mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-29 08:41:22 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			141 lines
		
	
	
		
			5.2 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			141 lines
		
	
	
		
			5.2 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
| #!/usr/bin/env python3
 | |
| 
 | |
| import argparse
 | |
| import os
 | |
| import subprocess
 | |
| import sys
 | |
| 
 | |
| import yaml
 | |
| 
 | |
| CLI_ARGS_MAIN_PERPLEXITY = [
 | |
|     "batch-size", "cfg-negative-prompt", "cfg-scale", "chunks", "color", "ctx-size", "escape",
 | |
|     "export", "file", "frequency-penalty", "grammar", "grammar-file", "hellaswag",
 | |
|     "hellaswag-tasks", "ignore-eos", "in-prefix", "in-prefix-bos", "in-suffix", "instruct",
 | |
|     "interactive", "interactive-first", "keep", "logdir", "logit-bias", "lora", "lora-base",
 | |
|     "low-vram", "main-gpu", "memory-f32", "mirostat", "mirostat-ent", "mirostat-lr", "mlock",
 | |
|     "model", "multiline-input", "n-gpu-layers", "n-predict", "no-mmap", "no-mul-mat-q",
 | |
|     "np-penalize-nl", "numa", "ppl-output-type", "ppl-stride", "presence-penalty", "prompt",
 | |
|     "prompt-cache", "prompt-cache-all", "prompt-cache-ro", "random-prompt", "repeat-last-n",
 | |
|     "repeat-penalty", "reverse-prompt", "rope-freq-base", "rope-freq-scale", "rope-scale", "seed",
 | |
|     "simple-io", "tensor-split", "threads", "temp", "tfs", "top-k", "top-p", "typical",
 | |
|     "verbose-prompt"
 | |
| ]
 | |
| 
 | |
| CLI_ARGS_LLAMA_BENCH = [
 | |
|     "batch-size", "memory-f32", "low-vram", "model", "mul-mat-q", "n-gen", "n-gpu-layers",
 | |
|     "n-prompt", "output", "repetitions", "tensor-split", "threads", "verbose"
 | |
| ]
 | |
| 
 | |
| CLI_ARGS_SERVER = [
 | |
|     "alias", "batch-size", "ctx-size", "embedding", "host", "memory-f32", "lora", "lora-base",
 | |
|     "low-vram", "main-gpu", "mlock", "model", "n-gpu-layers", "n-probs", "no-mmap", "no-mul-mat-q",
 | |
|     "numa", "path", "port", "rope-freq-base", "timeout", "rope-freq-scale", "tensor-split",
 | |
|     "threads", "verbose"
 | |
| ]
 | |
| 
 | |
| description = """Run llama.cpp binaries with presets from YAML file(s).
 | |
| To specify which binary should be run, specify the "binary" property (main, perplexity, llama-bench, and server are supported).
 | |
| To get a preset file template, run a llama.cpp binary with the "--logdir" CLI argument.
 | |
| 
 | |
| Formatting considerations:
 | |
| - The YAML property names are the same as the CLI argument names of the corresponding binary.
 | |
| - Properties must use the long name of their corresponding llama.cpp CLI arguments.
 | |
| - Like the llama.cpp binaries the property names do not differentiate between hyphens and underscores.
 | |
| - Flags must be defined as "<PROPERTY_NAME>: true" to be effective.
 | |
| - To define the logit_bias property, the expected format is "<TOKEN_ID>: <BIAS>" in the "logit_bias" namespace.
 | |
| - To define multiple "reverse_prompt" properties simultaneously the expected format is a list of strings.
 | |
| - To define a tensor split, pass a list of floats.
 | |
| """
 | |
| usage = "run_with_preset.py [-h] [yaml_files ...] [--<ARG_NAME> <ARG_VALUE> ...]"
 | |
