mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-30 08:42:00 +00:00 
			
		
		
		
	 48edda30ee
			
		
	
	48edda30ee
	
	
	
		
			
			Also adds Falcon-180B support. Closes #3049 Co-authored-by: jb <jonathan.t.barnard@gmail.com>
		
			
				
	
	
		
			251 lines
		
	
	
		
			8.1 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			251 lines
		
	
	
		
			8.1 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
| #!/usr/bin/env python3
 | |
| # HF falcon--> gguf conversion
 | |
| 
 | |
| from __future__ import annotations
 | |
| 
 | |
| import argparse
 | |
| import contextlib
 | |
| import json
 | |
| import os
 | |
| import struct
 | |
| import sys
 | |
| from pathlib import Path
 | |
| from typing import Any
 | |
| 
 | |
| import numpy as np
 | |
| import torch
 | |
| from transformers import AutoTokenizer  # type: ignore[import]
 | |
| 
 | |
| if 'NO_LOCAL_GGUF' not in os.environ:
 | |
|     sys.path.insert(1, str(Path(__file__).parent / 'gguf-py' / 'gguf'))
 | |
| import gguf
 | |
| 
 | |
| 
 | |
| def count_model_parts(dir_model: Path, prefix: str) -> int:
 | |
|     num_parts = 0
 | |
|     for filename in os.listdir(dir_model):
 | |
|         if filename.startswith(prefix):
 | |
|             num_parts += 1
 | |
| 
 | |
|     if num_parts > 0:
 | |
|         print("gguf: found " + str(num_parts) + " model parts")
 | |
|     return num_parts
 | |
| 
 | |
| 
 | |
| def parse_args() -> argparse.Namespace:
 | |
|     parser = argparse.ArgumentParser(description="Convert a Falcon model to a GGML compatible file")
 | |
|     parser.add_argument(
 | |
|         "--vocab-only", action="store_true",
 | |
|         help="extract only the vocab",
 | |
|     )
 | |
|     parser.add_argument(
 | |
|         "--outfile", type=Path,
 | |
|         help="path to write to; default: based on input",
 | |
|     )
 | |
|     parser.add_argument(
 | |
|         "model", type=Path,
 | |
|         help="directory containing model file, or model file itself (*.bin)",
 | |
|     )
 | |
|     parser.add_argument(
 | |
|         "ftype", type=int, choices=[0, 1], default=1, nargs='?',
 | |
|         help="output format - use 0 for float32, 1 for float16",
 | |
|     )
 | |
|     return parser.parse_args()
 | |
| 
 | |
| args = parse_args()
 | |
| 
 | |
| dir_model = args.model
 | |
| ftype = args.ftype
 | |
| if not dir_model.is_dir():
 | |
|     print(f'Error: {args.model} is not a directory', file = sys.stderr)
 | |
|     sys.exit(1)
 | |
| 
 | |
| # possible tensor data types
 | |
| #   ftype == 0 -> float32
 | |
| #   ftype == 1 -> float16
 | |
| 
 | |
| # map from ftype to string
 | |
| ftype_str = ["f32", "f16"]
 | |
| 
 | |
| if args.outfile is not None:
 | |
|     fname_out = args.outfile
 | |
| else:
 | |
|     # output in the same directory as the model by default
 | |
|     fname_out = dir_model / f'ggml-model-{ftype_str[ftype]}.gguf'
 | |
| 
 | |
| print("gguf: loading model "+dir_model.name)
 | |
| 
 | |
| with open(dir_model / "config.json", "r", encoding="utf-8") as f:
 | |
|     hparams = json.load(f)
 | |
| 
 | |
| if hparams["architectures"][0] != "FalconForCausalLM":
 | |
|     print("Model architecture not supported: " + hparams["architectures"][0])
 | |
| 
 | |
|     sys.exit(1)
 | |
| 
 | |
| # get number of model parts
 | |
| num_parts = count_model_parts(dir_model, "model-00")
 | |
| if num_parts:
 | |
|     is_safetensors = True
 | |
|     from safetensors import safe_open
 | |
| else:
 | |
|     is_safetensors = False
 | |
|     num_parts = count_model_parts(dir_model, "pytorch_model-")
 | |
| 
 | |
| ARCH=gguf.MODEL_ARCH.FALCON
 | |
| gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH])
 | |
| 
 | |
| print("gguf: get model metadata")
 | |
| 
 | |
| block_count = hparams["num_hidden_layers"]
 | |
| 
 | |
| gguf_writer.add_name("Falcon")
 | |
| gguf_writer.add_context_length(2048) # not in config.json
 | |
| gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
 | |
| gguf_writer.add_embedding_length(hparams["hidden_size"])
 | |
| gguf_writer.add_feed_forward_length(4 * hparams["hidden_size"])
 | |
| gguf_writer.add_block_count(block_count)
 | |
| gguf_writer.add_head_count(hparams["num_attention_heads"])
 | |
| if "num_kv_heads" in hparams:
 | |
|     gguf_writer.add_head_count_kv(hparams["num_kv_heads"])
 | |
| else:
 | |
|     gguf_writer.add_head_count_kv(1)
 | |
| gguf_writer.add_layer_norm_eps(hparams["layer_norm_epsilon"])
 | |
| gguf_writer.add_file_type(ftype)
 | |
| 
 | |
| # TOKENIZATION
 | |
| 
 | |
| print("gguf: get tokenizer metadata")
 | |
| 
 | |
| tokens: list[bytearray] = []
 | |
| scores: list[float] = []
 | |
| toktypes: list[int] = []
 | |
| 
 | |
| # gpt2 tokenizer
 | |
| gguf_writer.add_tokenizer_model("gpt2")
 | |
| 
 | |
| print("gguf: get gpt2 tokenizer vocab")
 | |
| 
 | |
| # ref: https://github.com/cmp-nct/ggllm.cpp/blob/master/falcon_convert.py
 | |
| tokenizer = AutoTokenizer.from_pretrained(dir_model)
 | |
| 
 | |
| # The number of tokens in tokenizer.json can differ from the expected vocab size.
 | |
| # This causes downstream issues with mismatched tensor sizes when running the inference
