mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-31 08:51:55 +00:00 
			
		
		
		
	 1d656d6360
			
		
	
	1d656d6360
	
	
	
		
			
			* ggml_graph_compute: deprecate using ggml_context, try resolve issue #287 * rewrite: no longer consider backward compitability; plan and make_plan * minor: rename ctx as plan; const * remove ggml_graph_compute from tests/test-grad0.c, but current change breaks backward * add static ggml_graph_compute_sugar() * minor: update comments * reusable buffers * ggml : more consistent naming + metal fixes * ggml : fix docs * tests : disable grad / opt + minor naming changes * ggml : add ggml_graph_compute_with_ctx() - backwards compatible API - deduplicates a lot of copy-paste * ci : enable test-grad0 * examples : factor out plan allocation into a helper function * llama : factor out plan stuff into a helper function * ci : fix env * llama : fix duplicate symbols + refactor example benchmark * ggml : remove obsolete assert + refactor n_tasks section * ggml : fix indentation in switch * llama : avoid unnecessary bool * ggml : remove comments from source file and match order in header --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
		
			
				
	
	
		
			72 lines
		
	
	
		
			2.7 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			72 lines
		
	
	
		
			2.7 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // An interface allowing to compute ggml_cgraph with Metal
 | |
| //
 | |
| // This is a fully functional interface that extends ggml with GPU support for Apple devices.
 | |
| // A similar interface can be created for other GPU backends (e.g. Vulkan, CUDA, OpenCL, etc.)
 | |
| //
 | |
| // How it works?
 | |
| //
 | |
| // As long as your program can create and evaluate a ggml_cgraph on the CPU, you can use this
 | |
| // interface to evaluate the same graph on the GPU. Instead of using ggml_graph_compute(), you
 | |
| // use ggml_metal_graph_compute() (or ggml_vulkan_graph_compute(), etc.)
 | |
| //
 | |
| // You only need to make sure that all memory buffers that you used during the graph creation
 | |
| // are mapped to the device memory with the ggml_metal_add_buffer() function. This mapping is
 | |
| // used during the graph evaluation to determine the arguments of the compute kernels.
 | |
| //
 | |
| // Synchronization between device and host memory (for example for input and output tensors)
 | |
| // is done with the ggml_metal_set_tensor() and ggml_metal_get_tensor() functions.
 | |
| //
 | |
| 
 | |
| #pragma once
 | |
| 
 | |
| #include <stddef.h>
 | |
| #include <stdbool.h>
 | |
| 
 | |
| // max memory buffers that can be mapped to the device
 | |
| #define GGML_METAL_MAX_BUFFERS 16
 | |
| 
 | |
| struct ggml_tensor;
 | |
| struct ggml_cgraph;
 | |
| 
 | |
| #ifdef __cplusplus
 | |
| extern "C" {
 | |
| #endif
 | |
| 
 | |
| struct ggml_metal_context;
 | |
| 
 | |
| // number of command buffers to use
 | |
| struct ggml_metal_context * ggml_metal_init(int n_cb);
 | |
| void ggml_metal_free(struct ggml_metal_context * ctx);
 | |
| 
 | |
| // set the number of command buffers to use
 | |
| void ggml_metal_set_n_cb(struct ggml_metal_context * ctx, int n_cb);
 | |
| 
 | |
| // creates a mapping between a host memory buffer and a device memory buffer
 | |
| // - make sure to map all buffers used in the graph before calling ggml_metal_graph_compute
 | |
| // - the mapping is used during computation to determine the arguments of the compute kernels
 | |
| // - you don't need to keep the host memory buffer allocated as it is never accessed by Metal
 | |
| // - max_size specifies the maximum size of a tensor and is used to create shared views such
 | |
| //   that it is guaranteed that the tensor will fit in at least one of the views
 | |
| //
 | |
| bool ggml_metal_add_buffer(
 | |
|         struct ggml_metal_context * ctx,
 | |
|                        const char * name,
 | |
|                              void * data,
 | |
|                            size_t   size,
 | |
|                            size_t   max_size);
 | |
| 
 | |
| // set data from host memory into the device
 | |
| void ggml_metal_set_tensor(struct ggml_metal_context * ctx, struct ggml_tensor * t);
 | |
| 
 | |
| // get data from the device into host memory
 | |
| void ggml_metal_get_tensor(struct ggml_metal_context * ctx, struct ggml_tensor * t);
 | |
| 
 | |
| // same as ggml_graph_compute but uses Metal
 | |
| // creates gf->n_threads command buffers in parallel
 | |
| void ggml_metal_graph_compute(struct ggml_metal_context * ctx, struct ggml_cgraph * gf);
 | |
| 
 | |
| #ifdef __cplusplus
 | |
| }
 | |
| #endif
 | |
| 
 |