mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-11-03 09:22:01 +00:00 
			
		
		
		
	The old behaviour is to use f16, but bf16 to f16 is not a lossless conversion. Change the outtype to f32 to default to a lossless conversion.
		
			
				
	
	
		
			1487 lines
		
	
	
		
			59 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			1487 lines
		
	
	
		
			59 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
#!/usr/bin/env python3
 | 
						|
from __future__ import annotations
 | 
						|
 | 
						|
import argparse
 | 
						|
import concurrent.futures
 | 
						|
import enum
 | 
						|
import faulthandler
 | 
						|
import functools
 | 
						|
import itertools
 | 
						|
import json
 | 
						|
import math
 | 
						|
import mmap
 | 
						|
import os
 | 
						|
import pickle
 | 
						|
import re
 | 
						|
import signal
 | 
						|
import struct
 | 
						|
import sys
 | 
						|
import time
 | 
						|
import zipfile
 | 
						|
from abc import ABCMeta, abstractmethod
 | 
						|
from concurrent.futures import ProcessPoolExecutor, ThreadPoolExecutor
 | 
						|
from dataclasses import dataclass
 | 
						|
from pathlib import Path
 | 
						|
from typing import IO, TYPE_CHECKING, Any, Callable, Iterable, Literal, TypeVar
 | 
						|
 | 
						|
import numpy as np
 | 
						|
from sentencepiece import SentencePieceProcessor
 | 
						|
 | 
						|
if 'NO_LOCAL_GGUF' not in os.environ:
 | 
						|
    sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
 | 
						|
import gguf
 | 
						|
 | 
						|
if TYPE_CHECKING:
 | 
						|
    from typing import TypeAlias
 | 
						|
 | 
						|
if hasattr(faulthandler, 'register') and hasattr(signal, 'SIGUSR1'):
 | 
						|
    faulthandler.register(signal.SIGUSR1)
 | 
						|
 | 
						|
NDArray: TypeAlias = 'np.ndarray[Any, Any]'
 | 
						|
 | 
						|
ARCH = gguf.MODEL_ARCH.LLAMA
 | 
						|
 | 
						|
DEFAULT_CONCURRENCY = 8
 | 
						|
 | 
						|
#
 | 
						|
# data types
 | 
						|
#
 | 
						|
 | 
						|
 | 
						|
@dataclass(frozen=True)
 | 
						|
class DataType:
 | 
						|
    name: str
 | 
						|
    dtype: np.dtype[Any]
 | 
						|
    valid_conversions: list[str]
 | 
						|
 | 
						|
    def elements_to_bytes(self, n_elements: int) -> int:
 | 
						|
        return n_elements * self.dtype.itemsize
 | 
						|
 | 
						|
 | 
						|
@dataclass(frozen=True)
 | 
						|
class UnquantizedDataType(DataType):
 | 
						|
    pass
 | 
						|
 | 
						|
 | 
						|
DT_F16  = UnquantizedDataType('F16',  dtype = np.dtype(np.float16), valid_conversions = ['F32', 'Q8_0'])
 | 
						|
DT_F32  = UnquantizedDataType('F32',  dtype = np.dtype(np.float32), valid_conversions = ['F16', 'Q8_0'])
 | 
						|
DT_I32  = UnquantizedDataType('I32',  dtype = np.dtype(np.int16),   valid_conversions = [])
 | 
						|
DT_BF16 = UnquantizedDataType('BF16', dtype = np.dtype(np.uint16),  valid_conversions = ['F32', 'F16', 'Q8_0'])
 | 
						|
 | 
						|
 | 
						|
@dataclass(frozen=True)
 | 
						|
class QuantizedDataType(DataType):
 | 
						|
    block_size: int
 | 
						|
    quantized_dtype: np.dtype[Any]
 | 
						|
    ggml_type: gguf.GGMLQuantizationType
 | 
						|
 | 
						|
    def quantize(self, arr: NDArray) -> NDArray:
 | 
						|
        raise NotImplementedError(f'Quantization for {self.name} not implemented')
 | 
						|
 | 
						|
    def elements_to_bytes(self, n_elements: int) -> int:
 | 
						|
        assert n_elements % self.block_size == 0, f'Invalid number of elements {n_elements} for {self.name} with block size {self.block_size}'
 | 
						|
        return self.quantized_dtype.itemsize * (n_elements // self.block_size)
 | 
						|
 | 
						|
 | 
						|
@dataclass(frozen=True)
 | 
						|
class Q8_0QuantizedDataType(QuantizedDataType):
 | 
						|
    # Mini Q8_0 quantization in Python!
 | 
						|
    def quantize(self, arr: NDArray) -> NDArray:
 | 
						|
        assert arr.size % self.block_size == 0 and arr.size != 0, f'Bad array size {arr.size}'
 | 
						|
        assert arr.dtype == np.float32, f'Bad array type {arr.dtype}'
 | 
						|
        n_blocks = arr.size // self.block_size
 | 
						|
        blocks = arr.reshape((n_blocks, self.block_size))
 | 
						|
        # Much faster implementation of block quantization contributed by @Cebtenzzre
 | 
						|
 | 
						|
        def quantize_blocks_q8_0(blocks: NDArray) -> Iterable[tuple[Any, Any]]:
 | 
						|
            d = abs(blocks).max(axis = 1) / np.float32(127)
 | 
						|
            with np.errstate(divide = 'ignore'):
 | 
						|
                qs = (blocks / d[:, None]).round()
 | 
						|
            qs[d == 0] = 0
 | 
						|
            yield from zip(d, qs)
 | 
						|
        return np.fromiter(quantize_blocks_q8_0(blocks), count = n_blocks, dtype = self.quantized_dtype)
 | 
						|
 | 
						|
 | 
						|
DT_Q8_0 = Q8_0QuantizedDataType('Q8_0',
 | 
						|
                                dtype = np.dtype(np.float32), valid_conversions = [],
 | 
						|
                                ggml_type = gguf.GGMLQuantizationType.Q8_0, block_size = 32,
 | 
						|
                                quantized_dtype = np.dtype([('d', '<f2'), ('qs', 'i1', (32,))]))
 | 
						|
 | 
						|
# Quantized types skipped here because they may also map to np.float32
 | 
						|
NUMPY_TYPE_TO_DATA_TYPE: dict[np.dtype[Any], DataType] = {}
 | 
						|
for dt in (DT_BF16, DT_F16, DT_F32, DT_I32):
 | 
						|
    if dt.dtype in NUMPY_TYPE_TO_DATA_TYPE:
 | 
						|
        raise ValueError(f'Invalid duplicate data type {dt}')
 | 
						|
    NUMPY_TYPE_TO_DATA_TYPE[dt.dtype] = dt
 | 
						|
 | 
						|
SAFETENSORS_DATA_TYPES: dict[str, DataType] = {
 | 
						|
    'BF16': DT_BF16,
 | 
						|
    'F16': DT_F16,
 | 
						|
    'F32': DT_F32,
 | 
						|
    'I32': DT_I32,
 | 
						|
}
 | 
						|
 | 
						|
# TODO: match this with `llama_ftype`
 | 
						|
# TODO: rename to LLAMAFileType
 | 
						|
# TODO: move to `gguf.py`
 | 
						|
 | 
						|
 | 
						|
class GGMLFileType(enum.IntEnum):
 | 
						|
    AllF32     = 0
 | 
						|
    MostlyF16  = 1  # except 1d tensors
 | 
						|
    MostlyQ8_0 = 7  # except 1d tensors
 | 
						|
 | 
						|
    def type_for_tensor(self, name: str, tensor: LazyTensor) -> DataType:
 | 
						|
        dt = GGML_FILE_TYPE_TO_DATA_TYPE.get(self)
 | 
						|
        if dt is None:
 | 
						|
            raise ValueError(self)
 | 
						|
        # 1D tensors are always F32.
 | 
						|
        return dt if len(tensor.shape) > 1 else DT_F32
 | 
						|
 | 
						|
 | 
						|
GGML_FILE_TYPE_TO_DATA_TYPE: dict[GGMLFileType, DataType] = {
 | 
						|
    GGMLFileType.AllF32    : DT_F32,
 | 
						|
    GGMLFileType.MostlyF16 : DT_F16,
 | 
						|
    GGMLFileType.MostlyQ8_0: DT_Q8_0,
 | 
						|
}
 | 
						|
 | 
						|
#
 | 
						|
# hparams loading
 | 
						|
#
 | 
						|
 | 
						|
 | 
						|
@dataclass
 | 
						|
class Params:
 | 
						|
    n_vocab:        int
 | 
						|
    n_embd:         int
 | 
						|
    n_layer:        int
 | 
						|
    n_ctx:          int
 | 
						|
    n_ff:           int
 | 
						|
    n_head:         int
 | 
						|
    n_head_kv:      int
 | 
						|
    n_experts:      int | None = None
 | 
						|
    n_experts_used: int | None = None
 | 
						|
    f_norm_eps:     float | None = None
 | 
						|
 | 
						|
    rope_scaling_type: gguf.RopeScalingType | None = None
 | 
						|
    f_rope_freq_base: float | None = None
 | 
						|
    f_rope_scale: float | None = None
 | 
						|
    n_orig_ctx: int | None = None
 | 
						|
    rope_finetuned: bool | None = None
 | 
						|
 | 
						|
    ftype: GGMLFileType | None = None
 | 
						|
 | 
						|
    # path to the directory containing the model files
 | 
						|
    path_model: Path | None = None
 | 
						|
 | 
						|
    @staticmethod
 | 
						|
    def guessed(model: LazyModel) -> Params:
 | 
						|
        # try transformer naming first
 | 
						|
        n_vocab, n_embd = model["model.embed_tokens.weight"].shape if "model.embed_tokens.weight" in model else model["tok_embeddings.weight"].shape
 | 
						|
 | 
						|
        # try transformer naming first
 | 
						|
        if "model.layers.0.self_attn.q_proj.weight" in model:
 | 
						|
            n_layer = next(i for i in itertools.count() if f"model.layers.{i}.self_attn.q_proj.weight" not in model)
 | 
						|
        elif "model.layers.0.self_attn.W_pack.weight" in model:   # next: try baichuan naming
 | 
						|
            n_layer = next(i for i in itertools.count() if f"model.layers.{i}.self_attn.W_pack.weight" not in model)
 | 
						|
        else:
 | 
						|
            n_layer = next(i for i in itertools.count() if f"layers.{i}.attention.wq.weight" not in model)
 | 
						|
 | 
						|
        if n_layer < 1:
 | 
						|
            raise Exception("failed to guess 'n_layer'. This model is unknown or unsupported.\n"
 | 
						|
                            "Suggestion: provide 'config.json' of the model in the same directory containing model files.")
