mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-11-03 09:22:01 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			645 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			645 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
from __future__ import annotations
 | 
						|
 | 
						|
import sys
 | 
						|
from enum import Enum, IntEnum, auto
 | 
						|
from typing import Any
 | 
						|
 | 
						|
#
 | 
						|
# constants
 | 
						|
#
 | 
						|
 | 
						|
GGUF_MAGIC             = 0x46554747  # "GGUF"
 | 
						|
GGUF_VERSION           = 3
 | 
						|
GGUF_DEFAULT_ALIGNMENT = 32
 | 
						|
 | 
						|
#
 | 
						|
# metadata keys
 | 
						|
#
 | 
						|
 | 
						|
 | 
						|
class Keys:
 | 
						|
    class General:
 | 
						|
        ARCHITECTURE         = "general.architecture"
 | 
						|
        QUANTIZATION_VERSION = "general.quantization_version"
 | 
						|
        ALIGNMENT            = "general.alignment"
 | 
						|
        NAME                 = "general.name"
 | 
						|
        AUTHOR               = "general.author"
 | 
						|
        URL                  = "general.url"
 | 
						|
        DESCRIPTION          = "general.description"
 | 
						|
        LICENSE              = "general.license"
 | 
						|
        SOURCE_URL           = "general.source.url"
 | 
						|
        SOURCE_HF_REPO       = "general.source.huggingface.repository"
 | 
						|
        FILE_TYPE            = "general.file_type"
 | 
						|
 | 
						|
    class LLM:
 | 
						|
        CONTEXT_LENGTH        = "{arch}.context_length"
 | 
						|
        EMBEDDING_LENGTH      = "{arch}.embedding_length"
 | 
						|
        BLOCK_COUNT           = "{arch}.block_count"
 | 
						|
        FEED_FORWARD_LENGTH   = "{arch}.feed_forward_length"
 | 
						|
        USE_PARALLEL_RESIDUAL = "{arch}.use_parallel_residual"
 | 
						|
        TENSOR_DATA_LAYOUT    = "{arch}.tensor_data_layout"
 | 
						|
        EXPERT_COUNT          = "{arch}.expert_count"
 | 
						|
        EXPERT_USED_COUNT     = "{arch}.expert_used_count"
 | 
						|
 | 
						|
    class Attention:
 | 
						|
        HEAD_COUNT        = "{arch}.attention.head_count"
 | 
						|
        HEAD_COUNT_KV     = "{arch}.attention.head_count_kv"
 | 
						|
        MAX_ALIBI_BIAS    = "{arch}.attention.max_alibi_bias"
 | 
						|
        CLAMP_KQV         = "{arch}.attention.clamp_kqv"
 | 
						|
        KEY_LENGTH        = "{arch}.attention.key_length"
 | 
						|
        VALUE_LENGTH      = "{arch}.attention.value_length"
 | 
						|
        LAYERNORM_EPS     = "{arch}.attention.layer_norm_epsilon"
 | 
						|
        LAYERNORM_RMS_EPS = "{arch}.attention.layer_norm_rms_epsilon"
 | 
						|
 | 
						|
    class Rope:
 | 
						|
        DIMENSION_COUNT      = "{arch}.rope.dimension_count"
 | 
						|
        FREQ_BASE            = "{arch}.rope.freq_base"
 | 
						|
        SCALING_TYPE         = "{arch}.rope.scaling.type"
 | 
						|
        SCALING_FACTOR       = "{arch}.rope.scaling.factor"
 | 
						|
        SCALING_ORIG_CTX_LEN = "{arch}.rope.scaling.original_context_length"
 | 
						|
        SCALING_FINETUNED    = "{arch}.rope.scaling.finetuned"
 | 
						|
 | 
						|
    class Tokenizer:
 | 
						|
        MODEL         = "tokenizer.ggml.model"
 | 
						|
        LIST          = "tokenizer.ggml.tokens"
 | 
						|
        TOKEN_TYPE    = "tokenizer.ggml.token_type"
 | 
						|
