mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-29 08:41:22 +00:00 
			
		
		
		
	 1b67731e18
			
		
	
	1b67731e18
	
	
	
		
			
			Key changes: * BERT conversion: fix abuse of LlamaHfVocab, do not set BOS or EOS * Nomic Embed conversion: pad vocab instead of slicing embedding tensor * llama_tokenize: handle added special tokens like HF does
		
			
				
	
	
		
			139 lines
		
	
	
		
			4.9 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			139 lines
		
	
	
		
			4.9 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
| #!/usr/bin/env python3
 | |
| from __future__ import annotations
 | |
| 
 | |
| import argparse
 | |
| import os
 | |
| import sys
 | |
| from pathlib import Path
 | |
| from pprint import pprint
 | |
| 
 | |
| import torch
 | |
| from sentencepiece import SentencePieceProcessor
 | |
| 
 | |
| if 'NO_LOCAL_GGUF' not in os.environ:
 | |
|     sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
 | |
| import gguf
 | |
| 
 | |
| 
 | |
| def _flatten_dict(dct, tensors, prefix=None):
 | |
|     assert isinstance(dct, dict)
 | |
|     for key in dct.keys():
 | |
|         new_prefix = prefix + '.' + key if prefix is not None else key
 | |
|         if isinstance(dct[key], torch.Tensor):
 | |
|             tensors[new_prefix] = dct[key]
 | |
|         elif isinstance(dct[key], dict):
 | |
|             _flatten_dict(dct[key], tensors, new_prefix)
 | |
|         else:
 | |
|             raise ValueError(type(dct[key]))
 | |
|     return None
 | |
| 
 | |
| 
 | |
| def _get_sentencepiece_tokenizer_info(dir_model: Path):
 | |
|     tokenizer_path = dir_model / 'adept_vocab.model'
 | |
|     print('gguf: getting sentencepiece tokenizer from', tokenizer_path)
 | |
|     tokenizer = SentencePieceProcessor(str(tokenizer_path))
 | |
|     print('gguf: adding tokens')
 | |
|     tokens: list[bytes] = []
 | |
|     scores: list[float] = []
 | |
|     toktypes: list[int] = []
 | |
| 
 | |
|     for i in range(tokenizer.vocab_size()):
 | |
|         text: bytes
 | |
|         score: float
 | |
| 
 | |
|         piece = tokenizer.id_to_piece(i)
 | |
|         text = piece.encode("utf-8")
 | |
|         score = tokenizer.get_score(i)
 | |
| 
 | |
|         toktype = 1
 | |
|         if tokenizer.is_unknown(i):
 | |
|             toktype = 2
 | |
|         if tokenizer.is_control(i):
 | |
|             toktype = 3
 | |
|         if tokenizer.is_unused(i):
 | |
|             toktype = 5
 | |
|         if tokenizer.is_byte(i):
 | |
|             toktype = 6
 | |
| 
 | |
|         tokens.append(text)
 | |
|         scores.append(score)
 | |
|         toktypes.append(toktype)
 | |
|         pass
 | |
|     return tokens, scores, toktypes
 | |
| 
 | |
| 
 | |
| def main():
 | |
|     parser = argparse.ArgumentParser(description="Convert a Persimmon model from Adept (e.g. Persimmon 8b chat) to a GGML compatible file")
 | |
|     parser.add_argument("--outfile",             type=Path, help="path to write to; default: based on input")
 | |
|     parser.add_argument("--ckpt-path",           type=Path, help="path to persimmon checkpoint .pt file")
 | |
|     parser.add_argument("--model-dir",           type=Path, help="directory containing model e.g. 8b_chat_model_release")
 | |