 | 
						|
 | 
						|
        n_head = n_embd // 128 # guessed
 | 
						|
        n_mult = 256           # guessed
 | 
						|
 | 
						|
        # TODO: verify this
 | 
						|
        n_ff = int(2 * (4 * n_embd) / 3)
 | 
						|
        n_ff = n_mult * ((n_ff + n_mult - 1) // n_mult)
 | 
						|
 | 
						|
        return Params(
 | 
						|
            n_vocab    = n_vocab,
 | 
						|
            n_embd     = n_embd,
 | 
						|
            n_layer    = n_layer,
 | 
						|
            n_ctx      = -1,
 | 
						|
            n_ff       = n_ff,
 | 
						|
            n_head     = n_head,
 | 
						|
            n_head_kv  = n_head,
 | 
						|
            f_norm_eps = 1e-5,
 | 
						|
        )
 | 
						|
 | 
						|
    @staticmethod
 | 
						|
    def loadHFTransformerJson(model: LazyModel, config_path: Path) -> Params:
 | 
						|
        config = json.load(open(config_path))
 | 
						|
 | 
						|
        rope_scaling_type = f_rope_scale = n_orig_ctx = rope_finetuned = None
 | 
						|
        rope_scaling = config.get("rope_scaling")
 | 
						|
 | 
						|
        if rope_scaling is not None and (typ := rope_scaling.get("type")):
 | 
						|
            rope_factor = rope_scaling.get("factor")
 | 
						|
            f_rope_scale = rope_factor
 | 
						|
            if typ == "linear":
 | 
						|
                rope_scaling_type = gguf.RopeScalingType.LINEAR
 | 
						|
            elif typ == "yarn":
 | 
						|
                rope_scaling_type = gguf.RopeScalingType.YARN
 | 
						|
                n_orig_ctx = rope_scaling['original_max_position_embeddings']
 | 
						|
                rope_finetuned = rope_scaling['finetuned']
 | 
						|
            else:
 | 
						|
                raise NotImplementedError(f'Unknown rope scaling type: {typ}')
 | 
						|
 | 
						|
        if "max_sequence_length" in config:
 | 
						|
            n_ctx = config["max_sequence_length"]
 | 
						|
        elif "max_position_embeddings" in config:
 | 
						|
            n_ctx = config["max_position_embeddings"]
 | 
						|
        else:
 | 
						|
            raise Exception("failed to guess 'n_ctx'. This model is unknown or unsupported.\n"
 | 
						|
                            "Suggestion: provide 'config.json' of the model in the same directory containing model files.")
 | 
						|
 | 
						|
        n_experts      = None
 | 
						|
        n_experts_used = None
 | 
						|
 | 
						|
        if "num_local_experts" in config:
 | 
						|
            n_experts = config["num_local_experts"]
 | 
						|
            n_experts_used = config["num_experts_per_tok"]
 | 
						|
 | 
						|
        return Params(
 | 
						|
            n_vocab           = config["vocab_size"],
 | 
						|
            n_embd            = config["hidden_size"],
 | 
						|
            n_layer           = config["num_hidden_layers"],
 | 
						|
            n_ctx             = n_ctx,
 | 
						|
            n_ff              = config["intermediate_size"],
 | 
						|
            n_head            = (n_head := config["num_attention_heads"]),
 | 
						|
            n_head_kv         = config.get("num_key_value_heads", n_head),
 | 
						|
            n_experts         = n_experts,
 | 
						|
            n_experts_used    = n_experts_used,
 | 
						|
            f_norm_eps        = config["rms_norm_eps"],
 | 
						|
            f_rope_freq_base  = config.get("rope_theta"),
 | 
						|
            rope_scaling_type = rope_scaling_type,
 | 
						|
            f_rope_scale      = f_rope_scale,
 | 
						|
            n_orig_ctx        = n_orig_ctx,
 | 
						|
            rope_finetuned    = rope_finetuned,
 | 
						|
        )
 | 
						|
 | 
						|
    # LLaMA v2 70B params.json
 | 
						|
    # {"dim": 8192, "multiple_of": 4096, "ffn_dim_multiplier": 1.3, "n_heads": 64, "n_kv_heads": 8, "n_layers": 80, "norm_eps": 1e-05, "vocab_size": -1}
 | 
						|
    @staticmethod
 | 
						|
    def loadOriginalParamsJson(model: LazyModel, config_path: Path) -> Params:
 | 
						|
        config = json.load(open(config_path))
 | 
						|
 | 
						|
        n_experts      = None
 | 
						|
        n_experts_used = None
 | 
						|
        f_rope_freq_base = None
 | 
						|
 | 
						|
        # hack to determine LLaMA v1 vs v2 vs CodeLlama
 | 
						|
        if config.get("moe"):
 | 
						|
            # Mixtral
 | 
						|
            n_ctx = 32768
 | 
						|
        elif config.get("rope_theta") == 1000000:
 | 
						|
            # CodeLlama
 | 
						|
            n_ctx = 16384
 | 
						|
        elif config["norm_eps"] == 1e-05:
 | 
						|
            # LLaMA v2
 | 
						|
            n_ctx = 4096
 | 
						|
        else:
 | 
						|
            # LLaMA v1
 | 
						|
            n_ctx = 2048
 | 
						|
 | 
						|
        if "layers.0.feed_forward.w1.weight" in model:
 | 
						|
            n_ff = model["layers.0.feed_forward.w1.weight"].shape[0]
 | 
						|
 | 
						|
        if config.get("moe"):
 | 
						|
            n_ff = model["layers.0.feed_forward.experts.0.w1.weight"].shape[0]
 | 
						|
            n_experts      = config["moe"]["num_experts"]
 | 
						|
            n_experts_used = config["moe"]["num_experts_per_tok"]
 | 
						|
            f_rope_freq_base = 1e6
 | 
						|
 | 
						|
        return Params(
 | 
						|
            n_vocab          = model["tok_embeddings.weight"].shape[0],
 | 
						|
            n_embd           = config["dim"],
 | 
						|
            n_layer          = config["n_layers"],
 | 
						|
            n_ctx            = n_ctx,
 | 
						|
            n_ff             = n_ff,
 | 
						|
            n_head           = (n_head := config["n_heads"]),
 | 
						|
            n_head_kv        = config.get("n_kv_heads", n_head),
 | 
						|
            n_experts        = n_experts,
 | 
						|
            n_experts_used   = n_experts_used,
 | 
						|
            f_norm_eps       = config["norm_eps"],
 | 
						|
            f_rope_freq_base = config.get("rope_theta", f_rope_freq_base),
 | 
						|
        )
 | 
						|
 | 
						|
    @staticmethod
 | 
						|
    def load(model_plus: ModelPlus) -> Params:
 | 
						|
        hf_config_path   = model_plus.paths[0].parent / "config.json"
 | 
						|
        orig_config_path = model_plus.paths[0].parent / "params.json"
 | 
						|
 | 
						|
        if hf_config_path.exists():
 | 
						|
            params = Params.loadHFTransformerJson(model_plus.model, hf_config_path)
 | 
						|
        elif orig_config_path.exists():
 | 
						|
            params = Params.loadOriginalParamsJson(model_plus.model, orig_config_path)
 | 
						|
        elif model_plus.format != 'none':
 | 
						|
            params = Params.guessed(model_plus.model)
 | 
						|
        else:
 | 
						|
            raise ValueError('Cannot guess params when model format is none')
 | 
						|
 | 
						|
        params.path_model = model_plus.paths[0].parent
 | 
						|
 | 
						|
        return params
 | 
						|
 | 
						|
 | 
						|
#
 | 
						|
# vocab
 | 
						|
#
 | 
						|
 | 
						|
class BpeVocab:
 | 
						|
    tokenizer_model = "gpt2"
 | 
						|
    name = "bpe"
 | 
						|
 | 
						|
    def __init__(self, fname_tokenizer: Path, fname_added_tokens: Path | None) -> None:
 | 
						|
        self.bpe_tokenizer = json.loads(open(str(fname_tokenizer), encoding="utf-8").read())
 | 
						|
        if isinstance(self.bpe_tokenizer.get('model'), dict):
 | 
						|
            self.vocab = self.bpe_tokenizer["model"]["vocab"]
 | 
						|
        else:
 | 
						|
            self.vocab = self.bpe_tokenizer
 | 
						|
        added_tokens: dict[str, int]
 | 
						|
        if fname_added_tokens is not None:
 | 
						|
            # FIXME: Verify that added tokens here _cannot_ overlap with the main vocab.
 | 
						|
            added_tokens = json.load(open(fname_added_tokens, encoding="utf-8"))
 | 
						|
        else:
 | 
						|
            # Fall back to trying to find the added tokens in tokenizer.json
 | 
						|
            tokenizer_json_file = fname_tokenizer.parent / 'tokenizer.json'
 | 
						|
            if not tokenizer_json_file.is_file():
 | 
						|
                added_tokens = {}
 | 
						|
            else:
 | 
						|
                tokenizer_json = json.load(open(tokenizer_json_file, encoding="utf-8"))
 | 
						|
                added_tokens = dict(
 | 
						|
                    (item['content'], item['id'])
 | 
						|
                    for item in tokenizer_json.get('added_tokens', [])