        SCORES        = "tokenizer.ggml.scores"
 | 
						|
        MERGES        = "tokenizer.ggml.merges"
 | 
						|
        BOS_ID        = "tokenizer.ggml.bos_token_id"
 | 
						|
        EOS_ID        = "tokenizer.ggml.eos_token_id"
 | 
						|
        UNK_ID        = "tokenizer.ggml.unknown_token_id"
 | 
						|
        SEP_ID        = "tokenizer.ggml.seperator_token_id"
 | 
						|
        PAD_ID        = "tokenizer.ggml.padding_token_id"
 | 
						|
        ADD_BOS       = "tokenizer.ggml.add_bos_token"
 | 
						|
        ADD_EOS       = "tokenizer.ggml.add_eos_token"
 | 
						|
        ADD_PREFIX    = "tokenizer.ggml.add_space_prefix"
 | 
						|
        HF_JSON       = "tokenizer.huggingface.json"
 | 
						|
        RWKV          = "tokenizer.rwkv.world"
 | 
						|
        CHAT_TEMPLATE = "tokenizer.chat_template"
 | 
						|
 | 
						|
 | 
						|
#
 | 
						|
# recommended mapping of model tensor names for storage in gguf
 | 
						|
#
 | 
						|
 | 
						|
 | 
						|
class MODEL_ARCH(IntEnum):
 | 
						|
    LLAMA     = auto()
 | 
						|
    FALCON    = auto()
 | 
						|
    BAICHUAN  = auto()
 | 
						|
    GPT2      = auto()
 | 
						|
    GPTJ      = auto()
 | 
						|
    GPTNEOX   = auto()
 | 
						|
    MPT       = auto()
 | 
						|
    STARCODER = auto()
 | 
						|
    PERSIMMON = auto()
 | 
						|
    REFACT    = auto()
 | 
						|
    BERT      = auto()
 | 
						|
    BLOOM     = auto()
 | 
						|
    STABLELM  = auto()
 | 
						|
    QWEN      = auto()
 | 
						|
    QWEN2     = auto()
 | 
						|
    PHI2      = auto()
 | 
						|
    PLAMO     = auto()
 | 
						|
    CODESHELL = auto()
 | 
						|
    ORION     = auto()
 | 
						|
    INTERNLM2  = auto()
 | 
						|
 | 
						|
 | 
						|
class MODEL_TENSOR(IntEnum):
 | 
						|
    TOKEN_EMBD      = auto()
 | 
						|
    TOKEN_EMBD_NORM = auto()
 | 
						|
    TOKEN_TYPES     = auto()
 | 
						|
    POS_EMBD        = auto()
 | 
						|
    OUTPUT          = auto()
 | 
						|
    OUTPUT_NORM     = auto()
 | 
						|
    ROPE_FREQS      = auto()
 | 
						|
    ATTN_Q          = auto()
 | 
						|
    ATTN_K          = auto()
 | 
						|
    ATTN_V          = auto()
 | 
						|
    ATTN_QKV        = auto()
 | 
						|
    ATTN_OUT        = auto()
 | 
						|
    ATTN_NORM       = auto()
 | 
						|
    ATTN_NORM_2     = auto()
 | 
						|
    ATTN_ROT_EMBD   = auto()
 | 
						|
    FFN_GATE_INP    = auto()
 | 
						|
    FFN_NORM        = auto()
 | 
						|
    FFN_GATE        = auto()
 | 
						|
    FFN_DOWN        = auto()
 | 
						|
    FFN_UP          = auto()
 | 
						|
    FFN_ACT         = auto()
 | 
						|
    FFN_GATE_EXP    = auto()
 | 
						|
    FFN_DOWN_EXP    = auto()
 | 
						|
    FFN_UP_EXP      = auto()
 | 
						|
    ATTN_Q_NORM     = auto()
 | 
						|
    ATTN_K_NORM     = auto()
 | 
						|
 | 
						|
 | 
						|
MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
 | 
						|
    MODEL_ARCH.LLAMA:          "llama",
 | 
						|
    MODEL_ARCH.FALCON:         "falcon",
 | 
						|
    MODEL_ARCH.BAICHUAN:       "baichuan",
 | 
						|
    MODEL_ARCH.GPT2:           "gpt2",
 | 
						|
    MODEL_ARCH.GPTJ:           "gptj",
 | 
						|
    MODEL_ARCH.GPTNEOX:        "gptneox",
 | 
						|
    MODEL_ARCH.MPT:            "mpt",
 | 
						|
    MODEL_ARCH.STARCODER:      "starcoder",
 | 
						|
    MODEL_ARCH.PERSIMMON:      "persimmon",
