mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-29 08:41:22 +00:00 
			
		
		
		
	 ceebbb5b21
			
		
	
	ceebbb5b21
	
	
	
		
			
			* Fix for a null pointer dereference if a metal GGML buffer fails to be allocated * Freeing the allocated buffers rather than the pointer in ggml-alloc.c * Fixed the fix of the fix
		
			
				
	
	
		
			893 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			893 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| #include "ggml-alloc.h"
 | |
| #include "ggml-backend-impl.h"
 | |
| #include "ggml.h"
 | |
| #include "ggml-impl.h"
 | |
| #include <assert.h>
 | |
| #include <limits.h>
 | |
| #include <stdarg.h>
 | |
| #include <stdio.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| 
 | |
| #define MAX(a, b) ((a) > (b) ? (a) : (b))
 | |
| #define MAX_FREE_BLOCKS 256
 | |
| 
 | |
| //#define GGML_ALLOCATOR_DEBUG
 | |
| 
 | |
| //#define AT_PRINTF(...) fprintf(stderr, __VA_ARGS__)
 | |
| #define AT_PRINTF(...)
 | |
| 
 | |
| // TODO: GGML_PAD ?
 | |
| static size_t aligned_offset(const void * buffer, size_t offset, size_t alignment) {
 | |
|     assert(alignment && !(alignment & (alignment - 1))); // power of 2
 | |
|     size_t align = (alignment - (((uintptr_t)buffer + offset) % alignment)) % alignment;
 | |
|     return offset + align;
 | |
| }
 | |
| 
 | |
| struct free_block {
 | |
|     void * addr;
 | |
|     size_t size;
 | |
| };
 | |
| 
 | |
| struct ggml_tallocr {
 | |
|     struct ggml_backend_buffer * buffer;
 | |
|     bool buffer_owned;
 | |
|     void * base;
 | |
|     size_t alignment;
 | |
| 
 | |
|     int n_free_blocks;
 | |
|     struct free_block free_blocks[MAX_FREE_BLOCKS];
 | |
| 
 | |
|     size_t max_size;
 | |
| 
 | |
|     bool measure;
 | |
| 
 | |
| #ifdef GGML_ALLOCATOR_DEBUG
 | |
|     struct ggml_tensor * allocated_tensors[1024];
 | |
| #endif
 | |
| };
 | |
| 
 | |
| #ifdef GGML_ALLOCATOR_DEBUG
 | |
| static void add_allocated_tensor(ggml_tallocr_t alloc, struct ggml_tensor * tensor) {
 | |
|     for (int i = 0; i < 1024; i++) {
 | |
|         if (alloc->allocated_tensors[i] == NULL) {
 | |
|             alloc->allocated_tensors[i] = tensor;
 | |
|             return;
 | |
|         }
 | |
|     }
 | |
|     GGML_ASSERT(!"out of allocated_tensors");
 | |
| }
 | |
| static void remove_allocated_tensor(ggml_tallocr_t alloc, struct ggml_tensor * tensor) {
 | |
|     for (int i = 0; i < 1024; i++) {
 | |
|         if (alloc->allocated_tensors[i] == tensor ||
 | |
|             (alloc->allocated_tensors[i] != NULL && alloc->allocated_tensors[i]->data == tensor->data)) {
 | |
|             alloc->allocated_tensors[i] = NULL;
 | |
|             return;
 | |
|         }
 | |
|     }
 | |
|     printf("tried to free tensor %s not found\n", tensor->name);
 | |
|     GGML_ASSERT(!"tensor not found");
 | |
| }
 | |
| #endif
 | |
| 
 | |
| // check if a tensor is allocated by this buffer
 | |
| static bool ggml_tallocr_is_own(ggml_tallocr_t alloc, const struct ggml_tensor * tensor) {
 | |
|     return tensor->buffer == alloc->buffer && (!tensor->view_src || tensor->view_src->buffer == alloc->buffer);
 | |
| }
 | |
| 
 | |
| static bool ggml_is_view(struct ggml_tensor * t) {
 | |
|     return t->view_src != NULL;
 | |
| }
 | |
| 
 | |
| void ggml_tallocr_alloc(ggml_tallocr_t alloc, struct ggml_tensor * tensor) {
 | |
|     GGML_ASSERT(!ggml_is_view(tensor)); // views generally get data pointer from one of their sources
 | |
|     GGML_ASSERT(tensor->data == NULL); // avoid allocating tensor which already has memory allocated
 | |
| 
 | |
|     size_t size = ggml_backend_buffer_get_alloc_size(alloc->buffer, tensor);
 | |
|     size = aligned_offset(NULL, size, alloc->alignment);
 | |
| 
 | |
|     AT_PRINTF("%s: allocating %s (%zu bytes) - ", __func__, tensor->name, size);
 | |
| 
 | |
|     size_t max_avail = 0;
 | |
| 
 | |
|     // find the best fitting free block besides the last block
 | |
|     int best_fit_block = -1;
 | |
|     size_t best_fit_size = SIZE_MAX;
 | |
|     for (int i = 0; i < alloc->n_free_blocks - 1; i++) {
 | |
|         struct free_block * block = &alloc->free_blocks[i];
 | |
|         max_avail = MAX(max_avail, block->size);
 | |
|         if (block->size >= size && block->size <= best_fit_size) {
 | |
|             best_fit_block = i;
 | |
|             best_fit_size = block->size;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (best_fit_block == -1) {
 | |
|         // the last block is our last resort
 | |
|         struct free_block * block = &alloc->free_blocks[alloc->n_free_blocks - 1];
 | |
|         max_avail = MAX(max_avail, block->size);
 | |
|         if (block->size >= size) {
 | |
|             best_fit_block = alloc->n_free_blocks - 1;
 | |
|         } else {
 | |