 | 
						|
                    # Added tokens here can be duplicates of the main vocabulary.
 | 
						|
                    if item['content'] not in self.bpe_tokenizer)
 | 
						|
 | 
						|
        vocab_size: int = len(self.vocab)
 | 
						|
        expected_ids    = list(range(vocab_size, vocab_size + len(added_tokens)))
 | 
						|
        actual_ids      = sorted(added_tokens.values())
 | 
						|
        if expected_ids != actual_ids:
 | 
						|
            expected_end_id = vocab_size + len(actual_ids) - 1
 | 
						|
            raise Exception(f"Expected the {len(actual_ids)} added token ID(s) to be sequential in the range {vocab_size} - {expected_end_id}; got {actual_ids}")
 | 
						|
 | 
						|
        items = sorted(added_tokens.items(), key=lambda text_idx: text_idx[1])
 | 
						|
        self.added_tokens_dict    = added_tokens
 | 
						|
        self.added_tokens_list    = [text for (text, idx) in items]
 | 
						|
        self.vocab_size_base: int = vocab_size
 | 
						|
        self.vocab_size: int      = self.vocab_size_base + len(self.added_tokens_list)
 | 
						|
        self.fname_tokenizer      = fname_tokenizer
 | 
						|
        self.fname_added_tokens   = fname_added_tokens
 | 
						|
 | 
						|
    def bpe_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
 | 
						|
        reverse_vocab = {id: encoded_tok for encoded_tok, id in self.vocab.items()}
 | 
						|
 | 
						|
        for i, _ in enumerate(self.vocab):
 | 
						|
            yield reverse_vocab[i], 0.0, gguf.TokenType.NORMAL
 | 
						|
 | 
						|
    def added_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
 | 
						|
        for text in self.added_tokens_list:
 | 
						|
            score = -1000.0
 | 
						|
            yield text.encode("utf-8"), score, gguf.TokenType.CONTROL
 | 
						|
 | 
						|
    def all_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
 | 
						|
        yield from self.bpe_tokens()
 | 
						|
        yield from self.added_tokens()
 | 
						|
 | 
						|
    def __repr__(self) -> str:
 | 
						|
        return f"<BpeVocab with {self.vocab_size_base} base tokens and {len(self.added_tokens_list)} added tokens>"
 | 
						|
 | 
						|
 | 
						|
class SentencePieceVocab:
 | 
						|
    tokenizer_model = "llama"
 | 
						|
    name = "spm"
 | 
						|
 | 
						|
    def __init__(self, fname_tokenizer: Path, fname_added_tokens: Path | None) -> None:
 | 
						|
        self.sentencepiece_tokenizer = SentencePieceProcessor(str(fname_tokenizer))
 | 
						|
        added_tokens: dict[str, int]
 | 
						|
        if fname_added_tokens is not None:
 | 
						|
            added_tokens = json.load(open(fname_added_tokens, encoding="utf-8"))
 | 
						|
        else:
 | 
						|
            added_tokens = {}
 | 
						|
 | 
						|
        vocab_size: int = self.sentencepiece_tokenizer.vocab_size()
 | 
						|
 | 
						|
        new_tokens       = {id: piece for piece, id in added_tokens.items() if id >= vocab_size}
 | 
						|
        expected_new_ids = list(range(vocab_size, vocab_size + len(new_tokens)))
 | 
						|
        actual_new_ids   = sorted(new_tokens.keys())
 | 
						|
 | 
						|
        if expected_new_ids != actual_new_ids:
 | 
						|
            raise ValueError(f"Expected new token IDs {expected_new_ids} to be sequential; got {actual_new_ids}")
 | 
						|
 | 
						|
        # Token pieces that were added to the base vocabulary.
 | 
						|
        self.added_tokens_dict = added_tokens
 | 
						|
        self.added_tokens_list  = [new_tokens[id] for id in actual_new_ids]
 | 
						|
        self.vocab_size_base    = vocab_size
 | 
						|
        self.vocab_size         = self.vocab_size_base + len(self.added_tokens_list)
 | 
						|
        self.fname_tokenizer    = fname_tokenizer
 | 
						|
        self.fname_added_tokens = fname_added_tokens
 | 
						|
 | 
						|
    def sentencepiece_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
 | 
						|
        tokenizer = self.sentencepiece_tokenizer
 | 
						|
        for i in range(tokenizer.vocab_size()):
 | 
						|
            piece = tokenizer.id_to_piece(i)
 | 
						|
            text: bytes = piece.encode("utf-8")
 | 
						|
            score: float = tokenizer.get_score(i)
 | 
						|
 | 
						|
            toktype = gguf.TokenType.NORMAL
 | 
						|
            if tokenizer.is_unknown(i):
 | 
						|
                toktype = gguf.TokenType.UNKNOWN
 | 
						|
            if tokenizer.is_control(i):
 | 
						|
                toktype = gguf.TokenType.CONTROL
 | 
						|
 | 
						|
            # NOTE: I think added_tokens are user defined.
 | 
						|
            # ref: https://github.com/google/sentencepiece/blob/master/src/sentencepiece_model.proto
 | 
						|
            # if tokenizer.is_user_defined(i): toktype = gguf.TokenType.USER_DEFINED
 | 
						|
 | 
						|
            if tokenizer.is_unused(i):
 | 
						|
                toktype = gguf.TokenType.UNUSED
 | 
						|
            if tokenizer.is_byte(i):
 | 
						|
                toktype = gguf.TokenType.BYTE
 | 
						|
 | 
						|
            yield text, score, toktype
 | 
						|
 | 
						|
    def added_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
 | 
						|
        for text in self.added_tokens_list:
 | 
						|
            score = -1000.0
 | 
						|
            yield text.encode("utf-8"), score, gguf.TokenType.USER_DEFINED
 | 
						|
 | 
						|
    def all_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
 | 
						|
        yield from self.sentencepiece_tokens()
 | 
						|
        yield from self.added_tokens()
 | 
						|
 | 
						|
    def __repr__(self) -> str:
 | 
						|
        return f"<SentencePieceVocab with {self.vocab_size_base} base tokens and {len(self.added_tokens_list)} added tokens>"
 | 
						|
 | 
						|
 | 
						|
class HfVocab:
 | 
						|
    tokenizer_model = "llama"
 | 
						|
    name = "hfft"
 | 
						|
 | 
						|
    def __init__(self, fname_tokenizer: Path, fname_added_tokens: Path | None = None) -> None:
 | 
						|
        try:
 | 
						|
            from transformers import AutoTokenizer
 | 
						|
        except ImportError as e:
 | 
						|
            raise ImportError(
 | 
						|
                "To use HfVocab, please install the `transformers` package. "
 | 
						|
                "You can install it with `pip install transformers`."
 | 
						|
            ) from e
 | 
						|
 | 
						|
        print("fname_tokenizer:", fname_tokenizer)
 | 
						|
        # Allow the tokenizer to default to slow or fast versions.
 | 
						|
        # Explicitly set tokenizer to use local paths.
 | 
						|
        self.tokenizer = AutoTokenizer.from_pretrained(
 | 
						|
            fname_tokenizer,
 | 
						|
            cache_dir=fname_tokenizer,
 | 
						|
            local_files_only=True,
 | 
						|
        )
 | 
						|
 | 
						|
        # Initialize lists and dictionaries for added tokens
 | 
						|
        self.added_tokens_list = []
 | 
						|
        self.added_tokens_dict = dict()
 | 
						|
        self.added_tokens_ids  = set()
 | 
						|
 | 
						|
        # Process added tokens
 | 
						|
        for tok, tokidx in sorted(
 | 
						|
            self.tokenizer.get_added_vocab().items(), key=lambda x: x[1]
 | 
						|
        ):
 | 
						|
            # Only consider added tokens that are not in the base vocabulary
 | 
						|
            if tokidx >= self.tokenizer.vocab_size:
 | 
						|
                self.added_tokens_list.append(tok)
 | 
						|
                self.added_tokens_dict[tok] = tokidx
 | 
						|
                self.added_tokens_ids.add(tokidx)
 | 
						|
 | 
						|
        # Store special tokens and their IDs
 | 
						|
        self.specials = {
 | 
						|
            tok: self.tokenizer.get_vocab()[tok]
 | 
						|
            for tok in self.tokenizer.all_special_tokens
 | 
						|
        }
 | 
						|
        self.special_ids = set(self.tokenizer.all_special_ids)
 | 
						|
 | 
						|
        # Set vocabulary sizes
 | 
						|
        self.vocab_size_base = self.tokenizer.vocab_size
 | 
						|
        self.vocab_size      = self.vocab_size_base + len(self.added_tokens_list)
 | 
						|
 | 
						|
        self.fname_tokenizer    = fname_tokenizer
 | 
						|
        self.fname_added_tokens = fname_added_tokens
 | 
						|
 | 
						|
    def hf_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
 | 
						|
        reverse_vocab = {
 | 
						|
            id: encoded_tok for encoded_tok, id in self.tokenizer.get_vocab().items()
 | 
						|
        }
 | 
						|
 | 
						|
        for token_id in range(self.vocab_size_base):
 | 
						|
            # Skip processing added tokens here
 | 
						|
            if token_id in self.added_tokens_ids:
 | 
						|
                continue
 | 
						|
 | 
						|
            # Convert token text to bytes
 | 
						|
            token_text = reverse_vocab[token_id].encode("utf-8")
 | 
						|
 | 
						|
            # Yield token text, score, and type
 | 
						|
            yield token_text, self.get_token_score(token_id), self.get_token_type(
 | 
						|
                token_id, token_text, self.special_ids  # Reuse already stored special IDs
 | 
						|
            )
 | 
						|
 | 
						|
    def get_token_type(self, token_id: int, token_text: bytes, special_ids: set[int]) -> gguf.TokenType:
 | 
						|
        # Special case for byte tokens
 | 
						|
        if re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
 | 
						|
            return gguf.TokenType.BYTE
 | 
						|
 | 
						|
        # Determine token type based on whether it's a special token
 | 
						|
        return gguf.TokenType.CONTROL if token_id in special_ids else gguf.TokenType.NORMAL
 | 
						|
 | 
						|
    def get_token_score(self, token_id: int) -> float:
 | 
						|
        # Placeholder for actual logic to determine the token's score
 | 
						|
        # This needs to be implemented based on specific requirements
 | 
						|
        return -1000.0  # Default score
 | 
						|
 | 
						|
    def added_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
 | 
						|
        for text in self.added_tokens_list:
 | 
						|
            if text in self.specials:
 | 
						|
                toktype = self.get_token_type(self.specials[text], b'', self.special_ids)
 | 
						|
                score = self.get_token_score(self.specials[text])
 | 
						|
            else:
 | 
						|
                toktype = gguf.TokenType.USER_DEFINED
 | 
						|
                score = -1000.0
 | 
						|
 | 
						|
            yield text.encode("utf-8"), score, toktype
 | 
						|
 | 
						|
    def has_newline_token(self):
 | 
						|
        return "<0x0A>" in self.tokenizer.vocab or "\n" in self.tokenizer.vocab
 | 
						|
 | 
						|
    def all_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
 | 
						|
        yield from self.hf_tokens()
 | 
						|
        yield from self.added_tokens()
 | 
						|
 | 
						|
    def __repr__(self) -> str:
 | 
						|
        return f"<HfVocab with {self.vocab_size_base} base tokens and {len(self.added_tokens_list)} added tokens>"
 | 
						|
 | 
						|
 | 
						|
class NoVocab:
 | 
						|
    tokenizer_model = "no_vocab"
 | 
						|
    name = "no_vocab"
 | 
						|
 | 
						|
    def __repr__(self) -> str:
 | 
						|
        return "<NoVocab for a model without integrated vocabulary>"
 | 
						|
 | 
						|
 | 
						|
Vocab: TypeAlias = "BpeVocab | SentencePieceVocab | HfVocab | NoVocab"
 | 
						|
 | 
						|
 | 
						|
#
 | 
						|
# data loading
 | 
						|
# TODO: reuse (probably move to gguf.py?)
 | 
						|
#
 | 
						|
 | 
						|
 | 
						|
def permute(weights: NDArray, n_head: int, n_head_kv: int) -> NDArray:
 | 
						|
    # print( "permute debug " + str(weights.shape[0]) + " x " + str(weights.shape[1]) + " nhead " + str(n_head) + " nheadkv " + str(n_kv_head) )
 | 
						|
    if n_head_kv is not None and n_head != n_head_kv:
 | 
						|
        n_head = n_head_kv
 | 
						|
    return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
 | 
						|
            .swapaxes(1, 2)
 | 
						|
            .reshape(weights.shape))
 | 
						|
 | 
						|
 | 
						|
class Tensor(metaclass=ABCMeta):
 | 
						|
    data_type: DataType
 | 
						|
 | 
						|
    @abstractmethod
 | 
						|
    def astype(self, data_type: DataType) -> Tensor: ...