 | 
						|
    MODEL_ARCH.REFACT:         "refact",
 | 
						|
    MODEL_ARCH.BERT:           "bert",
 | 
						|
    MODEL_ARCH.BLOOM:          "bloom",
 | 
						|
    MODEL_ARCH.STABLELM:       "stablelm",
 | 
						|
    MODEL_ARCH.QWEN:           "qwen",
 | 
						|
    MODEL_ARCH.QWEN2:          "qwen2",
 | 
						|
    MODEL_ARCH.PHI2:           "phi2",
 | 
						|
    MODEL_ARCH.PLAMO:          "plamo",
 | 
						|
    MODEL_ARCH.CODESHELL:      "codeshell",
 | 
						|
    MODEL_ARCH.ORION:          "orion",
 | 
						|
    MODEL_ARCH.INTERNLM2:      "internlm2",
 | 
						|
}
 | 
						|
 | 
						|
TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
 | 
						|
    MODEL_TENSOR.TOKEN_EMBD:      "token_embd",
 | 
						|
    MODEL_TENSOR.TOKEN_EMBD_NORM: "token_embd_norm",
 | 
						|
    MODEL_TENSOR.TOKEN_TYPES:     "token_types",
 | 
						|
    MODEL_TENSOR.POS_EMBD:        "position_embd",
 | 
						|
    MODEL_TENSOR.OUTPUT_NORM:     "output_norm",
 | 
						|
    MODEL_TENSOR.OUTPUT:          "output",
 | 
						|
    MODEL_TENSOR.ROPE_FREQS:      "rope_freqs",
 | 
						|
    MODEL_TENSOR.ATTN_NORM:       "blk.{bid}.attn_norm",
 | 
						|
    MODEL_TENSOR.ATTN_NORM_2:     "blk.{bid}.attn_norm_2",
 | 
						|
    MODEL_TENSOR.ATTN_QKV:        "blk.{bid}.attn_qkv",
 | 
						|
    MODEL_TENSOR.ATTN_Q:          "blk.{bid}.attn_q",
 | 
						|
    MODEL_TENSOR.ATTN_K:          "blk.{bid}.attn_k",
 | 
						|
    MODEL_TENSOR.ATTN_V:          "blk.{bid}.attn_v",
 | 
						|
    MODEL_TENSOR.ATTN_OUT:        "blk.{bid}.attn_output",
 | 
						|
    MODEL_TENSOR.ATTN_ROT_EMBD:   "blk.{bid}.attn_rot_embd",
 | 
						|
    MODEL_TENSOR.ATTN_Q_NORM:     "blk.{bid}.attn_q_norm",
 | 
						|
    MODEL_TENSOR.ATTN_K_NORM:     "blk.{bid}.attn_k_norm",
 | 
						|
    MODEL_TENSOR.FFN_GATE_INP:    "blk.{bid}.ffn_gate_inp",
 | 
						|
    MODEL_TENSOR.FFN_NORM:        "blk.{bid}.ffn_norm",
 | 
						|
    MODEL_TENSOR.FFN_GATE:        "blk.{bid}.ffn_gate",
 | 
						|
    MODEL_TENSOR.FFN_DOWN:        "blk.{bid}.ffn_down",
 | 
						|
    MODEL_TENSOR.FFN_UP:          "blk.{bid}.ffn_up",
 | 
						|
    MODEL_TENSOR.FFN_ACT:         "blk.{bid}.ffn",
 | 
						|
    MODEL_TENSOR.FFN_GATE_EXP:    "blk.{bid}.ffn_gate.{xid}",
 | 
						|
    MODEL_TENSOR.FFN_DOWN_EXP:    "blk.{bid}.ffn_down.{xid}",
 | 
						|
    MODEL_TENSOR.FFN_UP_EXP:      "blk.{bid}.ffn_up.{xid}",
 | 
						|
}
 | 
						|
 | 
						|
MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
 | 
						|
    MODEL_ARCH.LLAMA: [
 | 
						|
        MODEL_TENSOR.TOKEN_EMBD,
 | 
						|
        MODEL_TENSOR.OUTPUT_NORM,
 | 
						|
        MODEL_TENSOR.OUTPUT,
 | 
						|
        MODEL_TENSOR.ROPE_FREQS,
 | 
						|
        MODEL_TENSOR.ATTN_NORM,
 | 
						|
        MODEL_TENSOR.ATTN_Q,
 | 
						|
        MODEL_TENSOR.ATTN_K,
 | 
						|
        MODEL_TENSOR.ATTN_V,
 | 
						|
        MODEL_TENSOR.ATTN_OUT,
 | 
						|
        MODEL_TENSOR.ATTN_ROT_EMBD,
 | 
						|
        MODEL_TENSOR.FFN_GATE_INP,
 | 
						|
        MODEL_TENSOR.FFN_NORM,
 | 
						|
        MODEL_TENSOR.FFN_GATE,
 | 
						|
        MODEL_TENSOR.FFN_DOWN,
 | 
						|
        MODEL_TENSOR.FFN_UP,
 | 
						|
        MODEL_TENSOR.FFN_GATE_EXP,
 | 
						|
        MODEL_TENSOR.FFN_DOWN_EXP,
 | 
						|
        MODEL_TENSOR.FFN_UP_EXP,
 | 
						|
    ],
 | 
						|
    MODEL_ARCH.GPTNEOX: [
 | 
						|
        MODEL_TENSOR.TOKEN_EMBD,