|             fprintf(stderr, "%s: not enough space in the buffer to allocate %s (needed %zu, largest block available %zu)\n",
 | |
|                     __func__, tensor->name, size, max_avail);
 | |
|             GGML_ASSERT(!"not enough space in the buffer");
 | |
|             return;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     struct free_block * block = &alloc->free_blocks[best_fit_block];
 | |
|     void * addr = block->addr;
 | |
|     block->addr = (char*)block->addr + size;
 | |
|     block->size -= size;
 | |
|     if (block->size == 0) {
 | |
|         // remove block if empty
 | |
|         alloc->n_free_blocks--;
 | |
|         for (int j = best_fit_block; j < alloc->n_free_blocks; j++) {
 | |
|             alloc->free_blocks[j] = alloc->free_blocks[j+1];
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     AT_PRINTF("block %d, addr %p\n", best_fit_block, addr);
 | |
| 
 | |
|     tensor->data = addr;
 | |
|     tensor->buffer = alloc->buffer;
 | |
|     if (!alloc->measure) {
 | |
|         ggml_backend_buffer_init_tensor(alloc->buffer, tensor);
 | |
|     }
 | |
| 
 | |
| #ifdef GGML_ALLOCATOR_DEBUG
 | |
|     add_allocated_tensor(alloc, tensor);
 | |
|     size_t cur_max = (char*)addr - (char*)alloc->base + size;
 | |
|     if (cur_max > alloc->max_size) {
 | |
|         printf("max_size = %.2f MB: tensors: ", cur_max / 1024.0 / 1024.0);
 | |
|         for (int i = 0; i < 1024; i++) {
 | |
|             if (alloc->allocated_tensors[i]) {
 | |
|                 printf("%s (%.2f MB) ", alloc->allocated_tensors[i]->name, ggml_nbytes(alloc->allocated_tensors[i]) / 1024.0 / 1024.0);
 | |
|             }
 | |
|         }
 | |
|         printf("\n");
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     alloc->max_size = MAX(alloc->max_size, (char*)addr - (char*)alloc->base + size);
 | |
| }
 | |
| 
 | |
| // this is a very naive implementation, but for our case the number of free blocks should be very small
 | |
| static void ggml_tallocr_free_tensor(ggml_tallocr_t alloc, struct ggml_tensor * tensor) {
 | |
|     if (ggml_tallocr_is_own(alloc, tensor) == false) {
 | |
|         // the tensor was not allocated in this buffer
 | |
|         // this can happen because the graph allocator will try to free weights and other tensors from different buffers
 | |
|         // the easiest way to deal with this is just to ignore it
 | |
|         // AT_PRINTF("ignoring %s (their buffer: %p, our buffer: %p)\n", tensor->name, (void *)tensor->buffer, (void *)alloc->buffer);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     void * ptr = tensor->data;
 | |
| 
 | |
|     size_t size = ggml_backend_buffer_get_alloc_size(alloc->buffer, tensor);
 | |
|     size = aligned_offset(NULL, size, alloc->alignment);
 | |
|     AT_PRINTF("%s: freeing %s at %p (%zu bytes) - n_free_blocks = %d\n", __func__, tensor->name, ptr, size, alloc->n_free_blocks);
 | |
| 
 | |
| #ifdef GGML_ALLOCATOR_DEBUG
 | |
|     remove_allocated_tensor(alloc, tensor);
 | |
| #endif
 | |
| 
 | |
|     // see if we can merge with an existing block
 | |
|     for (int i = 0; i < alloc->n_free_blocks; i++) {
 | |
|         struct free_block * block = &alloc->free_blocks[i];
 | |
|         // check if ptr is at the end of the block
 | |
|         if ((char*)block->addr + block->size == ptr) {
 | |
|             block->size += size;
 | |
|             // check if we can merge with the next block
 | |
|             if (i < alloc->n_free_blocks - 1 && (char*)block->addr + block->size == alloc->free_blocks[i+1].addr) {
 | |
|                 block->size += alloc->free_blocks[i+1].size;
 | |
|                 alloc->n_free_blocks--;
 | |
|                 for (int j = i+1; j < alloc->n_free_blocks; j++) {
 | |
|                     alloc->free_blocks[j] = alloc->free_blocks[j+1];
 | |
|                 }
 | |
|             }
 | |
|             return;
 | |
|         }
 | |
|         // check if ptr is at the beginning of the block
 | |
|         if ((char*)ptr + size == block->addr) {
 | |
|             block->addr = ptr;
 | |
|             block->size += size;
 | |
|             // check if we can merge with the previous block
 | |
|             if (i > 0 && (char*)alloc->free_blocks[i-1].addr + alloc->free_blocks[i-1].size == block->addr) {
 | |
|                 alloc->free_blocks[i-1].size += block->size;
 | |
|                 alloc->n_free_blocks--;
 | |
|                 for (int j = i; j < alloc->n_free_blocks; j++) {
 | |
|                     alloc->free_blocks[j] = alloc->free_blocks[j+1];
 | |
|                 }
 | |
|             }
 | |
|             return;
 | |
|         }
 | |
|     }
 | |
|     // otherwise, add a new block
 | |
|     GGML_ASSERT(alloc->n_free_blocks < MAX_FREE_BLOCKS && "out of free blocks");