 | 
						|
    @abstractmethod
 | 
						|
    def permute(self, n_head: int, n_head_kv: int) -> Tensor: ...
 | 
						|
    @abstractmethod
 | 
						|
    def permute_part(self, n_part: int, n_head: int, n_head_kv: int) -> UnquantizedTensor: ...
 | 
						|
    @abstractmethod
 | 
						|
    def part(self, n_part: int) -> UnquantizedTensor: ...
 | 
						|
    @abstractmethod
 | 
						|
    def to_ggml(self) -> GGMLCompatibleTensor: ...
 | 
						|
 | 
						|
 | 
						|
def bf16_to_fp32(bf16_arr: np.ndarray[Any, np.dtype[np.uint16]]) -> NDArray:
 | 
						|
    assert bf16_arr.dtype == np.uint16, f"Input array should be of dtype uint16, but got {bf16_arr.dtype}"
 | 
						|
    fp32_arr = bf16_arr.astype(np.uint32) << 16
 | 
						|
    return fp32_arr.view(np.float32)
 | 
						|
 | 
						|
 | 
						|
class UnquantizedTensor(Tensor):
 | 
						|
    def __init__(self, ndarray: NDArray) -> None:
 | 
						|
        assert isinstance(ndarray, np.ndarray)
 | 
						|
        self.ndarray = ndarray
 | 
						|
        self.data_type = NUMPY_TYPE_TO_DATA_TYPE[ndarray.dtype]
 | 
						|
 | 
						|
    def astype(self, data_type: DataType) -> Tensor:
 | 
						|
        dtype = data_type.dtype
 | 
						|
        if self.data_type == DT_BF16:
 | 
						|
            self.ndarray = bf16_to_fp32(self.ndarray)
 | 
						|
        return UnquantizedTensor(self.ndarray.astype(dtype))
 | 
						|
 | 
						|
    def to_ggml(self) -> UnquantizedTensor:
 | 
						|
        return self
 | 
						|
 | 
						|
    def permute_part(self, n_part: int, n_head: int, n_head_kv: int) -> UnquantizedTensor:
 | 
						|
        r = self.ndarray.shape[0] // 3
 | 
						|
        return UnquantizedTensor(permute(self.ndarray[r * n_part : r * n_part + r, ...], n_head, n_head_kv))
 | 
						|
 | 
						|
    def part(self, n_part: int) -> UnquantizedTensor:
 | 
						|
        r = self.ndarray.shape[0] // 3
 | 
						|
        return UnquantizedTensor(self.ndarray[r * n_part : r * n_part + r, ...])
 | 
						|
 | 
						|
    def permute(self, n_head: int, n_head_kv: int) -> UnquantizedTensor:
 | 
						|
        return UnquantizedTensor(permute(self.ndarray, n_head, n_head_kv))
 | 
						|
 | 
						|
 | 
						|
def load_unquantized(lazy_tensor: LazyTensor, expected_dtype: Any = None, convert: bool = False) -> NDArray:
 | 
						|
    tensor = lazy_tensor.load()
 | 
						|
    assert isinstance(tensor, UnquantizedTensor)
 | 
						|
 | 
						|
    # double-check:
 | 
						|
    actual_shape = list(tensor.ndarray.shape)
 | 
						|
    assert actual_shape == lazy_tensor.shape, (actual_shape, lazy_tensor.shape)
 | 
						|
    if expected_dtype is not None and expected_dtype != tensor.ndarray.dtype:
 | 
						|
        if convert:
 | 
						|
            tensor.ndarray = tensor.ndarray.astype(expected_dtype)
 | 
						|
        else:
 | 
						|
            raise ValueError(f'expected this tensor to have dtype {expected_dtype}, got {tensor.ndarray.dtype}')
 | 
						|
 | 
						|
    return tensor.ndarray
 | 
						|
 | 
						|
 | 
						|
GGMLCompatibleTensor = UnquantizedTensor
 | 
						|
 | 
						|
 | 
						|
@dataclass
 | 
						|
class LazyTensor:
 | 
						|
    _load: Callable[[], Tensor]
 | 
						|
    shape: list[int]
 | 
						|
    data_type: DataType
 | 
						|
    description: str
 | 
						|
 | 
						|
    def load(self) -> Tensor:
 | 
						|
        ret = self._load()
 | 
						|
        # Should be okay if it maps to the same numpy type?
 | 
						|
        assert ret.data_type == self.data_type or (self.data_type.dtype == ret.data_type.dtype), \
 | 
						|
            (self.data_type, ret.data_type, self.description)
 | 
						|
        return ret
 | 
						|
 | 
						|
    def astype(self, data_type: DataType) -> LazyTensor:
 | 
						|
        self.validate_conversion_to(data_type)
 | 
						|
 | 
						|
        def load() -> Tensor:
 | 
						|
            return self.load().astype(data_type)
 | 
						|
        return LazyTensor(load, self.shape, data_type, f'convert({data_type}) {self.description}')
 | 
						|
 | 
						|
    def validate_conversion_to(self, data_type: DataType) -> None:
 | 
						|
        if data_type != self.data_type and data_type.name not in self.data_type.valid_conversions:
 | 
						|
            raise ValueError(f'Cannot validate conversion from {self.data_type} to {data_type}.')
 | 
						|
 | 
						|
 | 
						|
LazyModel: TypeAlias = 'dict[str, LazyTensor]'
 | 
						|
 | 
						|
 | 
						|
@dataclass
 | 
						|
class ModelPlus:
 | 
						|
    model: LazyModel
 | 
						|
    paths: list[Path]  # Where this was read from.
 | 
						|
    format: Literal['ggml', 'torch', 'safetensors', 'none']
 | 
						|
    vocab: Vocab | None  # For GGML models (which have vocab built in), the vocab.
 | 
						|
 | 
						|
 | 
						|
def merge_sharded(models: list[LazyModel]) -> LazyModel:
 | 
						|
    # Original LLaMA models have each file contain one part of each tensor.
 | 
						|
    # Use a dict instead of a set to preserve order.
 | 
						|
    names = {name: None for model in models for name in model}
 | 
						|
 | 
						|
    def convert(name: str) -> LazyTensor:
 | 
						|
        lazy_tensors: list[LazyTensor] = [model[name] for model in models]
 | 
						|
        if len(lazy_tensors) == 1:
 | 
						|
            # only one file; don't go through this procedure since there might
 | 
						|
            # be quantized tensors
 | 
						|
            return lazy_tensors[0]
 | 
						|
        if len(lazy_tensors[0].shape) == 1:
 | 
						|
            # the tensor is just duplicated in every file
 | 
						|
            return lazy_tensors[0]
 | 
						|
        if name.startswith('tok_embeddings.') or \
 | 
						|
           name.endswith('.attention.wo.weight') or \
 | 
						|
           name.endswith('.feed_forward.w2.weight'):
 | 
						|
            # split by columns
 | 
						|
            axis = 1
 | 
						|
        else:
 | 
						|
            # split by rows
 | 
						|
            axis = 0
 | 
						|
        concatenated_shape = list(lazy_tensors[0].shape)
 | 
						|
        concatenated_shape[axis] = sum(tensor.shape[axis] for tensor in lazy_tensors)
 | 
						|
 | 
						|
        def load() -> UnquantizedTensor:
 | 
						|
            ndarrays = [load_unquantized(tensor) for tensor in lazy_tensors]
 | 
						|
            concatenated: NDArray = np.concatenate(ndarrays, axis=axis)
 | 
						|
            return UnquantizedTensor(concatenated)
 | 
						|
        description = 'concatenated[[' + '] | ['.join(lt.description for lt in lazy_tensors) + ']]'
 | 
						|
        return LazyTensor(load, concatenated_shape, lazy_tensors[0].data_type, description)
 | 
						|
    return {name: convert(name) for name in names}
 | 
						|
 | 
						|
 | 
						|
def merge_multifile_models(models_plus: list[ModelPlus]) -> ModelPlus:
 | 
						|
    formats = set(mp.format for mp in models_plus)
 | 
						|
    assert len(formats) == 1, "different formats?"
 | 
						|
    format = formats.pop()
 | 
						|
    paths = [path for mp in models_plus for path in mp.paths]
 | 
						|
    # Use the first non-None vocab, if any.
 | 
						|
    try:
 | 
						|
        vocab = next(mp.vocab for mp in models_plus if mp.vocab is not None)
 | 
						|
    except StopIteration:
 | 
						|
        vocab = None
 | 
						|
 | 
						|
    if any("model.embed_tokens.weight" in mp.model for mp in models_plus):
 | 
						|
        # Transformers models put different tensors in different files, but
 | 
						|
        # don't split individual tensors between files.
 | 
						|
        model: LazyModel = {}
 | 
						|
        for mp in models_plus:
 | 
						|
            model.update(mp.model)
 | 
						|
    else:
 | 
						|
        model = merge_sharded([mp.model for mp in models_plus])
 | 
						|
 | 
						|
    return ModelPlus(model, paths, format, vocab)  # pytype: disable=wrong-arg-types
 | 
						|
 | 
						|
 | 
						|
def permute_lazy(lazy_tensor: LazyTensor, n_head: int, n_head_kv: int) -> LazyTensor:
 | 
						|
    def load() -> Tensor:
 | 
						|
        return lazy_tensor.load().permute(n_head, n_head_kv)
 | 
						|
    return LazyTensor(load, lazy_tensor.shape, lazy_tensor.data_type, f'permute({n_head}, {n_head_kv}) ' + lazy_tensor.description)
 | 
						|
 | 
						|
 | 
						|
def permute_part_lazy(lazy_tensor: LazyTensor, n_part: int, n_head: int, n_head_kv: int) -> LazyTensor:
 | 
						|
    def load() -> Tensor:
 | 
						|
        return lazy_tensor.load().permute_part(n_part, n_head, n_head_kv)
 | 
						|
    s = lazy_tensor.shape.copy()
 | 
						|
    s[0] = s[0] // 3
 | 
						|
    return LazyTensor(load, s, lazy_tensor.data_type, f'permute({n_head}, {n_head_kv}) ' + lazy_tensor.description)
 | 
						|
 | 
						|
 | 
						|
def part_lazy(lazy_tensor: LazyTensor, n_part: int) -> LazyTensor:
 | 
						|
    def load() -> Tensor:
 | 
						|
        return lazy_tensor.load().part(n_part)
 | 
						|
    s = lazy_tensor.shape.copy()
 | 
						|
    s[0] = s[0] // 3
 | 
						|
    return LazyTensor(load, s, lazy_tensor.data_type, 'part ' + lazy_tensor.description)
