)
 | 
						|
 | 
						|
            # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
 | 
						|
            if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
 | 
						|
                data = data.astype(np.float32)
 | 
						|
 | 
						|
            # if f16 desired, convert big float32 2-dim weight tensors to float16
 | 
						|
            if self.ftype == 1 and data_dtype == np.float32 and new_name.removesuffix(".weight").endswith((".ssm_in", ".ssm_out", "token_embd", "output")) and n_dims == 2:
 | 
						|
                data = data.astype(np.float16)
 | 
						|
 | 
						|
            print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
 | 
						|
 | 
						|
            self.gguf_writer.add_tensor(new_name, data)
 | 
						|
 | 
						|
 | 
						|
@Model.register("CohereForCausalLM")
 | 
						|
class CommandR2Model(Model):
 | 
						|
    model_arch = gguf.MODEL_ARCH.COMMAND_R
 | 
						|
 | 
						|
    def __init__(self, *args, **kwargs):
 | 
						|
        super().__init__(*args, **kwargs)
 | 
						|
 | 
						|
        # max_position_embeddings = 8192 in config.json but model was actually
 | 
						|
        # trained on 128k context length
 | 
						|
        self.hparams["max_position_embeddings"] = self.hparams["model_max_length"]
 | 
						|
 | 
						|
    def set_gguf_parameters(self):
 | 
						|
        super().set_gguf_parameters()
 | 
						|
        self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
 | 
						|
        self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
 | 
						|
 | 
						|
 | 
						|
###### CONVERSION LOGIC ######
 | 
						|
 | 
						|
 | 
						|
def parse_args() -> argparse.Namespace:
 | 
						|
    parser = argparse.ArgumentParser(
 | 
						|
        description="Convert a huggingface model to a GGML compatible file")
 | 
						|
    parser.add_argument(
 | 
						|
        "--vocab-only", action="store_true",
 | 
						|
        help="extract only the vocab",
 | 
						|
    )
 | 
						|
    parser.add_argument(
 | 
						|
        "--awq-path", type=Path, default=None,
 | 
						|
        help="Path to scale awq cache file")
 | 
						|
    parser.add_argument(
 | 
						|
        "--outfile", type=Path,
 | 
						|
        help="path to write to; default: based on input",
 | 
						|
    )
 | 
						|
    parser.add_argument(
 | 
						|
        "--outtype", type=str, choices=["f32", "f16"], default="f16",
 | 
						|
        help="output format - use f32 for float32, f16 for float16",
 | 
						|
    )
 | 
						|
    parser.add_argument("--bigendian", action="store_true", help="model is executed on big endian machine")
 | 
						|
    parser.add_argument(
 | 
						|
        "model", type=Path,
 | 
						|
        help="directory containing model file",
 | 
						|
    )
 | 
						|
 | 
						|
    return parser.parse_args()
 | 
						|
 | 
						|
 | 
						|
def main() -> None:
 | 
						|
    args = parse_args()
 | 
						|
 | 
						|
    dir_model = args.model
 | 
						|
 | 
						|
    if args.awq_path:
 | 
						|
        sys.path.insert(1, str(Path(__file__).parent / 'awq-py'))
 | 
						|
        from awq.apply_awq import add_scale_weights  # type: ignore[import-not-found]
 | 
						|
        tmp_model_path = args.model / "weighted_model"
 | 
						|
        dir_model = tmp_model_path
 | 
						|
        if tmp_model_path.is_dir():
 | 
						|
            print(f"{tmp_model_path} exists as a weighted model.")
 | 
						|
        else:
 | 
						|
            tmp_model_path.mkdir(parents=True, exist_ok=True)
 | 
						|
            print("Saving new weighted model ...")
 | 
						|
            add_scale_weights(str(args.model), str(args.awq_path), str(tmp_model_path))
 | 
						|
            print(f"Saved weighted model at {tmp_model_path}.")
 | 
						|
 | 
						|
    if not dir_model.is_dir():
 | 
						|
        print(f'Error: {args.model} is not a directory', file=sys.stderr)
 | 
						|
        sys.exit(1)
 | 
						|
 | 
						|
    ftype_map = {
 | 
						|
        "f32": gguf.GGMLQuantizationType.F32,
 | 
						|
        "f16": gguf.GGMLQuantizationType.F16,
 | 
						|
    }
 | 
						|
 | 
						|
    if args.outfile is not None:
 | 
						|
        fname_out = args.outfile
 | 
						|
    else:
 | 
						|
        # output in the same directory as the model by default
 | 
						|
        fname_out = dir_model / f'ggml-model-{args.outtype}.gguf'
 | 
						|
 | 
						|
    print(f"Loading model: {dir_model.name}")
 | 
						|
 | 
						|
    hparams = Model.load_hparams(dir_model)
 | 
						|
 | 
						|
    with torch.inference_mode():
 | 
						|
        model_class = Model.from_model_architecture(hparams["architectures"][0])
 | 
						|
        model_instance = model_class(dir_model, ftype_map[args.outtype], fname_out, args.bigendian)
 | 
						|
 | 
						|
        print("Set model parameters")
 | 
						|
        model_instance.set_gguf_parameters()
 | 
						|
 | 
						|
        print("Set model tokenizer")
 | 
						|
        model_instance.set_vocab()
 | 
						|
 | 
						|
        if args.vocab_only:
 | 
						|
            print(f"Exporting model vocab to '{fname_out}'")
 | 
						|
            model_instance.write_vocab()
 | 
						|
        else:
 | 
						|
            print(f"Exporting model to '{fname_out}'")
 | 
						|
            model_instance.write()
 | 
						|
 | 
						|
        print(f"Model successfully exported to '{fname_out}'")
 | 
						|
 | 
						|
 | 
						|
if __name__ == '__main__':
 | 
						|
    main()
 |