 | |
|     // insert the new block in the correct position to keep the array sorted by address (to make merging blocks faster)
 | |
|     int insert_pos = 0;
 | |
|     while (insert_pos < alloc->n_free_blocks && alloc->free_blocks[insert_pos].addr < ptr) {
 | |
|         insert_pos++;
 | |
|     }
 | |
|     // shift all blocks from insert_pos onward to make room for the new block
 | |
|     for (int i = alloc->n_free_blocks; i > insert_pos; i--) {
 | |
|         alloc->free_blocks[i] = alloc->free_blocks[i-1];
 | |
|     }
 | |
|     // insert the new block
 | |
|     alloc->free_blocks[insert_pos].addr = ptr;
 | |
|     alloc->free_blocks[insert_pos].size = size;
 | |
|     alloc->n_free_blocks++;
 | |
| }
 | |
| 
 | |
| void ggml_tallocr_reset(ggml_tallocr_t alloc) {
 | |
|     alloc->n_free_blocks = 1;
 | |
|     size_t align_offset = aligned_offset(alloc->base, 0, alloc->alignment);
 | |
|     alloc->free_blocks[0].addr = (char *)alloc->base + align_offset;
 | |
| 
 | |
|     if (alloc->measure) {
 | |
|         alloc->free_blocks[0].size = SIZE_MAX/2; // restrict maximum size of a measure allocator to half size_t max to avoid overflows
 | |
|     } else {
 | |
|         alloc->free_blocks[0].size = ggml_backend_buffer_get_size(alloc->buffer) - align_offset;
 | |
|         ggml_backend_buffer_reset(alloc->buffer);
 | |
|     }
 | |
| }
 | |
| 
 | |
| ggml_tallocr_t ggml_tallocr_new(void * data, size_t size, size_t alignment) {
 | |
|     struct ggml_backend_buffer * buffer = ggml_backend_cpu_buffer_from_ptr(data, size);
 | |
| 
 | |
|     ggml_tallocr_t alloc = (ggml_tallocr_t)malloc(sizeof(struct ggml_tallocr));
 | |
| 
 | |
|     *alloc = (struct ggml_tallocr) {
 | |
|         /*.buffer        = */ buffer,
 | |
|         /*.buffer_owned  = */ true,
 | |
|         /*.base          = */ ggml_backend_buffer_get_base(buffer),
 | |
|         /*.alignment     = */ alignment,
 | |
|         /*.n_free_blocks = */ 0,
 | |
|         /*.free_blocks   = */ {{0}},
 | |
|         /*.max_size      = */ 0,
 | |
|         /*.measure       = */ false,
 | |
| #ifdef GGML_ALLOCATOR_DEBUG
 | |
|         /*.allocated_tensors = */ {0},
 | |
| #endif
 | |
|     };
 | |
| 
 | |
|     ggml_tallocr_reset(alloc);
 | |
| 
 | |
|     return alloc;
 | |
| }
 | |
| 
 | |
| ggml_tallocr_t ggml_tallocr_new_measure(size_t alignment) {
 | |
|     ggml_tallocr_t alloc = ggml_tallocr_new((void *)0x1000, SIZE_MAX/2, alignment);
 | |
|     alloc->measure = true;
 | |
| 
 | |
|     return alloc;
 | |
| }
 | |
| 
 | |
| ggml_tallocr_t ggml_tallocr_new_measure_from_buft(struct ggml_backend_buffer_type * buft) {
 | |
|     // create a backend buffer to get the correct tensor allocation sizes
 | |
|     ggml_backend_buffer_t buffer = ggml_backend_buft_alloc_buffer(buft, 1);
 | |
| 
 | |
|     // TODO: move alloc initialization to a common ggml_tallocr_new_impl function
 | |
|     ggml_tallocr_t alloc = ggml_tallocr_new_from_buffer(buffer);
 | |
|     alloc->buffer_owned = true;
 | |
|     alloc->measure = true;
 | |
|     ggml_tallocr_reset(alloc);
 | |
|     return alloc;
 | |
| }
 | |
| 
 | |
| ggml_tallocr_t ggml_tallocr_new_measure_from_backend(struct ggml_backend * backend) {
 | |
|     return ggml_tallocr_new_measure_from_buft(ggml_backend_get_default_buffer_type(backend));
 | |
| }
 | |
| 
 | |
| ggml_tallocr_t ggml_tallocr_new_from_buft(struct ggml_backend_buffer_type * buft, size_t size) {
 | |
|     // create a backend buffer to get the correct tensor allocation sizes
 | |
|     ggml_backend_buffer_t buffer = ggml_backend_buft_alloc_buffer(buft, size);
 | |
|     ggml_tallocr_t alloc = ggml_tallocr_new_from_buffer(buffer);
 | |
|     alloc->buffer_owned = true;
 | |
|     return alloc;
 | |
| }
 | |
| 
 | |
| ggml_tallocr_t ggml_tallocr_new_from_backend(struct ggml_backend * backend, size_t size) {
 | |
|     return ggml_tallocr_new_from_buft(ggml_backend_get_default_buffer_type(backend), size);
 | |
| }
 | |
| 
 | |
| ggml_tallocr_t ggml_tallocr_new_from_buffer(struct ggml_backend_buffer * buffer) {
 | |
|     ggml_tallocr_t alloc = (ggml_tallocr_t)malloc(sizeof(struct ggml_tallocr));
 | |
| 
 | |
|     *alloc = (struct ggml_tallocr) {
 | |
|         /*.buffer        = */ buffer,
 | |
|         /*.buffer_owned  = */ false,
 | |
|         /*.base          = */ ggml_backend_buffer_get_base(buffer),
 | |
|         /*.alignment     = */ ggml_backend_buffer_get_alignment(buffer),
 | |
|         /*.n_free_blocks = */ 0,
 | |
|         /*.free_blocks   = */ {{0}},
 | |
|         /*.max_size      = */ 0,
 | |
|         /*.measure       = */ false,
 | |
| #ifdef GGML_ALLOCATOR_DEBUG
 | |
|         /*.allocated_tensors = */ {0},
 | |
| #endif
 | |
|     };
 | |
| 
 | |
|     ggml_tallocr_reset(alloc);
 | |
| 
 | |
