mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-11-03 09:22:01 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			181 lines
		
	
	
		
			7.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			181 lines
		
	
	
		
			7.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import argparse
 | 
						|
import glob
 | 
						|
import os
 | 
						|
import torch
 | 
						|
from safetensors import safe_open
 | 
						|
from safetensors.torch import save_file
 | 
						|
from typing import Any, ContextManager, cast
 | 
						|
 | 
						|
# Function to determine if file is a SafeTensor file
 | 
						|
def is_safetensor_file(file_path):
 | 
						|
    return file_path.endswith('.safetensors')
 | 
						|
 | 
						|
 | 
						|
# Unified loading function
 | 
						|
def load_model(file_path):
 | 
						|
    if is_safetensor_file(file_path):
 | 
						|
        tensors = {}
 | 
						|
        with cast(ContextManager[Any], safe_open(file_path, framework="pt", device="cpu")) as f:
 | 
						|
            for key in f.keys():
 | 
						|
                tensors[key] = f.get_tensor(key).clone()
 | 
						|
                # output shape
 | 
						|
                print(f"{key} : {tensors[key].shape}")
 | 
						|
        return tensors, 'safetensor'
 | 
						|
    else:
 | 
						|
        return torch.load(file_path, map_location=torch.device('cpu')), 'pytorch'
 | 
						|
 | 
						|
 | 
						|
# Unified saving function
 | 
						|
def save_model(model, file_path, file_type):
 | 
						|
    if file_type == 'safetensor':
 | 
						|
        # safe_save(model, file_path)
 | 
						|
        save_file(model, file_path)
 | 
						|
    else:
 | 
						|
        torch.save(model, file_path)
 | 
						|
 | 
						|
# Helpers to match weight names from specific components or
 | 
						|
# determine if a saved shard contains that component
 | 
						|
def is_vision_tower(weight_name):
 | 
						|
    return (
 | 
						|
        weight_name.startswith("model.vision_tower") or
 | 
						|
        weight_name.startswith("vit.") or
 | 
						|
        weight_name.startswith("vision_tower")
 | 
						|
    )
 | 
						|
 | 
						|
def is_newline(weight_name):
 | 
						|
    return (
 | 
						|
        weight_name.startswith("model.image_newline") or
 | 
						|
        weight_name.startswith("image_newline")
 | 
						|
    )
 | 
						|
 | 
						|
def is_mm_projector(weight_name):
 | 
						|
    return (
 | 
						|
        weight_name.startswith("model.mm_projector") or
 | 
						|
        weight_name.startswith("vision_proj.") or
 | 
						|
        weight_name.startswith("multi_modal_projector")
 | 
						|
    )
 | 
						|
 | 
						|
def newline_criteria(checkpoint):
 | 
						|
    return any(is_newline(k) for k in checkpoint.keys())
 | 
						|
 | 
						|
def proj_criteria(checkpoint):
 | 
						|
    return any(is_mm_projector(k) for k in checkpoint.keys())
 | 
						|
 | 
						|
# Adapted function to clean vision tower from checkpoint
 | 
						|
def clean_vision_tower_from_checkpoint(checkpoint_path):
 | 
						|
    checkpoint, file_type = load_model(checkpoint_path)
 | 
						|
    # file_type = 'pytorch'
 | 
						|
    model_path = os.path.dirname(checkpoint_path)
 | 
						|
    print(f"Searching for vision tower tensors in {checkpoint_path}")
 | 
						|
    clip_tensors = [k for k, v in checkpoint.items() if is_vision_tower(k)]
 | 
						|
 | 
						|
    if len(clip_tensors) > 0:
 | 
						|
        print(f"Found {len(clip_tensors)} tensors to extract from {checkpoint_path}")
 | 
						|
        # Adapted for file type
 | 
						|
        clip_path = os.path.join(model_path, "llava.clip")
 | 
						|
 | 
						|
        if os.path.exists(clip_path):
 | 
						|
            print(f"Loading existing llava.clip from {clip_path}")
 | 
						|
            existing_clip, _ = load_model(clip_path)
 | 
						|
        else:
 | 
						|
            print(f"Creating new llava.clip at {clip_path}")
 | 
						|
            existing_clip = {}
 | 
						|
        # Update existing_clip with new tensors, avoid duplicates
 | 
						|
        for name in clip_tensors:
 | 
						|
            simple_name = name[name.index('vision_model.'):] if 'vision_model.' in name else name
 | 
						|
            print(f"Adding {simple_name} to llava.clip")
 | 
						|
            if simple_name not in existing_clip:
 | 
						|
                existing_clip[simple_name] = checkpoint[name]
 | 
						|
 | 
						|
        # Save the updated clip tensors back to llava.clip
 | 
						|
        save_model(existing_clip, clip_path, 'pytorch')
 | 
						|
 | 
						|
        # Remove the tensors from the original checkpoint
 | 
						|
        for name in clip_tensors:
 | 
						|
            del checkpoint[name]
 | 
						|
 | 
						|
        checkpoint_path = checkpoint_path
 | 
						|
        return True
 | 
						|
    return False
 | 
						|
 | 
						|