 | 
						|
 | 
						|
 | 
						|
# Functionality that simulates `torch.load` but where individual tensors are
 | 
						|
# only loaded into memory on demand, not all at once.
 | 
						|
# PyTorch can't do this natively as of time of writing:
 | 
						|
# - https://github.com/pytorch/pytorch/issues/64327
 | 
						|
# This allows us to de-shard without multiplying RAM usage, and also
 | 
						|
# conveniently drops the PyTorch dependency (though we still need numpy).
 | 
						|
 | 
						|
 | 
						|
@dataclass
 | 
						|
class LazyStorageKind:
 | 
						|
    data_type: DataType
 | 
						|
 | 
						|
 | 
						|
@dataclass
 | 
						|
class LazyStorage:
 | 
						|
    load: Callable[[int, int], NDArray]
 | 
						|
    kind: LazyStorageKind
 | 
						|
    description: str
 | 
						|
 | 
						|
 | 
						|
class LazyUnpickler(pickle.Unpickler):
 | 
						|
    def __init__(self, fp: IO[bytes], data_base_path: str, zip_file: zipfile.ZipFile):
 | 
						|
        super().__init__(fp)
 | 
						|
        self.data_base_path = data_base_path
 | 
						|
        self.zip_file = zip_file
 | 
						|
 | 
						|
    def persistent_load(self, pid: Any) -> Any:
 | 
						|
        assert pid[0] == 'storage'
 | 
						|
        assert isinstance(pid[1], LazyStorageKind)
 | 
						|
        data_type = pid[1].data_type
 | 
						|
        filename_stem = pid[2]
 | 
						|
        filename = f'{self.data_base_path}/{filename_stem}'
 | 
						|
        info = self.zip_file.getinfo(filename)
 | 
						|
 | 
						|
        def load(offset: int, elm_count: int) -> NDArray:
 | 
						|
            dtype = data_type.dtype
 | 
						|
            fp = self.zip_file.open(info)
 | 
						|
            fp.seek(offset * dtype.itemsize)
 | 
						|
            size = elm_count * dtype.itemsize
 | 
						|
            data = fp.read(size)
 | 
						|
            assert len(data) == size
 | 
						|
            return np.frombuffer(data, dtype)
 | 
						|
        description = f'storage data_type={data_type} path-in-zip={filename} path={self.zip_file.filename}'
 | 
						|
        return LazyStorage(load=load, kind=pid[1], description=description)
 | 
						|
 | 
						|
    @staticmethod
 | 
						|
    def lazy_rebuild_tensor_v2(storage: Any, storage_offset: Any, size: Any, stride: Any,
 | 
						|
                               requires_grad: Any, backward_hooks: Any, metadata: Any = None) -> LazyTensor:
 | 
						|
        assert isinstance(storage, LazyStorage)
 | 
						|
 | 
						|
        def load() -> UnquantizedTensor:
 | 
						|
            elm_count = stride[0] * size[0]
 | 
						|
            return UnquantizedTensor(storage.load(storage_offset, elm_count).reshape(size))
 | 
						|
        description = f'pickled storage_offset={storage_offset} in {storage.description}'
 | 
						|
        return LazyTensor(load, list(size), storage.kind.data_type, description)
 | 
						|
 | 
						|
    @staticmethod
 | 
						|
    def rebuild_from_type_v2(func, new_type, args, state):
 | 
						|
        return func(*args)
 | 
						|
 | 
						|
    CLASSES: dict[tuple[str, str], Any] = {
 | 
						|
        # getattr used here as a workaround for mypy not being smart enough to determine
 | 
						|
        # the staticmethods have a __func__ attribute.
 | 
						|
        ('torch._tensor', '_rebuild_from_type_v2'): getattr(rebuild_from_type_v2, '__func__'),
 | 
						|
        ('torch._utils', '_rebuild_tensor_v2'): getattr(lazy_rebuild_tensor_v2, '__func__'),
 | 
						|
        ('torch', 'BFloat16Storage'): LazyStorageKind(DT_BF16),
 | 
						|
        ('torch', 'HalfStorage'): LazyStorageKind(DT_F16),
 | 
						|
        ('torch', 'FloatStorage'): LazyStorageKind(DT_F32),
 | 
						|
        ('torch', 'IntStorage'): LazyStorageKind(DT_I32),
 | 
						|
        ('torch', 'Tensor'): LazyTensor,
 | 
						|
    }
 | 
						|
 | 
						|
    def find_class(self, module: str, name: str) -> Any:
 | 
						|
        if not module.startswith('torch'):
 | 
						|
            return super().find_class(module, name)
 | 
						|
        return self.CLASSES[(module, name)]
 | 
						|
 | 
						|
 | 
						|
def lazy_load_torch_file(outer_fp: IO[bytes], path: Path) -> ModelPlus:
 | 
						|
    zf = zipfile.ZipFile(outer_fp)
 | 
						|
    pickle_paths = [name for name in zf.namelist() if name.endswith('.pkl')]
 | 
						|
    assert len(pickle_paths) == 1, pickle_paths
 | 
						|
    pickle_fp = zf.open(pickle_paths[0], 'r')
 | 
						|
    unpickler = LazyUnpickler(pickle_fp,
 | 
						|
                              data_base_path=pickle_paths[0][:-4],
 | 
						|
                              zip_file=zf)
 | 
						|
    model = unpickler.load()
 | 
						|
    if 'model' in model: model = model['model']
 | 
						|
    as_dict = dict(model.items())
 | 
						|
    return ModelPlus(model=as_dict, paths=[path], format='torch', vocab=None)
 | 
						|
 | 
						|
 | 
						|
def lazy_load_safetensors_file(fp: IO[bytes], path: Path) -> ModelPlus:
 | 
						|
    header_size, = struct.unpack('<Q', fp.read(8))
 | 
						|
    header: dict[str, dict[str, Any]] = json.loads(fp.read(header_size))
 | 
						|
    # Use mmap for the actual data to avoid race conditions with the file offset.
 | 
						|
    mapped = memoryview(mmap.mmap(fp.fileno(), 0, access=mmap.ACCESS_READ))
 | 
						|
    byte_buf = mapped[8 + header_size:]
 | 
						|
 | 
						|
    def convert(info: dict[str, Any]) -> LazyTensor:
 | 
						|
        data_type = SAFETENSORS_DATA_TYPES[info['dtype']]
 | 
						|
        numpy_dtype = data_type.dtype
 | 
						|
        shape: list[int] = info['shape']
 | 
						|
        begin, end = info['data_offsets']
 | 
						|
        assert 0 <= begin <= end <= len(byte_buf)
 | 
						|
        assert end - begin == math.prod(shape) * numpy_dtype.itemsize
 | 
						|
        buf = byte_buf[begin:end]
 | 
						|
 | 
						|
        def load() -> UnquantizedTensor:
 | 
						|
            return UnquantizedTensor(np.frombuffer(buf, dtype=numpy_dtype).reshape(shape))
 | 
						|
        description = f'safetensors begin={begin} end={end} type={data_type} path={path}'
 | 
						|
        return LazyTensor(load, shape, data_type, description)
 | 
						|
    model = {name: convert(info) for (name, info) in header.items() if name != '__metadata__'}
 | 
						|
    return ModelPlus(model=model, paths=[path], format='safetensors', vocab=None)
 | 
						|
 | 
						|
 | 
						|
def must_read(fp: IO[bytes], length: int) -> bytes:
 | 
						|
    ret = fp.read(length)
 | 
						|
    if len(ret) < length:
 | 
						|
        raise Exception("unexpectedly reached end of file")
 | 
						|
    return ret
 | 
						|
 | 
						|
 | 
						|
@functools.lru_cache(maxsize=None)
 | 
						|
def lazy_load_file(path: Path) -> ModelPlus:
 | 
						|
    fp = open(path, 'rb')
 | 
						|
    first8 = fp.read(8)
 | 
						|
    fp.seek(0)
 | 
						|
    if first8[:2] == b'PK':
 | 
						|
        # A zip file, i.e. PyTorch format
 | 
						|
        return lazy_load_torch_file(fp, path)
 | 
						|
    elif struct.unpack('<Q', first8)[0] < 16 * 1024 * 1024:
 | 
						|
        # Probably safetensors
 | 
						|
        return lazy_load_safetensors_file(fp, path)
 | 
						|
    else:
 | 
						|
        raise ValueError(f"unknown format: {path}")
 | 
						|
 | 
						|
 | 
						|
In = TypeVar('In')
 | 
						|
Out = TypeVar('Out')
 | 
						|
 | 
						|
 | 
						|
def bounded_parallel_map(func: Callable[[In], Out], iterable: Iterable[In], concurrency: int, max_workers: int | None = None, use_processpool_executor: bool = False) -> Iterable[Out]:
 | 
						|
    '''Parallel map, but with backpressure.  If the caller doesn't call `next`
 | 
						|
    fast enough, this will stop calling `func` at some point rather than
 | 
						|
    letting results pile up in memory.  Specifically, there is a max of one
 | 
						|
    output value buffered per thread.'''
 | 
						|
    if concurrency < 2:
 | 
						|
        yield from map(func, iterable)
 | 
						|
        # Not reached.
 | 
						|
    iterable = iter(iterable)
 | 
						|
    executor_class: type[ThreadPoolExecutor] | type[ProcessPoolExecutor]
 | 
						|
    if use_processpool_executor:
 | 
						|
        executor_class = ProcessPoolExecutor
 | 
						|
    else:
 | 
						|
        executor_class = ThreadPoolExecutor
 | 
						|
    with executor_class(max_workers=max_workers) as executor:
 | 
						|
        futures: list[concurrent.futures.Future[Out]] = []
 | 
						|
        done = False
 | 
						|
        for _ in range(concurrency):
 | 
						|
            try:
 | 
						|
                futures.append(executor.submit(func, next(iterable)))
 | 
						|
            except StopIteration:
 | 
						|
                done = True
 | 
						|
                break
 | 
						|
 | 
						|
        while futures:
 | 
						|
            result = futures.pop(0).result()
 | 
						|
            while not done and len(futures) < concurrency:
 | 
						|
                try:
 | 
						|
                    futures.append(executor.submit(func, next(iterable)))
 | 
						|
                except StopIteration:
 | 
						|
                    done = True
 | 
						|
                    break
 | 
						|
            yield result
 | 
						|
 | 
						|
 | 
						|
def check_vocab_size(params: Params, vocab: Vocab, pad_vocab: bool = False) -> None:
 | 
						|
    # Handle special case where the model's vocab size is not set
 | 
						|
    if params.n_vocab == -1:
 | 
						|
        raise ValueError(
 | 
						|
            f"The model's vocab size is set to -1 in params.json. Please update it manually.{f' Maybe {vocab.vocab_size}?' if hasattr(vocab, 'vocab_size') else ''}"
 | 
						|
        )
 | 
						|
    if isinstance(vocab, NoVocab):
 | 
						|
        return  # model has no vocab
 | 
						|
 | 
						|
    # Check for a vocab size mismatch
 | 
						|
    if params.n_vocab == vocab.vocab_size:
 | 
						|
        print("Ignoring added_tokens.json since model matches vocab size without it.")