|     return alloc;
 | |
| }
 | |
| 
 | |
| struct ggml_backend_buffer * ggml_tallocr_get_buffer(ggml_tallocr_t alloc) {
 | |
|     return alloc->buffer;
 | |
| }
 | |
| 
 | |
| void ggml_tallocr_free(ggml_tallocr_t alloc) {
 | |
|     if (alloc == NULL) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (alloc->buffer_owned) {
 | |
|         ggml_backend_buffer_free(alloc->buffer);
 | |
|     }
 | |
|     free(alloc);
 | |
| }
 | |
| 
 | |
| bool ggml_tallocr_is_measure(ggml_tallocr_t alloc) {
 | |
|     return alloc->measure;
 | |
| }
 | |
| 
 | |
| size_t ggml_tallocr_max_size(ggml_tallocr_t alloc) {
 | |
|     // FIXME: changes in the tensor sizes compared to the measure graph may cause allocations to fail
 | |
|     // to avoid this, we add a 10% margin to the buffer size
 | |
|     return alloc->max_size + alloc->max_size/10;
 | |
| }
 | |
| 
 | |
| // graph allocator
 | |
| 
 | |
| struct hash_node {
 | |
|     int n_children;
 | |
|     int n_views;
 | |
| };
 | |
| 
 | |
| struct ggml_gallocr {
 | |
|     ggml_tallocr_t talloc;
 | |
|     struct ggml_hash_set hash_set;
 | |
|     struct hash_node * hash_values;
 | |
|     size_t hash_values_size;
 | |
|     ggml_tallocr_t * hash_allocs;
 | |
|     int * parse_seq;
 | |
|     int parse_seq_len;
 | |
| };
 | |
| 
 | |
| ggml_gallocr_t ggml_gallocr_new(void) {
 | |
|     ggml_gallocr_t galloc = (ggml_gallocr_t)malloc(sizeof(struct ggml_gallocr));
 | |
| 
 | |
|     *galloc = (struct ggml_gallocr) {
 | |
|         /*.talloc           = */ NULL,
 | |
|         /*.hash_set         = */ {0},
 | |
|         /*.hash_values      = */ NULL,
 | |
|         /*.hash_values_size = */ 0,
 | |
|         /*.hash_allocs      = */ NULL,
 | |
|         /*.parse_seq        = */ NULL,
 | |
|         /*.parse_seq_len    = */ 0,
 | |
|     };
 | |
| 
 | |
|     return galloc;
 | |
| }
 | |
| 
 | |
| void ggml_gallocr_free(ggml_gallocr_t galloc) {
 | |
|     if (galloc == NULL) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (galloc->hash_set.keys != NULL) {
 | |
|         free(galloc->hash_set.keys);
 | |
|     }
 | |
|     if (galloc->hash_values != NULL) {
 | |
|         free(galloc->hash_values);
 | |
|     }
 | |
|     if (galloc->hash_allocs != NULL) {
 | |
|         free(galloc->hash_allocs);
 | |
|     }
 | |
|     if (galloc->parse_seq != NULL) {
 | |
|         free(galloc->parse_seq);
 | |
|     }
 | |
|     free(galloc);
 | |
| }
 | |
| 
 | |
| void ggml_gallocr_set_parse_seq(ggml_gallocr_t galloc, const int * list, int n) {
 | |
|     free(galloc->parse_seq);
 | |
|     galloc->parse_seq = malloc(sizeof(int) * n);
 | |
| 
 | |
|     for (int i = 0; i < n; i++) {
 | |
|         galloc->parse_seq[i] = list[i];
 | |
|     }
 | |
|     galloc->parse_seq_len = n;
 | |
| }
 | |
| 
 | |
| static struct hash_node * hash_get(ggml_gallocr_t galloc, struct ggml_tensor * t) {
 | |
|     size_t i = ggml_hash_find_or_insert(galloc->hash_set, t);
 | |
|     return &galloc->hash_values[i];
 | |
| }
 | |
| 
 | |
| static bool ggml_are_same_layout(const struct ggml_tensor * a, const struct ggml_tensor * b) {
 | |
|     if (a->type != b->type) {
 | |
|         return false;
 | |
|     }
 | |
|     for (int i = 0; i < GGML_MAX_DIMS; i++) {
 | |
|         if (a->ne[i] != b->ne[i]) {
 | |
|             return false;
 | |
|         }
 | |
|         if (a->nb[i] != b->nb[i]) {
 | |
|             return false;
 | |
|         }
 | |
|     }
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| static bool ggml_op_can_inplace(enum ggml_op op) {
 | |
|     switch (op) {
 | |
|         case GGML_OP_SCALE:
 | |
|         case GGML_OP_DIAG_MASK_ZERO:
 | |
|         case GGML_OP_DIAG_MASK_INF:
 | |
|         case GGML_OP_ADD:
 | |
|         case GGML_OP_ADD1:
 | |
|         case GGML_OP_SUB:
 | |
|         case GGML_OP_MUL:
 | |
|         case GGML_OP_DIV:
 | |
|         case GGML_OP_SQR:
 | |
|         case GGML_OP_SQRT:
 | |
|         case GGML_OP_LOG:
 | |
|         case GGML_OP_UNARY:
 | |
|         case GGML_OP_ROPE:
 | |
|         case GGML_OP_RMS_NORM:
 | |
|         case GGML_OP_SOFT_MAX:
 | |
|             return true;
 | |
| 
 | |
|         default:
 | |
|             return false;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static ggml_tallocr_t node_tallocr(ggml_gallocr_t galloc, struct ggml_tensor * node) {
 | |
|     if (galloc->talloc != NULL) {
 | |
|         return galloc->talloc;
 | |
|     }
 | |
| 
 | |
|     return galloc->hash_allocs[ggml_hash_find_or_insert(galloc->hash_set, node)];
 | |
| }
 | |
| 
 | |
| static void init_view(ggml_gallocr_t galloc, struct ggml_tensor * view, bool update_backend) {
 | |
|     ggml_tallocr_t alloc = node_tallocr(galloc, view);
 | |
| 
 | |
|     GGML_ASSERT(view->view_src != NULL && view->view_src->data != NULL);
