mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-30 08:42:00 +00:00 
			
		
		
		
	 a0b3ac8c48
			
		
	
	a0b3ac8c48
	
	
	
		
			
			This change makes it possible to build ggml-cuda.cu and ggml-metal.m as independent dynamic shared objects, that may be conditionally linked at runtime in a multiplatform binary. It introduces a GGML_CALL annotation that documents which functions have a cyclic call relationship, between the application code and GPU modules. This change does nothing, unless the build defines -DGGML_MULTIPLATFORM which causes back-references and function pointers to conform to MS ABI which is supported by NVCC, ROCm, XCode, GCC and Clang across platforms
		
			
				
	
	
		
			53 lines
		
	
	
		
			2.1 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			53 lines
		
	
	
		
			2.1 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| #pragma once
 | |
| 
 | |
| #include "ggml.h"
 | |
| #include "ggml-backend.h"
 | |
| 
 | |
| #ifdef GGML_USE_HIPBLAS
 | |
| #define GGML_CUDA_NAME "ROCm"
 | |
| #define GGML_CUBLAS_NAME "hipBLAS"
 | |
| #else
 | |
| #define GGML_CUDA_NAME "CUDA"
 | |
| #define GGML_CUBLAS_NAME "cuBLAS"
 | |
| #endif
 | |
| 
 | |
| #ifdef  __cplusplus
 | |
| extern "C" {
 | |
| #endif
 | |
| 
 | |
| #define GGML_CUDA_MAX_DEVICES       16
 | |
| 
 | |
| // Always success. To check if CUDA is actually loaded, use `ggml_cublas_loaded`.
 | |
| GGML_API GGML_CALL void   ggml_init_cublas(void);
 | |
| 
 | |
| // Returns `true` if there are available CUDA devices and cublas loads successfully; otherwise, it returns `false`.
 | |
| GGML_API GGML_CALL bool   ggml_cublas_loaded(void);
 | |
| 
 | |
| GGML_API GGML_CALL void * ggml_cuda_host_malloc(size_t size);
 | |
| GGML_API GGML_CALL void   ggml_cuda_host_free(void * ptr);
 | |
| 
 | |
| GGML_API GGML_CALL bool   ggml_cuda_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst);
 | |
| GGML_API GGML_CALL bool   ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor);
 | |
| 
 | |
| GGML_API GGML_CALL int    ggml_cuda_get_device_count(void);
 | |
| GGML_API GGML_CALL void   ggml_cuda_get_device_description(int device, char * description, size_t description_size);
 | |
| 
 | |
| // backend API
 | |
| GGML_API GGML_CALL ggml_backend_t ggml_backend_cuda_init(int device);
 | |
| 
 | |
| GGML_API GGML_CALL bool ggml_backend_is_cuda(ggml_backend_t backend);
 | |
| 
 | |
| GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_buffer_type(int device);
 | |
| // split tensor buffer that splits matrices by rows across multiple devices
 | |
| GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_split_buffer_type(const float * tensor_split);
 | |
| // pinned host buffer for use with the CPU backend for faster copies between CPU and GPU
 | |
| GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_host_buffer_type(void);
 | |
| 
 | |
| GGML_API GGML_CALL int  ggml_backend_cuda_get_device_count(void);
 | |
| GGML_API GGML_CALL void ggml_backend_cuda_get_device_description(int device, char * description, size_t description_size);
 | |
| GGML_API GGML_CALL void ggml_backend_cuda_get_device_memory(int device, size_t * free, size_t * total);
 | |
| 
 | |
| #ifdef  __cplusplus
 | |
| }
 | |
| #endif
 |