 | 
						|
        return
 | 
						|
 | 
						|
    if pad_vocab and params.n_vocab > vocab.vocab_size:
 | 
						|
        pad_count = params.n_vocab - vocab.vocab_size
 | 
						|
        print(
 | 
						|
            f"Padding vocab with {pad_count} token(s) - <dummy00001> through <dummy{pad_count:05}>"
 | 
						|
        )
 | 
						|
        for i in range(1, pad_count + 1):
 | 
						|
            vocab.added_tokens_dict[f"<dummy{i:05}>"] = -1
 | 
						|
            vocab.added_tokens_list.append(f"<dummy{i:05}>")
 | 
						|
        vocab.vocab_size = params.n_vocab
 | 
						|
        return
 | 
						|
 | 
						|
    msg = f"Vocab size mismatch (model has {params.n_vocab}, but {vocab.fname_tokenizer} has {vocab.vocab_size})."
 | 
						|
    if vocab.vocab_size < params.n_vocab < vocab.vocab_size + 20:
 | 
						|
        msg += f"  Most likely you are missing added_tokens.json (should be in {vocab.fname_tokenizer.parent})."
 | 
						|
    if vocab.vocab_size < params.n_vocab:
 | 
						|
        msg += " Add the --pad-vocab option and try again."
 | 
						|
 | 
						|
    raise Exception(msg)
 | 
						|
 | 
						|
 | 
						|
class OutputFile:
 | 
						|
    def __init__(self, fname_out: Path, endianess:gguf.GGUFEndian = gguf.GGUFEndian.LITTLE) -> None:
 | 
						|
        self.gguf = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH], endianess=endianess)
 | 
						|
 | 
						|
    def add_meta_arch(self, params: Params) -> None:
 | 
						|
        name = "LLaMA"
 | 
						|
 | 
						|
        # TODO: better logic to determine model name
 | 
						|
        if params.n_ctx == 4096:
 | 
						|
            name = "LLaMA v2"
 | 
						|
        elif params.path_model is not None:
 | 
						|
            name = str(params.path_model.parent).split('/')[-1]
 | 
						|
 | 
						|
        self.gguf.add_name                (name)
 | 
						|
        self.gguf.add_vocab_size          (params.n_vocab)
 | 
						|
        self.gguf.add_context_length      (params.n_ctx)
 | 
						|
        self.gguf.add_embedding_length    (params.n_embd)
 | 
						|
        self.gguf.add_block_count         (params.n_layer)
 | 
						|
        self.gguf.add_feed_forward_length (params.n_ff)
 | 
						|
        self.gguf.add_rope_dimension_count(params.n_embd // params.n_head)
 | 
						|
        self.gguf.add_head_count          (params.n_head)
 | 
						|
        self.gguf.add_head_count_kv       (params.n_head_kv)
 | 
						|
 | 
						|
        if params.n_experts:
 | 
						|
            self.gguf.add_expert_count(params.n_experts)
 | 
						|
 | 
						|
        if params.n_experts_used:
 | 
						|
            self.gguf.add_expert_used_count(params.n_experts_used)
 | 
						|
 | 
						|
        if params.f_norm_eps:
 | 
						|
            self.gguf.add_layer_norm_rms_eps(params.f_norm_eps)
 | 
						|
        else:
 | 
						|
            raise ValueError('f_norm_eps is None')
 | 
						|
 | 
						|
        if params.f_rope_freq_base is not None:
 | 
						|
            self.gguf.add_rope_freq_base(params.f_rope_freq_base)
 | 
						|
 | 
						|
        if params.rope_scaling_type:
 | 
						|
            assert params.f_rope_scale is not None
 | 
						|
            self.gguf.add_rope_scaling_type(params.rope_scaling_type)
 | 
						|
            self.gguf.add_rope_scaling_factor(params.f_rope_scale)
 | 
						|
 | 
						|
        if params.n_orig_ctx is not None:
 | 
						|
            self.gguf.add_rope_scaling_orig_ctx_len(params.n_orig_ctx)
 | 
						|
 | 
						|
        if params.rope_finetuned is not None:
 | 
						|
            self.gguf.add_rope_scaling_finetuned(params.rope_finetuned)
 | 
						|
 | 
						|
        if params.ftype is not None:
 | 
						|
            self.gguf.add_file_type(params.ftype)
 | 
						|
 | 
						|
    def extract_vocabulary_from_model(self, vocab: Vocab) -> tuple[list[bytes], list[float], list[gguf.TokenType]]:
 | 
						|
        assert not isinstance(vocab, NoVocab)
 | 
						|
 | 
						|
        tokens = []
 | 
						|
        scores = []
 | 
						|
        toktypes = []
 | 
						|
 | 
						|
        # NOTE: `all_tokens` returns the base vocabulary and added tokens
 | 
						|
        for text, score, toktype in vocab.all_tokens():
 | 
						|
            tokens.append(text)
 | 
						|
            scores.append(score)
 | 
						|
            toktypes.append(toktype)
 | 
						|
 | 
						|
        assert len(tokens) == vocab.vocab_size
 | 
						|
 | 
						|
        return tokens, scores, toktypes
 | 
						|
 | 
						|
    def add_meta_vocab(self, vocab: Vocab) -> None:
 | 
						|
        # Ensure that tokenizer_model is added to the GGUF model
 | 
						|
        self.gguf.add_tokenizer_model(vocab.tokenizer_model)
 | 
						|
 | 
						|
        # Extract model vocabulary for model conversion
 | 
						|
        tokens, scores, toktypes = self.extract_vocabulary_from_model(vocab)
 | 
						|
 | 
						|
        # Add extracted token information for model conversion
 | 
						|
        self.gguf.add_token_list(tokens)
 | 
						|
        self.gguf.add_token_scores(scores)
 | 
						|
        self.gguf.add_token_types(toktypes)
 | 
						|
 | 
						|
    def add_meta_special_vocab(self, svocab: gguf.SpecialVocab) -> None:
 | 
						|
        svocab.add_to_gguf(self.gguf)
 | 
						|
 | 
						|
    def add_tensor_info(self, name: str, tensor: LazyTensor) -> None:
 | 
						|
        n_elements = int(np.prod(tensor.shape))
 | 
						|
        raw_dtype = getattr(tensor.data_type, 'ggml_type', None)
 | 
						|
        data_type = getattr(tensor.data_type, 'quantized_type', None) or tensor.data_type.dtype
 | 
						|
        data_nbytes = tensor.data_type.elements_to_bytes(n_elements)
 | 
						|
        self.gguf.add_tensor_info(name, tensor.shape, data_type, data_nbytes, raw_dtype=raw_dtype)
 | 
						|
 | 
						|
    def write_meta(self) -> None:
 | 
						|
        self.gguf.write_header_to_file()
 | 
						|
        self.gguf.write_kv_data_to_file()
 | 
						|
 | 
						|
    def write_tensor_info(self) -> None:
 | 
						|
        self.gguf.write_ti_data_to_file()
 | 
						|
 | 
						|
    def write_tensor_data(self, ftype: GGMLFileType, model: LazyModel, concurrency: int) -> None:
 | 
						|
        ndarrays_inner = bounded_parallel_map(OutputFile.do_item, model.items(), concurrency=concurrency)
 | 
						|
        if ftype == GGMLFileType.MostlyQ8_0:
 | 
						|
            ndarrays = bounded_parallel_map(
 | 
						|
                OutputFile.maybe_do_quantize, ndarrays_inner, concurrency=concurrency, max_workers=concurrency,
 | 
						|
                use_processpool_executor=True,
 | 
						|
            )
 | 
						|
        else:
 | 
						|
            ndarrays = map(OutputFile.maybe_do_quantize, ndarrays_inner)
 | 
						|
 | 
						|
        start = time.time()
 | 
						|
        for i, ((name, lazy_tensor), ndarray) in enumerate(zip(model.items(), ndarrays)):
 | 
						|
            elapsed = time.time() - start
 | 
						|
            size = ' x '.join(f"{dim:6d}" for dim in lazy_tensor.shape)
 | 
						|
            padi = len(str(len(model)))
 | 
						|
            print(
 | 
						|
                f"[{i + 1:{padi}d}/{len(model)}] Writing tensor {name:38s} | size {size:16} | type {lazy_tensor.data_type.name:4} | T+{int(elapsed):4}"
 | 
						|
            )
 | 
						|
            self.gguf.write_tensor_data(ndarray)
 | 
						|
 | 
						|
    def close(self) -> None:
 | 
						|
        self.gguf.close()
 | 
						|
 | 
						|
    @staticmethod
 | 
						|
    def write_vocab_only(
 | 
						|
        fname_out: Path, params: Params, vocab: Vocab, svocab: gguf.SpecialVocab,
 | 
						|
        endianess: gguf.GGUFEndian = gguf.GGUFEndian.LITTLE, pad_vocab: bool = False,
 | 
						|
    ) -> None:
 | 
						|
        check_vocab_size(params, vocab, pad_vocab=pad_vocab)
 | 
						|
 | 
						|
        of = OutputFile(fname_out, endianess=endianess)
 | 
						|
 | 
						|
        # meta data
 | 
						|
        of.add_meta_arch(params)