 | |
| vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
 | |
| assert max(tokenizer.vocab.values()) < vocab_size
 | |
| 
 | |
| reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()}
 | |
| 
 | |
| for i in range(vocab_size):
 | |
|     tokens.append(reverse_vocab[i])
 | |
|     scores.append(0.0) # dummy
 | |
|     toktypes.append(gguf.TokenType.NORMAL)
 | |
| 
 | |
| gguf_writer.add_token_list(tokens)
 | |
| gguf_writer.add_token_scores(scores)
 | |
| gguf_writer.add_token_types(toktypes)
 | |
| 
 | |
| special_vocab = gguf.SpecialVocab(dir_model, load_merges = True)
 | |
| special_vocab.add_to_gguf(gguf_writer)
 | |
| 
 | |
| # TENSORS
 | |
| 
 | |
| tensor_map = gguf.get_tensor_name_map(ARCH,block_count)
 | |
| 
 | |
| # params for qkv transform
 | |
| n_head    = hparams["num_attention_heads"]
 | |
| n_head_kv = hparams["num_kv_heads"] if "num_kv_heads" in hparams else 1
 | |
| 
 | |
| head_dim = hparams["hidden_size"] // n_head
 | |
| 
 | |
| # tensor info
 | |
| print("gguf: get tensor metadata")
 | |
| 
 | |
| if num_parts == 0:
 | |
|     part_names = iter(("pytorch_model.bin",))
 | |
| elif is_safetensors:
 | |
|     part_names = (
 | |
|         f"model-{n:05}-of-{num_parts:05}.safetensors" for n in range(1, num_parts + 1)
 | |
|     )
 | |
| else:
 | |
|     part_names = (
 | |
|         f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1)
 | |
|     )
 | |
| 
 | |
| for part_name in part_names:
 | |
|     if args.vocab_only:
 | |
|         break
 | |
|     print("gguf: loading model part '" + part_name + "'")
 | |
|     if is_safetensors:
 | |
|         ctx = safe_open(dir_model / part_name, framework="pt", device="cpu")
 | |
|     else:
 | |
|         ctx = contextlib.nullcontext(torch.load(dir_model / part_name, map_location="cpu"))
 | |
| 
 | |
|     with ctx as model_part:
 | |
|         for name in model_part.keys():
 | |
|             data = model_part.get_tensor(name) if is_safetensors else model_part[name]
 | |
| 
 | |
|             old_dtype = data.dtype
 | |
| 
 | |
|             # convert any unsupported data types to float32
 | |
|             if data.dtype != torch.float16 and data.dtype != torch.float32:
 | |
|                 data = data.to(torch.float32)
 | |
| 
 | |
|             # QKV tensor transform
 | |
|             # The original query_key_value tensor contains n_head_kv "kv groups",
 | |
|             # each consisting of n_head/n_head_kv query weights followed by one key
 | |
|             # and one value weight (shared by all query heads in the kv group).
 | |
|             # This layout makes it a big pain to work with in GGML.
 | |
|             # So we rearrange them here,, so that we have n_head query weights
 | |
|             # followed by n_head_kv key weights followed by n_head_kv value weights,
 | |
|             # in contiguous fashion.
 | |
|             # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
 | |
| 
 | |
|             if "query_key_value" in name:
 | |
|                 qkv = data.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
 | |
|                 q = qkv[:, :-2 ].reshape(n_head * head_dim, head_dim * n_head)
 | |
|                 k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
 | |
|                 v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
 | |
|                 data = torch.cat((q,k,v)).reshape_as(data)
 | |
| 
 | |
|             data = data.squeeze().numpy()
 | |
| 
 | |
|             # map tensor names
 | |
|             new_name = tensor_map.get_name(name, try_suffixes = (".weight", ".bias"))
 | |
|             if new_name is None:
 | |
|                 print("Can not map tensor '" + name + "'")
 | |
|                 sys.exit()
 | |
| 
 | |
|             n_dims = len(data.shape)
 | |
|             data_dtype = data.dtype
 | |
| 
 | |
|             # if f32 desired, convert any float16 to float32
 | |
|             if ftype == 0 and data_dtype == np.float16:
 | |
|                 data = data.astype(np.float32)
 | |
| 
 | |
|             # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
 | |
|             if ftype == 1 and data_dtype == np.float16 and n_dims == 1:
 | |
|                 data = data.astype(np.float32)
 | |
| 
 | |
|             # if f16 desired, convert any float32 2-dim weight tensors to float16
 | |
|             if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
 | |
|                 data = data.astype(np.float16)
 | |
| 
 | |
|             print(new_name + ", n_dims = " + str(n_dims) + ", " + str(old_dtype) + " --> " + str(data.dtype))
 | |
| 
 | |
|             gguf_writer.add_tensor(new_name, data)
 | |
| 
 | |
| 
 | |
| print("gguf: write header")
 | |
| gguf_writer.write_header_to_file()
 | |
| print("gguf: write metadata")
 | |
| gguf_writer.write_kv_data_to_file()
 | |
| if not args.vocab_only:
 | |
|     print("gguf: write tensors")
 | |
|     gguf_writer.write_tensors_to_file()
 | |
| 
 | |
| gguf_writer.close()
 | |
| 
 | |
| print(f"gguf: model successfully exported to '{fname_out}'")
 | |
| print("")
 |