 | 
						|
        MODEL_TENSOR.OUTPUT_NORM,
 | 
						|
        MODEL_TENSOR.OUTPUT,
 | 
						|
        MODEL_TENSOR.ATTN_NORM,
 | 
						|
        MODEL_TENSOR.ATTN_QKV,
 | 
						|
        MODEL_TENSOR.ATTN_OUT,
 | 
						|
        MODEL_TENSOR.FFN_NORM,
 | 
						|
        MODEL_TENSOR.FFN_DOWN,
 | 
						|
        MODEL_TENSOR.FFN_UP,
 | 
						|
    ],
 | 
						|
    MODEL_ARCH.FALCON: [
 | 
						|
        MODEL_TENSOR.TOKEN_EMBD,
 | 
						|
        MODEL_TENSOR.OUTPUT_NORM,
 | 
						|
        MODEL_TENSOR.OUTPUT,
 | 
						|
        MODEL_TENSOR.ATTN_NORM,
 | 
						|
        MODEL_TENSOR.ATTN_NORM_2,
 | 
						|
        MODEL_TENSOR.ATTN_QKV,
 | 
						|
        MODEL_TENSOR.ATTN_OUT,
 | 
						|
        MODEL_TENSOR.FFN_DOWN,
 | 
						|
        MODEL_TENSOR.FFN_UP,
 | 
						|
    ],
 | 
						|
    MODEL_ARCH.BAICHUAN: [
 | 
						|
        MODEL_TENSOR.TOKEN_EMBD,
 | 
						|
        MODEL_TENSOR.OUTPUT_NORM,
 | 
						|
        MODEL_TENSOR.OUTPUT,
 | 
						|
        MODEL_TENSOR.ROPE_FREQS,
 | 
						|
        MODEL_TENSOR.ATTN_NORM,
 | 
						|
        MODEL_TENSOR.ATTN_Q,
 | 
						|
        MODEL_TENSOR.ATTN_K,
 | 
						|
        MODEL_TENSOR.ATTN_V,
 | 
						|
        MODEL_TENSOR.ATTN_OUT,
 | 
						|
        MODEL_TENSOR.ATTN_ROT_EMBD,
 | 
						|
        MODEL_TENSOR.FFN_NORM,
 | 
						|
        MODEL_TENSOR.FFN_GATE,
 | 
						|
        MODEL_TENSOR.FFN_DOWN,
 | 
						|
        MODEL_TENSOR.FFN_UP,
 | 
						|
    ],
 | 
						|
    MODEL_ARCH.STARCODER: [
 | 
						|
        MODEL_TENSOR.TOKEN_EMBD,
 | 
						|
        MODEL_TENSOR.POS_EMBD,
 | 
						|
        MODEL_TENSOR.OUTPUT_NORM,
 | 
						|
        MODEL_TENSOR.OUTPUT,
 | 
						|
        MODEL_TENSOR.ATTN_NORM,
 | 
						|
        MODEL_TENSOR.ATTN_QKV,
 | 
						|
        MODEL_TENSOR.ATTN_OUT,
 | 
						|
        MODEL_TENSOR.FFN_NORM,
 | 
						|
        MODEL_TENSOR.FFN_DOWN,
 | 
						|
        MODEL_TENSOR.FFN_UP,
 | 
						|
    ],
 | 
						|
    MODEL_ARCH.BERT: [
 | 
						|
        MODEL_TENSOR.TOKEN_EMBD,
 | 
						|
        MODEL_TENSOR.TOKEN_TYPES,
 | 
						|
        MODEL_TENSOR.POS_EMBD,
 | 
						|
        MODEL_TENSOR.OUTPUT_NORM,
 | 
						|
        MODEL_TENSOR.ATTN_NORM,
 | 
						|
        MODEL_TENSOR.ATTN_Q,
 | 
						|
        MODEL_TENSOR.ATTN_K,
 | 
						|
        MODEL_TENSOR.ATTN_V,
 | 
						|
        MODEL_TENSOR.ATTN_OUT,
 | 
						|
        MODEL_TENSOR.FFN_NORM,
 | 
						|
        MODEL_TENSOR.FFN_DOWN,
 | 
						|
        MODEL_TENSOR.FFN_UP,
 | 
						|
    ],
 | 
						|
    MODEL_ARCH.MPT: [
 | 
						|
        MODEL_TENSOR.TOKEN_EMBD,
 | 
						|
        MODEL_TENSOR.OUTPUT_NORM,
 | 
						|
        MODEL_TENSOR.OUTPUT,
 | 
						|
        MODEL_TENSOR.ATTN_NORM,
 | 
						|
        MODEL_TENSOR.ATTN_QKV,
 | 
						|
        MODEL_TENSOR.ATTN_OUT,
 | 
						|
        MODEL_TENSOR.FFN_NORM,
 | 
						|
        MODEL_TENSOR.FFN_DOWN,
 | 
						|
        MODEL_TENSOR.FFN_UP,
 | 
						|
        MODEL_TENSOR.FFN_ACT,
 | 
						|
    ],
 | 
						|
    MODEL_ARCH.GPTJ: [
 | 
						|
        MODEL_TENSOR.TOKEN_EMBD,
 | 
						|
        MODEL_TENSOR.OUTPUT_NORM,
 | 
						|
        MODEL_TENSOR.OUTPUT,
 | 
						|
        MODEL_TENSOR.ATTN_NORM,
 | 
						|
        MODEL_TENSOR.ATTN_Q,
 | 
						|
        MODEL_TENSOR.ATTN_K,
 | 
						|
        MODEL_TENSOR.ATTN_V,
 | 
						|
        MODEL_TENSOR.ATTN_OUT,
 | 
						|