 | 
						|
        of.add_meta_vocab(vocab)
 | 
						|
        of.add_meta_special_vocab(svocab)
 | 
						|
 | 
						|
        of.write_meta()
 | 
						|
 | 
						|
        of.close()
 | 
						|
 | 
						|
    @staticmethod
 | 
						|
    def do_item(item: tuple[str, LazyTensor]) -> tuple[DataType, NDArray]:
 | 
						|
        name, lazy_tensor = item
 | 
						|
        tensor = lazy_tensor.load().to_ggml()
 | 
						|
        return (lazy_tensor.data_type, tensor.ndarray)
 | 
						|
 | 
						|
    @staticmethod
 | 
						|
    def maybe_do_quantize(item: tuple[DataType, NDArray]) -> NDArray:
 | 
						|
        dt, arr = item
 | 
						|
        if not isinstance(dt, QuantizedDataType):
 | 
						|
            return arr
 | 
						|
        return dt.quantize(arr)
 | 
						|
 | 
						|
    @staticmethod
 | 
						|
    def write_all(
 | 
						|
        fname_out: Path, ftype: GGMLFileType, params: Params, model: LazyModel, vocab: Vocab, svocab: gguf.SpecialVocab,
 | 
						|
        concurrency: int = DEFAULT_CONCURRENCY, endianess: gguf.GGUFEndian = gguf.GGUFEndian.LITTLE,
 | 
						|
        pad_vocab: bool = False,
 | 
						|
    ) -> None:
 | 
						|
        check_vocab_size(params, vocab, pad_vocab=pad_vocab)
 | 
						|
 | 
						|
        of = OutputFile(fname_out, endianess=endianess)
 | 
						|
 | 
						|
        # meta data
 | 
						|
        of.add_meta_arch(params)
 | 
						|
        if isinstance(vocab, NoVocab):
 | 
						|
            of.gguf.add_tokenizer_model(vocab.tokenizer_model)
 | 
						|
        else:
 | 
						|
            of.add_meta_vocab(vocab)
 | 
						|
            of.add_meta_special_vocab(svocab)
 | 
						|
 | 
						|
        # tensor info
 | 
						|
        for name, lazy_tensor in model.items():
 | 
						|
            of.add_tensor_info(name, lazy_tensor)
 | 
						|
 | 
						|
        of.write_meta()
 | 
						|
        of.write_tensor_info()
 | 
						|
 | 
						|
        # tensor data
 | 
						|
        of.write_tensor_data(ftype, model, concurrency)
 | 
						|
 | 
						|
        of.close()
 | 
						|
 | 
						|
 | 
						|
def pick_output_type(model: LazyModel, output_type_str: str | None) -> GGMLFileType:
 | 
						|
    wq_type = model[gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.ATTN_Q].format(bid=0) + ".weight"].data_type
 | 
						|
 | 
						|
    if output_type_str == "f32" or (output_type_str is None and wq_type in (DT_F32, DT_BF16)):
 | 
						|
        return GGMLFileType.AllF32
 | 
						|
    if output_type_str == "f16" or (output_type_str is None and wq_type == DT_F16):
 | 
						|
        return GGMLFileType.MostlyF16
 | 
						|
    if output_type_str == "q8_0":
 | 
						|
        return GGMLFileType.MostlyQ8_0
 | 
						|
 | 
						|
    name_to_type = {name: lazy_tensor.data_type for (name, lazy_tensor) in model.items()}
 | 
						|
 | 
						|
    raise Exception(f"Unexpected combination of types: {name_to_type}")
 | 
						|
 | 
						|
 | 
						|
def convert_to_output_type(model: LazyModel, output_type: GGMLFileType) -> LazyModel:
 | 
						|
    return {name: tensor.astype(output_type.type_for_tensor(name, tensor))
 | 
						|
            for (name, tensor) in model.items()}
 | 
						|
 | 
						|
 | 
						|
def convert_model_names(model: LazyModel, params: Params, skip_unknown: bool) -> LazyModel:
 | 
						|
    tmap = gguf.TensorNameMap(ARCH, params.n_layer)
 | 
						|
    should_skip: set[gguf.MODEL_TENSOR] = set(gguf.MODEL_TENSOR_SKIP.get(ARCH, []))
 | 
						|
 | 
						|
    tmp = model
 | 
						|
 | 
						|
    # HF models permut or pack some of the tensors, so we need to undo that
 | 
						|
    for i in itertools.count():
 | 
						|
        if f"model.layers.{i}.self_attn.q_proj.weight" in model:
 | 
						|
            print(f"Permuting layer {i}")
 | 
						|
            tmp[f"model.layers.{i}.self_attn.q_proj.weight"] = permute_lazy(model[f"model.layers.{i}.self_attn.q_proj.weight"], params.n_head, params.n_head)
 | 
						|
            tmp[f"model.layers.{i}.self_attn.k_proj.weight"] = permute_lazy(model[f"model.layers.{i}.self_attn.k_proj.weight"], params.n_head, params.n_head_kv)
 | 
						|
            # tmp[f"model.layers.{i}.self_attn.v_proj.weight"] =              model[f"model.layers.{i}.self_attn.v_proj.weight"]
 | 
						|
        elif f"model.layers.{i}.self_attn.W_pack.weight" in model:
 | 
						|
            print(f"Unpacking and permuting layer {i}")
 | 
						|
            tmp[f"model.layers.{i}.self_attn.q_proj.weight"] = permute_part_lazy(model[f"model.layers.{i}.self_attn.W_pack.weight"], 0, params.n_head, params.n_head)
 | 
						|
            tmp[f"model.layers.{i}.self_attn.k_proj.weight"] = permute_part_lazy(model[f"model.layers.{i}.self_attn.W_pack.weight"], 1, params.n_head, params.n_head_kv)
 | 
						|
            tmp[f"model.layers.{i}.self_attn.v_proj.weight"] = part_lazy        (model[f"model.layers.{i}.self_attn.W_pack.weight"], 2)
 | 
						|
            del tmp[f"model.layers.{i}.self_attn.W_pack.weight"]
 | 
						|
        else:
 | 
						|
            break
 | 
						|
 | 
						|
    out: LazyModel = {}
 | 
						|
    for name, lazy_tensor in model.items():
 | 
						|
        tensor_type, name_new = tmap.get_type_and_name(name, try_suffixes = (".weight", ".bias")) or (None, None)
 | 
						|
        if name_new is None:
 | 
						|
            if skip_unknown:
 | 
						|
                print(f"Unexpected tensor name: {name} - skipping")
 | 
						|
                continue
 | 
						|
            else:
 | 
						|
                raise Exception(f"Unexpected tensor name: {name}. Use --skip-unknown to ignore it (e.g. LLaVA)")
 | 
						|
 | 
						|
        if tensor_type in should_skip:
 | 
						|
            print(f"skipping tensor {name_new}")
 | 
						|
            continue
 | 
						|
 | 
						|
        print(f"{name:48s} -> {name_new:40s} | {lazy_tensor.data_type.name:6s} | {lazy_tensor.shape}")
 | 
						|
        out[name_new] = lazy_tensor
 | 
						|
 | 
						|
    return out
 | 
						|
 | 
						|
 | 
						|
def nth_multifile_path(path: Path, n: int) -> Path | None:
 | 
						|
    '''Given any path belonging to a multi-file model (e.g. foo.bin.1), return
 | 
						|
    the nth path in the model.
 | 
						|
    '''
 | 
						|
    # Support the following patterns:
 | 
						|
    patterns: list[tuple[str, str]] = [
 | 
						|
        # - x.00.pth, x.01.pth, etc.
 | 
						|
        (r'\.[0-9]{2}\.pth$', f'.{n:02}.pth'),
 | 
						|
        # - x-00001-of-00002.bin, x-00002-of-00002.bin, etc.
 | 
						|
        (r'-[0-9]{5}-of-(.*)$', fr'-{n:05}-of-\1'),
 | 
						|
        # x.bin, x.bin.1, etc.
 | 
						|
        (r'(\.[0-9]+)?$', r'\1' if n == 0 else fr'\1.{n}')
 | 
						|
    ]
 | 
						|
    for regex, replacement in patterns:
 | 
						|
        if re.search(regex, path.name):
 | 
						|
            new_path = path.with_name(re.sub(regex, replacement, path.name))
 | 
						|
            if new_path.exists():
 | 
						|
                return new_path
 | 
						|
    return None
 | 
						|
 | 
						|
 | 
						|
def find_multifile_paths(path: Path) -> list[Path]:
 | 
						|
    '''Given any path belonging to a multi-file model (e.g. foo.bin.1), return
 | 
						|
    the whole list of paths in the model.
 | 
						|
    '''
 | 
						|
    ret: list[Path] = []
 | 
						|
    for i in itertools.count():
 | 
						|
        nth_path = nth_multifile_path(path, i)
 | 
						|
        if nth_path is None:
 | 
						|
            break
 | 
						|
        ret.append(nth_path)
 | 
						|
    if not ret:
 | 
						|
        # No matches.  This should only happen if the file was named, e.g.,
 | 
						|
        # foo.0, and there was no file named foo.  Oh well, try to process it
 | 
						|
        # as a single file.
 | 
						|
        return [path]
 | 
						|
    return ret
 | 
						|
 | 
						|
 | 
						|
def load_some_model(path: Path) -> ModelPlus:
 | 
						|
    '''Load a model of any supported format.'''