|     parser.add_argument("--adept-inference-dir", type=str, help="path to adept-inference code directory")
 | |
|     args = parser.parse_args()
 | |
|     sys.path.append(str(args.adept_inference_dir))
 | |
|     persimmon_model = torch.load(args.ckpt_path)
 | |
|     hparams = persimmon_model['args']
 | |
|     pprint(hparams)
 | |
|     tensors: dict[str, torch.Tensor] = {}
 | |
|     _flatten_dict(persimmon_model['model'], tensors, None)
 | |
| 
 | |
|     arch = gguf.MODEL_ARCH.PERSIMMON
 | |
|     gguf_writer = gguf.GGUFWriter(args.outfile, gguf.MODEL_ARCH_NAMES[arch])
 | |
| 
 | |
|     block_count = hparams.num_layers
 | |
|     head_count = hparams.num_attention_heads
 | |
|     head_count_kv = head_count
 | |
|     ctx_length = hparams.seq_length
 | |
|     hidden_size = hparams.hidden_size
 | |
| 
 | |
|     gguf_writer.add_name('persimmon-8b-chat')
 | |
|     gguf_writer.add_context_length(ctx_length)
 | |
|     gguf_writer.add_embedding_length(hidden_size)
 | |
|     gguf_writer.add_block_count(block_count)
 | |
|     gguf_writer.add_feed_forward_length(hparams.ffn_hidden_size)
 | |
|     # ref: https://github.com/ggerganov/llama.cpp/pull/4889/commits/eea19039fc52ea2dbd1aab45b59ab4e3e29a3443
 | |
|     gguf_writer.add_rope_dimension_count(hidden_size // head_count // 2)
 | |
|     gguf_writer.add_head_count(head_count)
 | |
|     gguf_writer.add_head_count_kv(head_count_kv)
 | |
|     gguf_writer.add_rope_freq_base(hparams.rotary_emb_base)
 | |
|     gguf_writer.add_layer_norm_eps(hparams.layernorm_epsilon)
 | |
| 
 | |
|     tokens, scores, toktypes = _get_sentencepiece_tokenizer_info(args.model_dir)
 | |
|     gguf_writer.add_tokenizer_model('llama')
 | |
|     gguf_writer.add_token_list(tokens)
 | |
|     gguf_writer.add_token_scores(scores)
 | |
|     gguf_writer.add_token_types(toktypes)
 | |
|     gguf_writer.add_bos_token_id(71013)
 | |
|     gguf_writer.add_eos_token_id(71013)
 | |
| 
 | |
|     tensor_map = gguf.get_tensor_name_map(arch, block_count)
 | |
|     print(tensor_map)
 | |
|     for name in tensors.keys():
 | |
|         data_torch = tensors[name]
 | |
|         if name.endswith(".self_attention.rotary_emb.inv_freq"):
 | |
|             continue
 | |
|         old_dtype = data_torch.dtype
 | |
|         # TODO: FP16 conversion produces garbage outputs. (Q8_0 does not, so..?)
 | |
|         data = data_torch.to(torch.float32).squeeze().numpy()
 | |
|         new_name = tensor_map.get_name(name, try_suffixes = (".weight", ".bias"))
 | |
|         if new_name is None:
 | |
|             print("Can not map tensor '" + name + "'")
 | |
|             sys.exit()
 | |
|         n_dims = len(data.shape)
 | |
|         print(new_name + ", n_dims = " + str(n_dims) + ", " + str(old_dtype) + " --> " + str(data.dtype))
 | |
|         gguf_writer.add_tensor(new_name, data)
 | |
|     print("gguf: write header")
 | |
|     gguf_writer.write_header_to_file()
 | |
|     print("gguf: write metadata")
 | |
|     gguf_writer.write_kv_data_to_file()
 | |
|     print("gguf: write tensors")
 | |
|     gguf_writer.write_tensors_to_file()
 | |
| 
 | |
|     gguf_writer.close()
 | |
| 
 | |
|     print(f"gguf: model successfully exported to '{args.outfile}'")
 | |
|     print("")
 | |
| 
 | |
| 
 | |
| if __name__ == '__main__':
 | |
|     main()
 |