        MODEL_TENSOR.FFN_DOWN,
 | 
						|
        MODEL_TENSOR.FFN_UP,
 | 
						|
    ],
 | 
						|
    MODEL_ARCH.PERSIMMON: [
 | 
						|
        MODEL_TENSOR.TOKEN_EMBD,
 | 
						|
        MODEL_TENSOR.OUTPUT,
 | 
						|
        MODEL_TENSOR.OUTPUT_NORM,
 | 
						|
        MODEL_TENSOR.ATTN_NORM,
 | 
						|
        MODEL_TENSOR.ATTN_QKV,
 | 
						|
        MODEL_TENSOR.ATTN_OUT,
 | 
						|
        MODEL_TENSOR.FFN_NORM,
 | 
						|
        MODEL_TENSOR.FFN_DOWN,
 | 
						|
        MODEL_TENSOR.FFN_UP,
 | 
						|
        MODEL_TENSOR.ATTN_Q_NORM,
 | 
						|
        MODEL_TENSOR.ATTN_K_NORM,
 | 
						|
        MODEL_TENSOR.ATTN_ROT_EMBD,
 | 
						|
    ],
 | 
						|
    MODEL_ARCH.REFACT: [
 | 
						|
        MODEL_TENSOR.TOKEN_EMBD,
 | 
						|
        MODEL_TENSOR.OUTPUT_NORM,
 | 
						|
        MODEL_TENSOR.OUTPUT,
 | 
						|
        MODEL_TENSOR.ATTN_NORM,
 | 
						|
        MODEL_TENSOR.ATTN_Q,
 | 
						|
        MODEL_TENSOR.ATTN_K,
 | 
						|
        MODEL_TENSOR.ATTN_V,
 | 
						|
        MODEL_TENSOR.ATTN_OUT,
 | 
						|
        MODEL_TENSOR.FFN_NORM,
 | 
						|
        MODEL_TENSOR.FFN_GATE,
 | 
						|
        MODEL_TENSOR.FFN_DOWN,
 | 
						|
        MODEL_TENSOR.FFN_UP,
 | 
						|
    ],
 | 
						|
    MODEL_ARCH.BLOOM: [
 | 
						|
        MODEL_TENSOR.TOKEN_EMBD,
 | 
						|
        MODEL_TENSOR.TOKEN_EMBD_NORM,
 | 
						|
        MODEL_TENSOR.OUTPUT_NORM,
 | 
						|
        MODEL_TENSOR.OUTPUT,
 | 
						|
        MODEL_TENSOR.ATTN_NORM,
 | 
						|
        MODEL_TENSOR.ATTN_QKV,
 | 
						|
        MODEL_TENSOR.ATTN_OUT,
 | 
						|
        MODEL_TENSOR.FFN_NORM,
 | 
						|
        MODEL_TENSOR.FFN_DOWN,
 | 
						|
        MODEL_TENSOR.FFN_UP,
 | 
						|
    ],
 | 
						|
    MODEL_ARCH.STABLELM: [
 | 
						|
        MODEL_TENSOR.TOKEN_EMBD,
 | 
						|
        MODEL_TENSOR.OUTPUT_NORM,
 | 
						|
        MODEL_TENSOR.OUTPUT,
 | 
						|
        MODEL_TENSOR.ROPE_FREQS,
 | 
						|
        MODEL_TENSOR.ATTN_NORM,
 | 
						|
        MODEL_TENSOR.ATTN_Q,
 | 
						|
        MODEL_TENSOR.ATTN_K,
 | 
						|
        MODEL_TENSOR.ATTN_V,
 | 
						|
        MODEL_TENSOR.ATTN_OUT,
 | 
						|
        MODEL_TENSOR.FFN_NORM,
 | 
						|
        MODEL_TENSOR.FFN_GATE,
 | 
						|
        MODEL_TENSOR.FFN_DOWN,
 | 
						|
        MODEL_TENSOR.FFN_UP,
 | 
						|
    ],
 | 
						|
    MODEL_ARCH.QWEN: [
 | 
						|
        MODEL_TENSOR.TOKEN_EMBD,
 | 
						|
        MODEL_TENSOR.OUTPUT_NORM,
 | 
						|
        MODEL_TENSOR.OUTPUT,
 | 
						|
        MODEL_TENSOR.ROPE_FREQS,
 | 
						|
        MODEL_TENSOR.ATTN_NORM,
 | 
						|
        MODEL_TENSOR.ATTN_QKV,
 | 
						|
        MODEL_TENSOR.ATTN_OUT,
 | 
						|
        MODEL_TENSOR.ATTN_ROT_EMBD,
 | 
						|
        MODEL_TENSOR.FFN_NORM,
 | 
						|
        MODEL_TENSOR.FFN_GATE,
 | 
						|
        MODEL_TENSOR.FFN_DOWN,
 | 
						|
        MODEL_TENSOR.FFN_UP,
 | 
						|
    ],
 | 
						|
    MODEL_ARCH.QWEN2: [
 | 
						|
        MODEL_TENSOR.TOKEN_EMBD,
 | 
						|
        MODEL_TENSOR.OUTPUT_NORM,
 | 
						|
        MODEL_TENSOR.OUTPUT,
 | 
						|
        MODEL_TENSOR.ATTN_NORM,
 | 
						|
        MODEL_TENSOR.ATTN_Q,
 | 
						|
        MODEL_TENSOR.ATTN_K,
 | 
						|
        MODEL_TENSOR.ATTN_V,
 | 
						|
        MODEL_TENSOR.ATTN_OUT,
 | 
						|
        MODEL_TENSOR.FFN_NORM,
 | 
						|
        MODEL_TENSOR.FFN_GATE,
 | 
						|
        MODEL_TENSOR.FFN_DOWN,