 | 
						|
    # Be extra-friendly and accept either a file or a directory:
 | 
						|
    if path.is_dir():
 | 
						|
        # Check if it's a set of safetensors files first
 | 
						|
        globs = ["model-00001-of-*.safetensors", "model.safetensors"]
 | 
						|
        files = [file for glob in globs for file in path.glob(glob)]
 | 
						|
        if not files:
 | 
						|
            # Try the PyTorch patterns too, with lower priority
 | 
						|
            globs = ["consolidated.00.pth", "pytorch_model-00001-of-*.bin", "*.pt", "pytorch_model.bin"]
 | 
						|
            files = [file for glob in globs for file in path.glob(glob)]
 | 
						|
        if not files:
 | 
						|
            raise Exception(f"Can't find model in directory {path}")
 | 
						|
        if len(files) > 1:
 | 
						|
            raise Exception(f"Found multiple models in {path}, not sure which to pick: {files}")
 | 
						|
        path = files[0]
 | 
						|
 | 
						|
    paths = find_multifile_paths(path)
 | 
						|
    models_plus: list[ModelPlus] = []
 | 
						|
    for path in paths:
 | 
						|
        print(f"Loading model file {path}")
 | 
						|
        models_plus.append(lazy_load_file(path))
 | 
						|
 | 
						|
    model_plus = merge_multifile_models(models_plus)
 | 
						|
    return model_plus
 | 
						|
 | 
						|
 | 
						|
class VocabFactory:
 | 
						|
    _FILES = {"spm": "tokenizer.model", "bpe": "vocab.json", "hfft": "tokenizer.json"}
 | 
						|
 | 
						|
    def __init__(self, path: Path):
 | 
						|
        self.path = path
 | 
						|
        self.file_paths = self._detect_files()
 | 
						|
        print(f"Found vocab files: {self.file_paths}")
 | 
						|
 | 
						|
    def _detect_files(self) -> dict[str, Path | None]:
 | 
						|
        def locate(file: str) -> Path | None:
 | 
						|
            if (path := self.path / file).exists():
 | 
						|
                return path
 | 
						|
            if (path := self.path.parent / file).exists():
 | 
						|
                return path
 | 
						|
            return None
 | 
						|
 | 
						|
        return {vt: locate(f) for vt, f in self._FILES.items()}
 | 
						|
 | 
						|
    def _select_file(self, vocab_types: list[str]) -> tuple[str, Path]:
 | 
						|
        for vtype in vocab_types:
 | 
						|
            try:
 | 
						|
                path = self.file_paths[vtype]
 | 
						|
            except KeyError:
 | 
						|
                raise ValueError(f"Unsupported vocabulary type {vtype}") from None
 | 
						|
            if path is not None:
 | 
						|
                return vtype, path
 | 
						|
        raise FileNotFoundError(f"Could not find any of {[self._FILES[vt] for vt in vocab_types]}")
 | 
						|
 | 
						|
    def _create_special_vocab(self, vocab: Vocab, model_parent_path: Path) -> gguf.SpecialVocab:
 | 
						|
        load_merges = vocab.name == "bpe"
 | 
						|
        n_vocab = vocab.vocab_size if hasattr(vocab, "vocab_size") else None
 | 
						|
        return gguf.SpecialVocab(
 | 
						|
            model_parent_path,
 | 
						|
            load_merges=load_merges,
 | 
						|
            special_token_types=None,  # Predetermined or passed as a parameter
 | 
						|
            n_vocab=n_vocab,
 | 
						|
        )
 | 
						|
 | 
						|
    def _create_vocab_by_path(self, vocab_types: list[str]) -> Vocab:
 | 
						|
        vocab_type, path = self._select_file(vocab_types)
 | 
						|
        print(f"Loading vocab file {path!r}, type {vocab_type!r}")
 | 
						|
 | 
						|
        added_tokens_path = path.parent / "added_tokens.json"
 | 
						|
        if vocab_type == "bpe":
 | 
						|
            return BpeVocab(
 | 
						|
                path, added_tokens_path if added_tokens_path.exists() else None
 | 
						|
            )
 | 
						|
        if vocab_type == "spm":
 | 
						|
            return SentencePieceVocab(
 | 
						|
                path, added_tokens_path if added_tokens_path.exists() else None
 | 
						|
            )
 | 
						|
        if vocab_type == "hfft":
 | 
						|
            return HfVocab(
 | 
						|
                path.parent, added_tokens_path if added_tokens_path.exists() else None
 | 
						|
            )
 | 
						|
        raise ValueError(vocab_type)
 | 
						|
 | 
						|
    def load_vocab(self, vocab_types: list[str], model_parent_path: Path) -> tuple[Vocab, gguf.SpecialVocab]:
 | 
						|
        vocab: Vocab
 | 
						|
        if len(vocab_types) == 1 and "no_vocab" in vocab_types:
 | 
						|
            vocab = NoVocab()
 | 
						|
        else:
 | 
						|
            vocab = self._create_vocab_by_path(vocab_types)
 | 
						|
        # FIXME: Respect --vocab-dir?
 | 
						|
        special_vocab = self._create_special_vocab(
 | 
						|
            vocab,
 | 
						|
            model_parent_path,
 | 
						|
        )
 | 
						|
        return vocab, special_vocab
 | 
						|
 | 
						|
 | 
						|
def default_outfile(model_paths: list[Path], file_type: GGMLFileType) -> Path:
 | 
						|
    namestr = {
 | 
						|
        GGMLFileType.AllF32:    "f32",
 | 
						|
        GGMLFileType.MostlyF16: "f16",
 | 
						|
        GGMLFileType.MostlyQ8_0:"q8_0",
 | 
						|
    }[file_type]
 | 
						|
    ret = model_paths[0].parent / f"ggml-model-{namestr}.gguf"
 | 
						|
    if ret in model_paths:
 | 
						|
        sys.stderr.write(
 | 
						|
            f"Error: Default output path ({ret}) would overwrite the input. "
 | 
						|
            "Please explicitly specify a path using --outfile.\n")
 | 
						|
        sys.exit(1)
 | 
						|
    return ret
 | 
						|
 | 
						|
 | 
						|
def do_dump_model(model_plus: ModelPlus) -> None:
 | 
						|
    print(f"model_plus.paths = {model_plus.paths!r}")
 | 
						|
    print(f"model_plus.format = {model_plus.format!r}")
 | 
						|
    print(f"model_plus.vocab = {model_plus.vocab!r}")
 | 
						|
    for name, lazy_tensor in model_plus.model.items():
 | 
						|
        print(f"{name}: shape={lazy_tensor.shape} type={lazy_tensor.data_type}; {lazy_tensor.description}")
 | 
						|
 | 
						|
 | 
						|
def main(args_in: list[str] | None = None) -> None:
 | 
						|
    output_choices = ["f32", "f16"]
 | 
						|
    if np.uint32(1) == np.uint32(1).newbyteorder("<"):
 | 
						|
        # We currently only support Q8_0 output on little endian systems.
 | 
						|
        output_choices.append("q8_0")
 | 
						|
    parser = argparse.ArgumentParser(description="Convert a LLaMA model to a GGML compatible file")
 | 
						|
    parser.add_argument("--dump",         action="store_true",    help="don't convert, just show what's in the model")
 | 
						|
    parser.add_argument("--dump-single",  action="store_true",    help="don't convert, just show what's in a single model file")
 | 
						|
    parser.add_argument("--vocab-only",   action="store_true",    help="extract only the vocab")
 | 
						|
    parser.add_argument("--no-vocab",     action="store_true",    help="store model without the vocab")
 | 
						|
    parser.add_argument("--outtype",      choices=output_choices, help="output format - note: q8_0 may be very slow (default: f16 or f32 based on input)")
 | 
						|
    parser.add_argument("--vocab-dir",    type=Path,              help="directory containing tokenizer.model, if separate from model file")
 | 
						|
    parser.add_argument("--vocab-type",                           help="vocab types to try in order, choose from 'spm', 'bpe', 'hfft' (default: spm,hfft)", default="spm,hfft")
 | 
						|
    parser.add_argument("--outfile",      type=Path,              help="path to write to; default: based on input")
 | 
						|
    parser.add_argument("model",          type=Path,              help="directory containing model file, or model file itself (*.pth, *.pt, *.bin)")
 | 
						|
    parser.add_argument("--ctx",          type=int,               help="model training context (default: based on input)")
 | 
						|
    parser.add_argument("--concurrency",  type=int,               help=f"concurrency used for conversion (default: {DEFAULT_CONCURRENCY})", default=DEFAULT_CONCURRENCY)
 | 
						|
    parser.add_argument("--big-endian",   action="store_true",    help="model is executed on big endian machine")
 | 
						|
    parser.add_argument("--pad-vocab",    action="store_true",    help="add pad tokens when model vocab expects more than tokenizer metadata provides")
 | 
						|
    parser.add_argument("--skip-unknown", action="store_true",    help="skip unknown tensor names instead of failing")
 | 
						|
 | 
						|
    args = parser.parse_args(args_in)
 | 
						|
    if args.no_vocab:
 | 
						|
        if args.vocab_only:
 | 
						|
            raise ValueError("no need to specify --vocab-only if using --no-vocab")
 | 
						|
        args.vocab_type = "no_vocab"
 | 
						|
 | 
						|
    if args.dump_single:
 | 
						|
        model_plus = lazy_load_file(args.model)
 | 
						|
        do_dump_model(model_plus)
 | 
						|
        return
 | 
						|
 | 
						|
    if not args.vocab_only:
 | 
						|
        model_plus = load_some_model(args.model)
 | 
						|
    else:
 | 
						|
        model_plus = ModelPlus(model = {}, paths = [args.model / 'dummy'], format = 'none', vocab = None)
 | 
						|
 | 
						|
    if args.dump:
 | 
						|
        do_dump_model(model_plus)
 | 
						|
        return
 | 
						|
    endianess = gguf.GGUFEndian.LITTLE
 | 
						|
    if args.big_endian:
 | 
						|
        endianess = gguf.GGUFEndian.BIG
 | 
						|
 | 
						|
    params = Params.load(model_plus)
 | 
						|
    if params.n_ctx == -1:
 | 
						|
        if args.ctx is None:
 | 
						|
            raise Exception("The model doesn't have a context size, and you didn't specify one with --ctx\n"
 | 
						|
                            "Please specify one with --ctx:\n"
 | 
						|
                            " - LLaMA v1: --ctx 2048\n"
 | 
						|
                            " - LLaMA v2: --ctx 4096\n")
 | 
						|
        params.n_ctx = args.ctx
 | 
						|
 | 
						|
    if args.outtype:
 | 
						|
        params.ftype = {
 | 
						|
            "f32": GGMLFileType.AllF32,
 | 
						|
            "f16": GGMLFileType.MostlyF16,
 | 
						|
            "q8_0": GGMLFileType.MostlyQ8_0,
 | 
						|
        }[args.outtype]
 | 
						|
 | 
						|
    print(f"params = {params}")
 | 
						|
 | 
						|
    model_parent_path = model_plus.paths[0].parent
 | 
						|
    vocab_path = Path(args.vocab_dir or args.model or model_parent_path)
 | 
						|
    vocab_factory = VocabFactory(vocab_path)
 | 
						|
    vocab, special_vocab = vocab_factory.load_vocab(args.vocab_type.split(","), model_parent_path)
 | 
						|
 | 
						|
    if args.vocab_only:
 | 
						|
        if not args.outfile:
 | 
						|
            raise ValueError("need --outfile if using --vocab-only")
 | 
						|
        outfile = args.outfile
 | 
						|
        OutputFile.write_vocab_only(outfile, params, vocab, special_vocab,
 | 
						|
                                    endianess=endianess, pad_vocab=args.pad_vocab)
 | 
						|
        print(f"Wrote {outfile}")
 | 
						|
        return
 | 
						|
 | 
						|
    if model_plus.vocab is not None and args.vocab_dir is None and not args.no_vocab:
 | 
						|
        vocab = model_plus.vocab
 | 
						|
 | 
						|
    print(f"Vocab info: {vocab}")
 | 
						|
    print(f"Special vocab info: {special_vocab}")
 | 
						|
 | 
						|
    model   = model_plus.model
 | 
						|
    model   = convert_model_names(model, params, args.skip_unknown)
 | 
						|
    ftype   = pick_output_type(model, args.outtype)
 | 
						|
    model   = convert_to_output_type(model, ftype)
 | 
						|
    outfile = args.outfile or default_outfile(model_plus.paths, ftype)
 | 
						|
 | 
						|
    params.ftype = ftype
 | 
						|
    print(f"Writing {outfile}, format {ftype}")
 | 
						|
 | 
						|
    OutputFile.write_all(outfile, ftype, params, model, vocab, special_vocab,
 | 
						|
                         concurrency=args.concurrency, endianess=endianess, pad_vocab=args.pad_vocab)
 | 
						|
    print(f"Wrote {outfile}")
 | 
						|
 | 
						|
 | 
						|
if __name__ == '__main__':
 | 
						|
    main()
 |