def find_relevant_checkpoints(checkpoint_paths, newline_criteria, projector):
 | 
						|
    newline_checkpoint_path = None
 | 
						|
    projector_checkpoint_path = None
 | 
						|
 | 
						|
    for path in checkpoint_paths:
 | 
						|
        checkpoint, _ = load_model(path)
 | 
						|
        if newline_criteria(checkpoint) and newline_checkpoint_path is None:
 | 
						|
            newline_checkpoint_path = path
 | 
						|
        if projector(checkpoint):
 | 
						|
            projector_checkpoint_path = path
 | 
						|
 | 
						|
    return newline_checkpoint_path, projector_checkpoint_path
 | 
						|
 | 
						|
 | 
						|
# Command-line interface setup
 | 
						|
ap = argparse.ArgumentParser()
 | 
						|
ap.add_argument("-m", "--model", required=True, help="Path to LLaVA v1.5+ model")
 | 
						|
ap.add_argument("-C", "--clean-vision-tower", action="store_true", help="Remove any vision tower from the model files")
 | 
						|
args = ap.parse_args()
 | 
						|
 | 
						|
if args.clean_vision_tower:
 | 
						|
    # Generalized to handle both PyTorch and SafeTensors models
 | 
						|
    model_files = sorted(glob.glob(f"{args.model}/*"), key=os.path.getmtime, reverse=True)
 | 
						|
    # checkpoint_paths = [path for path in model_files if (path.endswith('.bin') and path.startswith('pytorch')) or (path.endswith('.safetensors') and path.startswith('model'))]
 | 
						|
    checkpoint_paths = [path for path in model_files if (path.endswith('.bin') and 'pytorch' in path.split('/')[-1].split('\\')[-1]) or (path.endswith('.safetensors') and 'model' in path.split('/')[-1].split('\\')[-1])]
 | 
						|
    for projector_checkpoint_path in checkpoint_paths:
 | 
						|
        print(f"Cleaning {projector_checkpoint_path}")
 | 
						|
        if not clean_vision_tower_from_checkpoint(projector_checkpoint_path):
 | 
						|
            print(f"No vision tower found in {projector_checkpoint_path}")
 | 
						|
            # we break once none is found, so far all models append them at the end
 | 
						|
            # break
 | 
						|
    print("Done! All vision tower tensors are removed from the model files and stored in llava.clip file.")
 | 
						|
 | 
						|
# Now we look for the projector in the last checkpoint
 | 
						|
model_files = sorted(glob.glob(f"{args.model}/*"), key=os.path.getmtime, reverse=True)
 | 
						|
checkpoint_paths = [path for path in model_files if (path.endswith('.bin') and 'pytorch' in path.split('/')[-1].split('\\')[-1]) or (path.endswith('.safetensors') and 'model' in path.split('/')[-1].split('\\')[-1])]
 | 
						|
# last_checkpoint_path = checkpoint_paths[0]
 | 
						|
# first_checkpoint_path = checkpoint_paths[-1]
 | 
						|
newline_checkpoint_path, projector_checkpoint_path = find_relevant_checkpoints(checkpoint_paths, newline_criteria, proj_criteria)
 | 
						|
 | 
						|
print(f"Taking projector from {projector_checkpoint_path}")
 | 
						|
first_mm_tensors = []
 | 
						|
first_checkpoint = None
 | 
						|
if newline_checkpoint_path is not None:
 | 
						|
    print(f"Taking newline from {newline_checkpoint_path}")
 | 
						|
    first_checkpoint, file_type = load_model(newline_checkpoint_path)
 | 
						|
    first_mm_tensors = [k for k, v in first_checkpoint.items() if is_newline(k)]
 | 
						|
 | 
						|
# Load the checkpoint
 | 
						|
mm_tensors = []
 | 
						|
last_checkpoint = None
 | 
						|
if projector_checkpoint_path is not None:
 | 
						|
    last_checkpoint, file_type = load_model(projector_checkpoint_path)
 | 
						|
    mm_tensors = [k for k, v in last_checkpoint.items() if is_mm_projector(k)]
 | 
						|
 | 
						|
if len(mm_tensors) == 0:
 | 
						|
    if last_checkpoint is not None:
 | 
						|
        for k, v in last_checkpoint.items():
 | 
						|
            print(k)
 | 
						|
    print(f"Found {len(mm_tensors)} tensors to extract out of {len(last_checkpoint) if last_checkpoint is not None else 0} tensors.")
 | 
						|
    print("No tensors found. Is this a LLaVA model?")
 | 
						|
    exit()
 | 
						|
 | 
						|
print(f"Found {len(mm_tensors)} tensors to extract.")
 | 
						|
print(f"Found additional {len(first_mm_tensors)} tensors to extract.")
 | 
						|
# projector = {name: checkpoint.[name].float() for name in mm_tensors}
 | 
						|
projector = {}
 | 
						|
for name in mm_tensors:
 | 
						|
    assert last_checkpoint is not None
 | 
						|
    projector[name] = last_checkpoint[name].float()
 | 
						|
for name in first_mm_tensors:
 | 
						|
    assert first_checkpoint is not None
 | 
						|
    projector[name] = first_checkpoint[name].float()
 | 
						|
 | 
						|
if len(projector) > 0:
 | 
						|
    save_model(projector, f"{args.model}/llava.projector", 'pytorch')
 | 
						|
 | 
						|
print("Done!")
 | 
						|
print(f"Now you can convert {args.model} to a regular LLaMA GGUF file.")
 | 
						|
print(f"Also, use {args.model}/llava.projector to prepare a llava-encoder.gguf file.")
 |