 | 
						|
        MODEL_TENSOR.FFN_UP,
 | 
						|
    ],
 | 
						|
    MODEL_ARCH.PLAMO: [
 | 
						|
        MODEL_TENSOR.TOKEN_EMBD,
 | 
						|
        MODEL_TENSOR.OUTPUT_NORM,
 | 
						|
        MODEL_TENSOR.OUTPUT,
 | 
						|
        MODEL_TENSOR.ROPE_FREQS,
 | 
						|
        MODEL_TENSOR.ATTN_NORM,
 | 
						|
        MODEL_TENSOR.ATTN_Q,
 | 
						|
        MODEL_TENSOR.ATTN_K,
 | 
						|
        MODEL_TENSOR.ATTN_V,
 | 
						|
        MODEL_TENSOR.ATTN_OUT,
 | 
						|
        MODEL_TENSOR.ATTN_ROT_EMBD,
 | 
						|
        MODEL_TENSOR.FFN_GATE,
 | 
						|
        MODEL_TENSOR.FFN_DOWN,
 | 
						|
        MODEL_TENSOR.FFN_UP,
 | 
						|
    ],
 | 
						|
    MODEL_ARCH.GPT2: [
 | 
						|
        MODEL_TENSOR.TOKEN_EMBD,
 | 
						|
        MODEL_TENSOR.POS_EMBD,
 | 
						|
        MODEL_TENSOR.OUTPUT_NORM,
 | 
						|
        MODEL_TENSOR.OUTPUT,
 | 
						|
        MODEL_TENSOR.ATTN_NORM,
 | 
						|
        MODEL_TENSOR.ATTN_QKV,
 | 
						|
        MODEL_TENSOR.ATTN_OUT,
 | 
						|
        MODEL_TENSOR.FFN_NORM,
 | 
						|
        MODEL_TENSOR.FFN_DOWN,
 | 
						|
        MODEL_TENSOR.FFN_UP,
 | 
						|
    ],
 | 
						|
    MODEL_ARCH.PHI2: [
 | 
						|
        MODEL_TENSOR.TOKEN_EMBD,
 | 
						|
        MODEL_TENSOR.OUTPUT_NORM,
 | 
						|
        MODEL_TENSOR.OUTPUT,
 | 
						|
        MODEL_TENSOR.ATTN_NORM,
 | 
						|
        MODEL_TENSOR.ATTN_QKV,
 | 
						|
        MODEL_TENSOR.ATTN_Q,
 | 
						|
        MODEL_TENSOR.ATTN_K,
 | 
						|
        MODEL_TENSOR.ATTN_V,
 | 
						|
        MODEL_TENSOR.ATTN_OUT,
 | 
						|
        MODEL_TENSOR.FFN_NORM,
 | 
						|
        MODEL_TENSOR.FFN_DOWN,
 | 
						|
        MODEL_TENSOR.FFN_UP,
 | 
						|
    ],
 | 
						|
    MODEL_ARCH.CODESHELL: [
 | 
						|
        MODEL_TENSOR.TOKEN_EMBD,
 | 
						|
        MODEL_TENSOR.POS_EMBD,
 | 
						|
        MODEL_TENSOR.OUTPUT_NORM,
 | 
						|
        MODEL_TENSOR.OUTPUT,
 | 
						|
        MODEL_TENSOR.ATTN_NORM,
 | 
						|
        MODEL_TENSOR.ATTN_QKV,
 | 
						|
        MODEL_TENSOR.ATTN_OUT,
 | 
						|
        MODEL_TENSOR.ATTN_ROT_EMBD,
 | 
						|
        MODEL_TENSOR.FFN_NORM,
 | 
						|
        MODEL_TENSOR.FFN_DOWN,
 | 
						|
        MODEL_TENSOR.FFN_UP,
 | 
						|
    ],
 | 
						|
    MODEL_ARCH.ORION: [
 | 
						|
        MODEL_TENSOR.TOKEN_EMBD,
 | 
						|
        MODEL_TENSOR.OUTPUT_NORM,
 | 
						|
        MODEL_TENSOR.OUTPUT,
 | 
						|
        MODEL_TENSOR.ROPE_FREQS,
 | 
						|
        MODEL_TENSOR.ATTN_NORM,
 | 
						|
        MODEL_TENSOR.ATTN_Q,
 | 
						|
        MODEL_TENSOR.ATTN_K,
 | 
						|
        MODEL_TENSOR.ATTN_V,
 | 
						|
        MODEL_TENSOR.ATTN_OUT,
 | 
						|
        MODEL_TENSOR.ATTN_ROT_EMBD,
 | 
						|
        MODEL_TENSOR.FFN_NORM,
 | 
						|
        MODEL_TENSOR.FFN_GATE,
 | 
						|
        MODEL_TENSOR.FFN_DOWN,
 | 
						|
        MODEL_TENSOR.FFN_UP,
 | 
						|
    ],
 | 
						|
    MODEL_ARCH.INTERNLM2: [
 | 
						|
        MODEL_TENSOR.TOKEN_EMBD,
 | 
						|
        MODEL_TENSOR.OUTPUT_NORM,
 | 
						|
        MODEL_TENSOR.OUTPUT,
 | 
						|
        MODEL_TENSOR.ATTN_NORM,
 | 
						|
        MODEL_TENSOR.ATTN_Q,
 | 
						|
        MODEL_TENSOR.ATTN_K,
 | 
						|
        MODEL_TENSOR.ATTN_V,
 | 
						|
        MODEL_TENSOR.ATTN_OUT,
 | 
						|
        MODEL_TENSOR.ATTN_ROT_EMBD,
 | 
						|
        MODEL_TENSOR.FFN_NORM,
 | 
						|