| epilog = ("  --<ARG_NAME> specify additional CLI ars to be passed to the binary (override all preset files). "
 | |
|           "Unknown args will be ignored.")
 | |
| 
 | |
| parser = argparse.ArgumentParser(
 | |
|     description=description, usage=usage, epilog=epilog, formatter_class=argparse.RawTextHelpFormatter)
 | |
| parser.add_argument("-bin", "--binary", help="The binary to run.")
 | |
| parser.add_argument("yaml_files", nargs="*",
 | |
|                     help="Arbitrary number of YAML files from which to read preset values. "
 | |
|                     "If two files specify the same values the later one will be used.")
 | |
| 
 | |
| known_args, unknown_args = parser.parse_known_args()
 | |
| 
 | |
| if not known_args.yaml_files and not unknown_args:
 | |
|     parser.print_help()
 | |
|     sys.exit(0)
 | |
| 
 | |
| props = dict()
 | |
| 
 | |
| for yaml_file in known_args.yaml_files:
 | |
|     with open(yaml_file, "r") as f:
 | |
|         props.update(yaml.load(f, yaml.SafeLoader))
 | |
| 
 | |
| props = {prop.replace("_", "-"): val for prop, val in props.items()}
 | |
| 
 | |
| binary = props.pop("binary", "main")
 | |
| if known_args.binary:
 | |
|     binary = known_args.binary
 | |
| 
 | |
| if os.path.exists(f"./{binary}"):
 | |
|     binary = f"./{binary}"
 | |
| 
 | |
| if binary.lower().endswith("main") or binary.lower().endswith("perplexity"):
 | |
|     cli_args = CLI_ARGS_MAIN_PERPLEXITY
 | |
| elif binary.lower().endswith("llama-bench"):
 | |
|     cli_args = CLI_ARGS_LLAMA_BENCH
 | |
| elif binary.lower().endswith("server"):
 | |
|     cli_args = CLI_ARGS_SERVER
 | |
| else:
 | |
|     print(f"Unknown binary: {binary}")
 | |
|     sys.exit(1)
 | |
| 
 | |
| command_list = [binary]
 | |
| 
 | |
| for cli_arg in cli_args:
 | |
|     value = props.pop(cli_arg, None)
 | |
| 
 | |
|     if not value or value == -1:
 | |
|         continue
 | |
| 
 | |
|     if cli_arg == "logit-bias":
 | |
|         for token, bias in value.items():
 | |
|             command_list.append("--logit-bias")
 | |
|             command_list.append(f"{token}{bias:+}")
 | |
|         continue
 | |
| 
 | |
|     if cli_arg == "reverse-prompt" and not isinstance(value, str):
 | |
|         for rp in value:
 | |
|             command_list.append("--reverse-prompt")
 | |
|             command_list.append(str(rp))
 | |
|         continue
 | |
| 
 | |
|     command_list.append(f"--{cli_arg}")
 | |
| 
 | |
|     if cli_arg == "tensor-split":
 | |
|         command_list.append(",".join([str(v) for v in value]))
 | |
|         continue
 | |
| 
 | |
|     value = str(value)
 | |
| 
 | |
|     if value != "True":
 | |
|         command_list.append(str(value))
 | |
| 
 | |
| num_unused = len(props)
 | |
| if num_unused > 10:
 | |
|     print(f"The preset file contained a total of {num_unused} unused properties.")
 | |
| elif num_unused > 0:
 | |
|     print("The preset file contained the following unused properties:")
 | |
|     for prop, value in props.items():
 | |
|         print(f"  {prop}: {value}")
 | |
| 
 | |
| command_list += unknown_args
 | |
| 
 | |
| sp = subprocess.Popen(command_list)
 | |
| 
 | |
| while sp.returncode is None:
 | |
|     try:
 | |
|         sp.wait()
 | |
|     except KeyboardInterrupt:
 | |
|         pass
 | |
| 
 | |
| sys.exit(sp.returncode)
 | 