 | |
|     if (update_backend) {
 | |
|         view->backend = view->view_src->backend;
 | |
|     }
 | |
|     // views are initialized in the alloc buffer rather than the view_src buffer
 | |
|     view->buffer  = alloc->buffer;
 | |
|     view->data    = (char *)view->view_src->data + view->view_offs;
 | |
| 
 | |
|     assert(ggml_tallocr_is_measure(alloc) || !view->buffer || view->buffer->buft == alloc->buffer->buft);
 | |
| 
 | |
|     if (!alloc->measure) {
 | |
|         ggml_backend_buffer_init_tensor(alloc->buffer, view);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void allocate_node(ggml_gallocr_t galloc, struct ggml_tensor * node) {
 | |
|     ggml_tallocr_t alloc = node_tallocr(galloc, node);
 | |
| 
 | |
|     if (node->data == NULL) {
 | |
|         if (ggml_is_view(node)) {
 | |
|             init_view(galloc, node, true);
 | |
|         } else {
 | |
|             // see if we can reuse a parent's buffer (inplace)
 | |
|             if (ggml_op_can_inplace(node->op)) {
 | |
|                 for (int i = 0; i < GGML_MAX_SRC; i++) {
 | |
|                     struct ggml_tensor * parent = node->src[i];
 | |
|                     if (parent == NULL) {
 | |
|                         break;
 | |
|                     }
 | |
| 
 | |
|                     // if the node's data is external, then we cannot re-use it
 | |
|                     if (ggml_tallocr_is_own(alloc, parent) == false) {
 | |
|                         AT_PRINTF("not reusing parent %s for %s as %p is external\n", parent->name, node->name, parent->data);
 | |
|                         continue;
 | |
|                     }
 | |
| 
 | |
|                     struct hash_node * p_hn = hash_get(galloc, parent);
 | |
|                     if (parent->data != NULL && p_hn->n_children == 1 && p_hn->n_views == 0 && ggml_are_same_layout(node, parent)) {
 | |
|                         if (ggml_is_view(parent)) {
 | |
|                             struct ggml_tensor * view_src = parent->view_src;
 | |
|                             struct hash_node * view_src_hn = hash_get(galloc, view_src);
 | |
|                             if (view_src_hn->n_views == 1 && view_src_hn->n_children == 0 && view_src->data == parent->data) {
 | |
|                                 // TODO: the offset of the view parent must be kept to ensure that the op doesn't overwrite
 | |
|                                 // the parent's data that it will need later (same layout requirement). the problem is that then
 | |
|                                 // we cannot free the tensor because the original address of the allocation is lost.
 | |
|                                 // adding a view_src pointer to the tensor would solve this and simplify the code dealing with views
 | |
|                                 // for now, we only reuse the parent's data if the offset is zero (view_src->data == parent->data)
 | |
|                                 AT_PRINTF("reusing view parent %s (%s) for %s\n", parent->name, view_src->name, node->name);
 | |
|                                 node->view_src = view_src;
 | |
|                                 view_src_hn->n_views += 1;
 | |
|                                 init_view(galloc, node, false);
 | |
|                                 return;
 | |
|                             }
 | |
|                         } else {
 | |
|                             AT_PRINTF("reusing parent %s for %s\n", parent->name, node->name);
 | |
|                             node->view_src = parent;
 | |
|                             p_hn->n_views += 1;
 | |
|                             init_view(galloc, node, false);
 | |
|                             return;
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|             ggml_tallocr_alloc(alloc, node);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void free_node(ggml_gallocr_t galloc, struct ggml_tensor * node) {
 | |
|     ggml_tallocr_t alloc = node_tallocr(galloc, node);
 | |
| 
 | |
|     ggml_tallocr_free_tensor(alloc, node);
 | |
| }
 | |
| 
 | |
| static void ggml_tallocr_alloc_graph_impl(ggml_gallocr_t galloc, struct ggml_cgraph * gf) {
 | |
|     const int * parse_seq     = galloc->parse_seq;
 | |
|     int         parse_seq_len = galloc->parse_seq_len;
 | |
| 
 | |
|     // count number of children and views
 | |
|     for (int i = 0; i < gf->n_nodes; i++) {
 | |
|         struct ggml_tensor * node = gf->nodes[i];
 | |
| 
 | |
|         if (ggml_is_view(node)) {
 | |
|             struct ggml_tensor * view_src = node->view_src;
 | |
|             hash_get(galloc, view_src)->n_views += 1;
 | |
|             if (node->buffer == NULL && node->data != NULL) {
 | |
|                 // view of a pre-allocated tensor, didn't call init_view() yet
 | |