        MODEL_TENSOR.FFN_GATE,
 | 
						|
        MODEL_TENSOR.FFN_DOWN,
 | 
						|
        MODEL_TENSOR.FFN_UP,
 | 
						|
    ],
 | 
						|
    # TODO
 | 
						|
}
 | 
						|
 | 
						|
# tensors that will not be serialized
 | 
						|
MODEL_TENSOR_SKIP: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
 | 
						|
    MODEL_ARCH.LLAMA: [
 | 
						|
        MODEL_TENSOR.ROPE_FREQS,
 | 
						|
        MODEL_TENSOR.ATTN_ROT_EMBD,
 | 
						|
    ],
 | 
						|
    MODEL_ARCH.BAICHUAN: [
 | 
						|
        MODEL_TENSOR.ROPE_FREQS,
 | 
						|
        MODEL_TENSOR.ATTN_ROT_EMBD,
 | 
						|
    ],
 | 
						|
    MODEL_ARCH.PERSIMMON: [
 | 
						|
        MODEL_TENSOR.ROPE_FREQS,
 | 
						|
    ],
 | 
						|
    MODEL_ARCH.QWEN: [
 | 
						|
        MODEL_TENSOR.ROPE_FREQS,
 | 
						|
        MODEL_TENSOR.ATTN_ROT_EMBD,
 | 
						|
    ],
 | 
						|
    MODEL_ARCH.CODESHELL: [
 | 
						|
        MODEL_TENSOR.ROPE_FREQS,
 | 
						|
        MODEL_TENSOR.ATTN_ROT_EMBD,
 | 
						|
    ],
 | 
						|
    MODEL_ARCH.ORION: [
 | 
						|
        MODEL_TENSOR.ROPE_FREQS,
 | 
						|
        MODEL_TENSOR.ATTN_ROT_EMBD,
 | 
						|
    ],
 | 
						|
}
 | 
						|
 | 
						|
#
 | 
						|
# types
 | 
						|
#
 | 
						|
 | 
						|
 | 
						|
class TokenType(IntEnum):
 | 
						|
    NORMAL       = 1
 | 
						|
    UNKNOWN      = 2
 | 
						|
    CONTROL      = 3
 | 
						|
    USER_DEFINED = 4
 | 
						|
    UNUSED       = 5
 | 
						|
    BYTE         = 6
 | 
						|
 | 
						|
 | 
						|
class RopeScalingType(Enum):
 | 
						|
    NONE   = 'none'
 | 
						|
    LINEAR = 'linear'
 | 
						|
    YARN   = 'yarn'
 | 
						|
 | 
						|
 | 
						|
class GGMLQuantizationType(IntEnum):
 | 
						|
    F32  = 0
 | 
						|
    F16  = 1
 | 
						|
    Q4_0 = 2
 | 
						|
    Q4_1 = 3
 | 
						|
    Q5_0 = 6
 | 
						|
    Q5_1 = 7
 | 
						|
    Q8_0 = 8
 | 
						|
    Q8_1 = 9
 | 
						|
    Q2_K = 10
 | 
						|
    Q3_K = 11
 | 
						|
    Q4_K = 12
 | 
						|
    Q5_K = 13
 | 
						|
    Q6_K = 14
 | 
						|
    Q8_K = 15
 | 
						|
 | 
						|
 | 
						|
class GGUFEndian(IntEnum):
 | 
						|
    LITTLE = 0
 | 
						|
    BIG = 1
 | 
						|
 | 
						|
 | 
						|
class GGUFValueType(IntEnum):
 | 
						|
    UINT8   = 0
 | 
						|
    INT8    = 1
 | 
						|
    UINT16  = 2
 | 
						|
    INT16   = 3
 | 
						|
    UINT32  = 4
 | 
						|
    INT32   = 5
 | 
						|
    FLOAT32 = 6
 | 
						|
    BOOL    = 7
 | 
						|
    STRING  = 8
 | 
						|
    ARRAY   = 9
 | 
						|
    UINT64  = 10
 | 
						|
    INT64   = 11
 | 
						|
    FLOAT64 = 12
 | 
						|
 | 
						|
    @staticmethod
 | 
						|
    def get_type(val: Any) -> GGUFValueType:
 | 
						|
        if isinstance(val, (str, bytes, bytearray)):
 | 
						|
            return GGUFValueType.STRING
 | 
						|
        elif isinstance(val, list):
 | 
						|
            return GGUFValueType.ARRAY
 | 
						|
        elif isinstance(val, float):
 | 
						|
            return GGUFValueType.FLOAT32
 | 
						|
        elif isinstance(val, bool):
 | 
						|
            return GGUFValueType.BOOL
 | 
						|
        elif isinstance(val, int):
 | 
						|
            return GGUFValueType.INT32
 | 
						|
        # TODO: need help with 64-bit types in Python
 | 
						|
        else:
 | 
						|
            print("Unknown type:", type(val))
 | 
						|
            sys.exit()
