mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-11-04 09:32:00 +00:00 
			
		
		
		
	* py : switch to snake_case ggml-ci * cont ggml-ci * cont ggml-ci * cont : fix link * gguf-py : use snake_case in scripts entrypoint export * py : rename requirements for convert_legacy_llama.py Needed for scripts/check-requirements.sh --------- Co-authored-by: Francis Couture-Harpin <git@compilade.net>
		
			
				
	
	
		
			80 lines
		
	
	
		
			3.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			80 lines
		
	
	
		
			3.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
# Usage:
 | 
						|
#! ./llama-server -m some-model.gguf &
 | 
						|
#! pip install pydantic
 | 
						|
#! python json_schema_pydantic_example.py
 | 
						|
 | 
						|
from pydantic import BaseModel, Extra, TypeAdapter
 | 
						|
from annotated_types import MinLen
 | 
						|
from typing import Annotated, List, Optional
 | 
						|
import json, requests
 | 
						|
 | 
						|
if True:
 | 
						|
 | 
						|
    def create_completion(*, response_model=None, endpoint="http://localhost:8080/v1/chat/completions", messages, **kwargs):
 | 
						|
        '''
 | 
						|
        Creates a chat completion using an OpenAI-compatible endpoint w/ JSON schema support
 | 
						|
        (llama.cpp server, llama-cpp-python, Anyscale / Together...)
 | 
						|
 | 
						|
        The response_model param takes a type (+ supports Pydantic) and behaves just as w/ Instructor (see below)
 | 
						|
        '''
 | 
						|
        if response_model:
 | 
						|
            type_adapter = TypeAdapter(response_model)
 | 
						|
            schema = type_adapter.json_schema()
 | 
						|
            messages = [{
 | 
						|
                "role": "system",
 | 
						|
                "content": f"You respond in JSON format with the following schema: {json.dumps(schema, indent=2)}"
 | 
						|
            }] + messages
 | 
						|
            response_format={"type": "json_object", "schema": schema}
 | 
						|
 | 
						|
        data = requests.post(endpoint, headers={"Content-Type": "application/json"},
 | 
						|
                             json=dict(messages=messages, response_format=response_format, **kwargs)).json()
 | 
						|
        if 'error' in data:
 | 
						|
            raise Exception(data['error']['message'])
 | 
						|
 | 
						|
        content = data["choices"][0]["message"]["content"]
 | 
						|
        return type_adapter.validate_json(content) if type_adapter else content
 | 
						|
 | 
						|
else:
 | 
						|
 | 
						|
    # This alternative branch uses Instructor + OpenAI client lib.
 | 
						|
    # Instructor support streamed iterable responses, retry & more.
 | 
						|
    # (see https://python.useinstructor.com/)
 | 
						|
    #! pip install instructor openai
 | 
						|
    import instructor, openai
 | 
						|
    client = instructor.patch(
 | 
						|
        openai.OpenAI(api_key="123", base_url="http://localhost:8080"),
 | 
						|
        mode=instructor.Mode.JSON_SCHEMA)
 | 
						|
    create_completion = client.chat.completions.create
 | 
						|
 | 
						|
 | 
						|
if __name__ == '__main__':
 | 
						|
 | 
						|
    class QAPair(BaseModel):
 | 
						|
        class Config:
 | 
						|
            extra = 'forbid'  # triggers additionalProperties: false in the JSON schema
 | 
						|
        question: str
 | 
						|
        concise_answer: str
 | 
						|
        justification: str
 | 
						|
        stars: Annotated[int, Field(ge=1, le=5)]
 | 
						|
 | 
						|
    class PyramidalSummary(BaseModel):
 | 
						|
        class Config:
 | 
						|
            extra = 'forbid'  # triggers additionalProperties: false in the JSON schema
 | 
						|
        title: str
 | 
						|
        summary: str
 | 
						|
        question_answers: Annotated[List[QAPair], MinLen(2)]
 | 
						|
        sub_sections: Optional[Annotated[List['PyramidalSummary'], MinLen(2)]]
 | 
						|
 | 
						|
    print("# Summary\n", create_completion(
 | 
						|
        model="...",
 | 
						|
        response_model=PyramidalSummary,
 | 
						|
        messages=[{
 | 
						|
            "role": "user",
 | 
						|
            "content": f"""
 | 
						|
                You are a highly efficient corporate document summarizer.
 | 
						|
                Create a pyramidal summary of an imaginary internal document about our company processes
 | 
						|
                (starting high-level, going down to each sub sections).
 | 
						|
                Keep questions short, and answers even shorter (trivia / quizz style).
 | 
						|
            """
 | 
						|
        }]))
 |