|                 init_view(galloc, node, true);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         for (int j = 0; j < GGML_MAX_SRC; j++) {
 | |
|             struct ggml_tensor * parent = node->src[j];
 | |
|             if (parent == NULL) {
 | |
|                 break;
 | |
|             }
 | |
|             hash_get(galloc, parent)->n_children += 1;
 | |
|             if (ggml_is_view(parent) && parent->buffer == NULL && parent->data != NULL) {
 | |
|                 init_view(galloc, parent, true);
 | |
|             }
 | |
|         }
 | |
|    }
 | |
| 
 | |
|     // allocate tensors
 | |
|     // if we have parse_seq then we allocate nodes following the list, and we only free nodes at barriers
 | |
|     int last_barrier_pos = 0;
 | |
|     int n_nodes = parse_seq_len ? parse_seq_len : gf->n_nodes;
 | |
| 
 | |
|     for (int ind = 0; ind < n_nodes; ind++) {
 | |
|         // allocate a node if there is no parse_seq or this is not a barrier
 | |
|         if (parse_seq_len == 0 || parse_seq[ind] != -1) {
 | |
|             int i = parse_seq_len ? parse_seq[ind] : ind;
 | |
|             struct ggml_tensor * node = gf->nodes[i];
 | |
| 
 | |
|             // allocate parents (leafs)
 | |
|             for (int j = 0; j < GGML_MAX_SRC; j++) {
 | |
|                 struct ggml_tensor * parent = node->src[j];
 | |
|                 if (parent == NULL) {
 | |
|                     break;
 | |
|                 }
 | |
|                 allocate_node(galloc, parent);
 | |
|             }
 | |
| 
 | |
|             // allocate node
 | |
|             allocate_node(galloc, node);
 | |
| 
 | |
|             AT_PRINTF("exec: %s (%s) <= ", ggml_op_name(node->op), node->name);
 | |
|             for (int j = 0; j < GGML_MAX_SRC; j++) {
 | |
|                 struct ggml_tensor * parent = node->src[j];
 | |
|                 if (parent == NULL) {
 | |
|                     break;
 | |
|                 }
 | |
|                 AT_PRINTF("%s", parent->name);
 | |
|                 if (j < GGML_MAX_SRC - 1 && node->src[j + 1] != NULL) {
 | |
|                     AT_PRINTF(", ");
 | |
|                 }
 | |
|             }
 | |
|             AT_PRINTF("\n");
 | |
|         }
 | |
| 
 | |
|         // update parents
 | |
|         // update immediately if there is no parse_seq
 | |
|         // update only at barriers if there is parse_seq
 | |
|         if ((parse_seq_len == 0) || parse_seq[ind] == -1) {
 | |
|             int update_start = parse_seq_len ? last_barrier_pos : ind;
 | |
|             int update_end   = parse_seq_len ? ind              : ind + 1;
 | |
|             for (int i = update_start; i < update_end; i++) {
 | |
|                 int node_i = parse_seq_len ? parse_seq[i] : i;
 | |
|                 struct ggml_tensor * node = gf->nodes[node_i];
 | |
| 
 | |
|                 for (int j = 0; j < GGML_MAX_SRC; j++) {
 | |
|                     struct ggml_tensor * parent = node->src[j];
 | |
|                     if (parent == NULL) {
 | |
|                         break;
 | |
|                     }
 | |
|                     struct hash_node * p_hn = hash_get(galloc, parent);
 | |
|                     p_hn->n_children -= 1;
 | |
| 
 | |
|                     //AT_PRINTF("parent %s: %d children, %d views\n", parent->name, parent->n_children, parent->n_views);
 | |
| 
 | |
|                     if (p_hn->n_children == 0 && p_hn->n_views == 0) {
 | |
|                         if (ggml_is_view(parent)) {
 | |
|                             struct ggml_tensor * view_src = parent->view_src;
 | |
|                             struct hash_node * view_src_hn = hash_get(galloc, view_src);
 | |
|                             view_src_hn->n_views -= 1;
 | |
|                             AT_PRINTF("view_src %s: %d children, %d views\n", view_src->name, view_src_hn->n_children, view_src_hn->n_views);
 | |
|                             if (view_src_hn->n_views == 0 && view_src_hn->n_children == 0) {
 | |
|                                 free_node(galloc, view_src);
 | |
|                             }
 | |
|                         }
 | |
|                         else {
 | |
|                             free_node(galloc, parent);
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|             AT_PRINTF("\n");
 | |
|             if (parse_seq_len) {
 | |
|                 last_barrier_pos = ind + 1;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| size_t ggml_gallocr_alloc_graph(ggml_gallocr_t galloc, ggml_tallocr_t talloc, struct ggml_cgraph * graph) {
 | |
|     size_t hash_size = graph->visited_hash_table.size;
 | |
| 
 | |
|     // check if the hash table is initialized and large enough
 | |
|     if (galloc->hash_set.size < hash_size) {
 | |
|         if (galloc->hash_set.keys != NULL) {