 | 
						|
 | 
						|
 | 
						|
# Note: Does not support GGML_QKK_64
 | 
						|
QK_K = 256
 | 
						|
# Items here are (block size, type size)
 | 
						|
GGML_QUANT_SIZES = {
 | 
						|
    GGMLQuantizationType.F32:  (1, 4),
 | 
						|
    GGMLQuantizationType.F16:  (1, 2),
 | 
						|
    GGMLQuantizationType.Q4_0: (32, 2 + 16),
 | 
						|
    GGMLQuantizationType.Q4_1: (32, 2 + 2 + 16),
 | 
						|
    GGMLQuantizationType.Q5_0: (32, 2 + 4 + 16),
 | 
						|
    GGMLQuantizationType.Q5_1: (32, 2 + 2 + 4 + 16),
 | 
						|
    GGMLQuantizationType.Q8_0: (32, 2 + 32),
 | 
						|
    GGMLQuantizationType.Q8_1: (32, 4 + 4 + 32),
 | 
						|
    GGMLQuantizationType.Q2_K: (256, 2 + 2 + QK_K // 16 + QK_K // 4),
 | 
						|
    GGMLQuantizationType.Q3_K: (256, 2 + QK_K // 4 + QK_K // 8 + 12),
 | 
						|
    GGMLQuantizationType.Q4_K: (256, 2 + 2 + QK_K // 2 + 12),
 | 
						|
    GGMLQuantizationType.Q5_K: (256, 2 + 2 + QK_K // 2 + QK_K // 8 + 12),
 | 
						|
    GGMLQuantizationType.Q6_K: (256, 2 + QK_K // 2 + QK_K // 4 + QK_K // 16),
 | 
						|
    GGMLQuantizationType.Q8_K: (256, 4 + QK_K + QK_K // 8),
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
# Aliases for backward compatibility.
 | 
						|
 | 
						|
# general
 | 
						|
KEY_GENERAL_ARCHITECTURE         = Keys.General.ARCHITECTURE
 | 
						|
KEY_GENERAL_QUANTIZATION_VERSION = Keys.General.QUANTIZATION_VERSION
 | 
						|
KEY_GENERAL_ALIGNMENT            = Keys.General.ALIGNMENT
 | 
						|
KEY_GENERAL_NAME                 = Keys.General.NAME
 | 
						|
KEY_GENERAL_AUTHOR               = Keys.General.AUTHOR
 | 
						|
KEY_GENERAL_URL                  = Keys.General.URL
 | 
						|
KEY_GENERAL_DESCRIPTION          = Keys.General.DESCRIPTION
 | 
						|
KEY_GENERAL_LICENSE              = Keys.General.LICENSE
 | 
						|
KEY_GENERAL_SOURCE_URL           = Keys.General.SOURCE_URL
 | 
						|
KEY_GENERAL_SOURCE_HF_REPO       = Keys.General.SOURCE_HF_REPO
 | 
						|
KEY_GENERAL_FILE_TYPE            = Keys.General.FILE_TYPE
 | 
						|
 | 
						|
# LLM
 | 
						|
KEY_CONTEXT_LENGTH        = Keys.LLM.CONTEXT_LENGTH
 | 
						|
KEY_EMBEDDING_LENGTH      = Keys.LLM.EMBEDDING_LENGTH
 | 
						|
KEY_BLOCK_COUNT           = Keys.LLM.BLOCK_COUNT
 | 
						|
KEY_FEED_FORWARD_LENGTH   = Keys.LLM.FEED_FORWARD_LENGTH
 | 
						|
KEY_USE_PARALLEL_RESIDUAL = Keys.LLM.USE_PARALLEL_RESIDUAL
 | 
						|
KEY_TENSOR_DATA_LAYOUT    = Keys.LLM.TENSOR_DATA_LAYOUT
 | 
						|
 | 
						|
# attention
 | 
						|
KEY_ATTENTION_HEAD_COUNT        = Keys.Attention.HEAD_COUNT
 | 
						|
KEY_ATTENTION_HEAD_COUNT_KV     = Keys.Attention.HEAD_COUNT_KV
 | 
						|
KEY_ATTENTION_MAX_ALIBI_BIAS    = Keys.Attention.MAX_ALIBI_BIAS
 | 
						|
KEY_ATTENTION_CLAMP_KQV         = Keys.Attention.CLAMP_KQV
 | 
						|
KEY_ATTENTION_LAYERNORM_EPS     = Keys.Attention.LAYERNORM_EPS
 | 
						|
KEY_ATTENTION_LAYERNORM_RMS_EPS = Keys.Attention.LAYERNORM_RMS_EPS
 | 
						|
 | 
						|
# RoPE
 | 
						|
KEY_ROPE_DIMENSION_COUNT      = Keys.Rope.DIMENSION_COUNT
 | 
						|
KEY_ROPE_FREQ_BASE            = Keys.Rope.FREQ_BASE
 | 
						|
KEY_ROPE_SCALING_TYPE         = Keys.Rope.SCALING_TYPE
 | 
						|
KEY_ROPE_SCALING_FACTOR       = Keys.Rope.SCALING_FACTOR
 | 
						|
KEY_ROPE_SCALING_ORIG_CTX_LEN = Keys.Rope.SCALING_ORIG_CTX_LEN
 | 
						|
KEY_ROPE_SCALING_FINETUNED    = Keys.Rope.SCALING_FINETUNED
 | 
						|
 | 
						|
# tokenization
 | 
						|
KEY_TOKENIZER_MODEL      = Keys.Tokenizer.MODEL
 | 
						|
KEY_TOKENIZER_LIST       = Keys.Tokenizer.LIST
 | 
						|
KEY_TOKENIZER_TOKEN_TYPE = Keys.Tokenizer.TOKEN_TYPE
 | 
						|
KEY_TOKENIZER_SCORES     = Keys.Tokenizer.SCORES
 | 
						|
KEY_TOKENIZER_MERGES     = Keys.Tokenizer.MERGES
 | 
						|
KEY_TOKENIZER_BOS_ID     = Keys.Tokenizer.BOS_ID
 | 
						|
KEY_TOKENIZER_EOS_ID     = Keys.Tokenizer.EOS_ID
 | 
						|
KEY_TOKENIZER_UNK_ID     = Keys.Tokenizer.UNK_ID
 | 
						|
KEY_TOKENIZER_SEP_ID     = Keys.Tokenizer.SEP_ID
 | 
						|
KEY_TOKENIZER_PAD_ID     = Keys.Tokenizer.PAD_ID
 | 
						|
KEY_TOKENIZER_HF_JSON    = Keys.Tokenizer.HF_JSON
 | 
						|
KEY_TOKENIZER_RWKV       = Keys.Tokenizer.RWKV
 |