 | |
|             free(galloc->hash_set.keys);
 | |
|         }
 | |
|         if (galloc->hash_values != NULL) {
 | |
|             free(galloc->hash_values);
 | |
|         }
 | |
|         galloc->hash_set.keys = malloc(sizeof(struct ggml_tensor *) * hash_size);
 | |
|         galloc->hash_set.size = hash_size;
 | |
|         galloc->hash_values = malloc(sizeof(struct hash_node) * hash_size);
 | |
|     }
 | |
| 
 | |
|     // reset hash table
 | |
|     memset(galloc->hash_set.keys, 0, sizeof(struct ggml_tensor *) * hash_size);
 | |
|     memset(galloc->hash_values,   0, sizeof(struct hash_node) * hash_size);
 | |
| 
 | |
|     galloc->talloc = talloc;
 | |
|     ggml_tallocr_alloc_graph_impl(galloc, graph);
 | |
|     galloc->talloc = NULL;
 | |
| 
 | |
|     size_t max_size = ggml_tallocr_max_size(talloc);
 | |
| 
 | |
|     return max_size;
 | |
| }
 | |
| 
 | |
| void ggml_gallocr_alloc_graph_n(ggml_gallocr_t galloc, struct ggml_cgraph * graph, struct ggml_hash_set hash_set, ggml_tallocr_t * hash_node_talloc) {
 | |
|     const size_t hash_size = hash_set.size;
 | |
| 
 | |
|     GGML_ASSERT(hash_size >= (size_t)(graph->n_nodes + graph->n_leafs));
 | |
| 
 | |
|     galloc->talloc = NULL;
 | |
| 
 | |
|     // alloc hash_values if needed
 | |
|     if (galloc->hash_values == NULL || galloc->hash_values_size < hash_size) {
 | |
|         free(galloc->hash_values);
 | |
|         galloc->hash_values      = malloc(sizeof(struct hash_node) * hash_size);
 | |
|         galloc->hash_values_size = hash_size;
 | |
|     }
 | |
| 
 | |
|     // free hash_set.keys if needed
 | |
|     if (galloc->hash_set.keys != NULL) {
 | |
|         free(galloc->hash_set.keys);
 | |
|     }
 | |
|     galloc->hash_set = hash_set;
 | |
| 
 | |
|     // reset hash values
 | |
|     memset(galloc->hash_values, 0, sizeof(struct hash_node) * hash_size);
 | |
| 
 | |
|     galloc->hash_allocs = hash_node_talloc;
 | |
| 
 | |
|     ggml_tallocr_alloc_graph_impl(galloc, graph);
 | |
| 
 | |
|     // remove unowned resources
 | |
|     galloc->hash_set.keys = NULL;
 | |
|     galloc->hash_allocs = NULL;
 | |
| }
 | |
| 
 | |
| // legacy API wrapper
 | |
| 
 | |
| struct ggml_allocr {
 | |
|     ggml_tallocr_t talloc;
 | |
|     ggml_gallocr_t galloc;
 | |
| };
 | |
| 
 | |
| static ggml_allocr_t ggml_allocr_new_impl(ggml_tallocr_t talloc) {
 | |
|     ggml_allocr_t alloc = (ggml_allocr_t)malloc(sizeof(struct ggml_allocr));
 | |
|     *alloc = (struct ggml_allocr) {
 | |
|         /*.talloc = */ talloc,
 | |
|         /*.galloc = */ ggml_gallocr_new(),
 | |
|     };
 | |
|     return alloc;
 | |
| }
 | |
| 
 | |
| ggml_allocr_t ggml_allocr_new(void * data, size_t size, size_t alignment) {
 | |
|     return ggml_allocr_new_impl(ggml_tallocr_new(data, size, alignment));
 | |
| }
 | |
| 
 | |
| ggml_allocr_t ggml_allocr_new_measure(size_t alignment) {
 | |
|     return ggml_allocr_new_impl(ggml_tallocr_new_measure(alignment));
 | |
| }
 | |
| 
 | |
| ggml_allocr_t ggml_allocr_new_from_buffer(struct ggml_backend_buffer * buffer) {
 | |
|     return ggml_allocr_new_impl(ggml_tallocr_new_from_buffer(buffer));
 | |
| }
 | |
| 
 | |
| ggml_allocr_t ggml_allocr_new_from_backend(struct ggml_backend * backend, size_t size) {
 | |
|     return ggml_allocr_new_impl(ggml_tallocr_new_from_backend(backend, size));
 | |
| }
 | |
| 
 | |
| ggml_allocr_t ggml_allocr_new_measure_from_backend(struct ggml_backend * backend) {
 | |
|     return ggml_allocr_new_impl(ggml_tallocr_new_measure_from_backend(backend));
 | |
| }
 | |
| 
 | |
| struct ggml_backend_buffer * ggml_allocr_get_buffer(ggml_allocr_t alloc) {
 | |
|     return ggml_tallocr_get_buffer(alloc->talloc);
 | |
| }
 | |
| 
 | |
| void ggml_allocr_set_parse_seq(ggml_allocr_t alloc, const int * list, int n) {
 | |
|     ggml_gallocr_set_parse_seq(alloc->galloc, list, n);
 | |
| }
 | |
| 
 | |
| void ggml_allocr_free(ggml_allocr_t alloc) {
 | |
|     if (alloc == NULL) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     ggml_gallocr_free(alloc->galloc);
 | |
|     ggml_tallocr_free(alloc->talloc);
 | |
|     free(alloc);
 | |
| }
 | |
| 
 | |
| bool ggml_allocr_is_measure(ggml_allocr_t alloc) {
 | |
|     return ggml_tallocr_is_measure(alloc->talloc);
 | |
| }
 | |
| 
 | |
| void ggml_allocr_reset(ggml_allocr_t alloc) {
 | |
|     ggml_tallocr_reset(alloc->talloc);
 | |
| }
 | |
| 
 | |
| void ggml_allocr_alloc(ggml_allocr_t alloc, struct ggml_tensor * tensor) {
 | |
|     ggml_tallocr_alloc(alloc->talloc, tensor);
 | |
| }
 | |
| 
 | |
| size_t ggml_allocr_max_size(ggml_allocr_t alloc) {
 | |
|     return ggml_tallocr_max_size(alloc->talloc);
 | |
| }
 | |
| 
 | |
| size_t ggml_allocr_alloc_graph(ggml_allocr_t alloc, struct ggml_cgraph * graph) {
 | |
|     return ggml_gallocr_alloc_graph(alloc->galloc, alloc->talloc, graph);
 | |
| }
 | |
| 
 | |
| // utils
 | |
| 
 | |
| static bool alloc_tensor_range(struct ggml_context * ctx,
 | |
|         struct ggml_tensor * first, struct ggml_tensor * last,
 | |
|         ggml_backend_buffer_type_t buft, size_t size,
 | |
|         ggml_backend_buffer_t ** buffers, size_t * n_buffers) {
 | |
|     ggml_backend_buffer_t buffer = ggml_backend_buft_alloc_buffer(buft, size);
 | |
|     if (buffer == NULL) {
 | |
| #ifndef NDEBUG
 | |
|         fprintf(stderr, "%s: failed to allocate %s buffer of size %zu\n", __func__, ggml_backend_buft_name(buft), size);
 | |
| #endif
 | |
|         for (size_t i = 0; i < *n_buffers; i++) {
 | |
|             ggml_backend_buffer_free(*buffers[i]);
 | |
|         }
 | |
|         free(*buffers);
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     ggml_tallocr_t tallocr = ggml_tallocr_new_from_buffer(buffer);
 | |
| 
 | |
|     for (struct ggml_tensor * t = first; t != last; t = ggml_get_next_tensor(ctx, t)) {
 | |
|         if (t->data == NULL) {
 | |
|             if (t->view_src == NULL) {
 | |
|                 ggml_tallocr_alloc(tallocr, t);
 | |
|             } else {
 | |
|                 ggml_backend_view_init(buffer, t);
 | |
|             }
 | |
|         } else {
 | |
|             if (t->view_src != NULL) {
 | |
|                 // view of a pre-allocated tensor
 | |
|                 ggml_backend_view_init(buffer, t);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     ggml_tallocr_free(tallocr);
 | |
| 
 | |
|     *buffers = realloc(*buffers, sizeof(ggml_backend_buffer_t) * (*n_buffers + 1));
 | |
|     (*buffers)[(*n_buffers)++] = buffer;
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| ggml_backend_buffer_t ggml_backend_alloc_ctx_tensors_from_buft(struct ggml_context * ctx, ggml_backend_buffer_type_t buft) {
 | |
|     GGML_ASSERT(ggml_get_no_alloc(ctx) == true);
 | |
| 
 | |
|     size_t alignment = ggml_backend_buft_get_alignment(buft);
 | |
|     size_t max_size = ggml_backend_buft_get_max_size(buft);
 | |
| 
 | |
|     ggml_backend_buffer_t * buffers = NULL;
 | |
|     size_t n_buffers = 0;
 | |
| 
 | |
|     size_t cur_buf_size = 0;
 | |
|     struct ggml_tensor * first = ggml_get_first_tensor(ctx);
 | |
|     for (struct ggml_tensor * t = first; t != NULL; t = ggml_get_next_tensor(ctx, t)) {
 | |
|         size_t this_size = 0;
 | |
|         if (t->data == NULL && t->view_src == NULL) {
 | |
|             this_size = GGML_PAD(ggml_backend_buft_get_alloc_size(buft, t), alignment);
 | |
|         }
 | |
| 
 | |
|         if (this_size > max_size) {
 | |
|             // tensor is too large to fit in a single buffer
 | |
|             fprintf(stderr, "%s: tensor %s is too large to fit in a %s buffer (tensor size: %zu, max buffer size: %zu)\n",
 | |
|                     __func__, t->name,
 | |
|                     ggml_backend_buft_name(buft),
 | |
|                     this_size, max_size);
 | |
|             for (size_t i = 0; i < n_buffers; i++) {
 | |
|                 ggml_backend_buffer_free(buffers[i]);
 | |
|             }
 | |
|             free(buffers);
 | |
|             return NULL;
 | |
|         }
 | |
| 
 | |
|         if ((cur_buf_size + this_size) > max_size) {
 | |
|             // allocate tensors in the current buffer
 | |
|             if (!alloc_tensor_range(ctx, first, t, buft, cur_buf_size, &buffers, &n_buffers)) {
 | |
|                 return NULL;
 | |
|             }
 | |
|             first = t;
 | |
|             cur_buf_size = this_size;
 | |
|         } else {
 | |
|             cur_buf_size += this_size;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // allocate remaining tensors
 | |
|     if (cur_buf_size > 0) {
 | |
|         if (!alloc_tensor_range(ctx, first, NULL, buft, cur_buf_size, &buffers, &n_buffers)) {
 | |
|             return NULL;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (n_buffers == 0) {
 | |
|         // all the tensors in the context are already allocated
 | |
| #ifndef NDEBUG
 | |
|         fprintf(stderr, "%s: all tensors in the context are already allocated\n", __func__);
 | |
| #endif
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     ggml_backend_buffer_t buffer;
 | |
|     if (n_buffers == 1) {
 | |
|         buffer = buffers[0];
 | |
|     } else {
 | |
|         buffer = ggml_backend_multi_buffer_alloc_buffer(buffers, n_buffers);
 | |
|     }
 | |
|     free(buffers);
 | |
|     return buffer;
 | |
| }
 | |
| 
 | |
| ggml_backend_buffer_t ggml_backend_alloc_ctx_tensors(struct ggml_context * ctx, ggml_backend_t backend) {
 | |
|     return ggml_backend_alloc_ctx_tensors_from_buft(ctx, ggml_backend_get_default_buffer_type(backend));
 | |
| }
 |