mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-31 08:51:55 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			1147 lines
		
	
	
		
			44 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1147 lines
		
	
	
		
			44 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #include "common.h"
 | |
| #include "llama.h"
 | |
| #include "build-info.h"
 | |
| 
 | |
| #ifndef NDEBUG
 | |
| // crash the server in debug mode, otherwise send an http 500 error
 | |
| #define CPPHTTPLIB_NO_EXCEPTIONS 1
 | |
| #endif
 | |
| 
 | |
| #include "httplib.h"
 | |
| #include "json.hpp"
 | |
| 
 | |
| // auto generated files (update with ./deps.sh)
 | |
| #include "index.html.hpp"
 | |
| #include "index.js.hpp"
 | |
| #include "completion.js.hpp"
 | |
| 
 | |
| #ifndef SERVER_VERBOSE
 | |
| #define SERVER_VERBOSE 1
 | |
| #endif
 | |
| 
 | |
| using namespace httplib;
 | |
| using json = nlohmann::json;
 | |
| 
 | |
| struct server_params {
 | |
|     std::string hostname = "127.0.0.1";
 | |
|     std::string public_path = "examples/server/public";
 | |
|     int32_t port = 8080;
 | |
|     int32_t read_timeout = 600;
 | |
|     int32_t write_timeout = 600;
 | |
| };
 | |
| 
 | |
| // completion token output with probabilities
 | |
| struct completion_token_output {
 | |
|     struct token_prob {
 | |
|         llama_token tok;
 | |
|         float prob;
 | |
|     };
 | |
| 
 | |
|     std::vector<token_prob> probs;
 | |
|     llama_token tok;
 | |
| };
 | |
| 
 | |
| static size_t common_part(const std::vector<llama_token> & a, const std::vector<llama_token> & b) {
 | |
|     size_t i;
 | |
|     for (i = 0; i < a.size() && i < b.size() && a[i] == b[i]; i++) {}
 | |
|     return i;
 | |
| }
 | |
| 
 | |
| enum stop_type {
 | |
|     STOP_FULL,
 | |
|     STOP_PARTIAL,
 | |
| };
 | |
| 
 | |
| static bool ends_with(const std::string & str, const std::string & suffix) {
 | |
|     return str.size() >= suffix.size() &&
 | |
|         0 == str.compare(str.size() - suffix.size(), suffix.size(), suffix);
 | |
| }
 | |
| 
 | |
| static size_t find_partial_stop_string(const std::string & stop,
 | |
|                                        const std::string & text) {
 | |
|     if (!text.empty() && !stop.empty()) {
 | |
|         const char text_last_char = text.back();
 | |
|         for (int64_t char_index = stop.size() - 1; char_index >= 0; char_index--) {
 | |
|             if (stop[char_index] == text_last_char) {
 | |
|                 const std::string current_partial = stop.substr(0, char_index + 1);
 | |
|                 if (ends_with(text, current_partial)) {
 | |
|                     return text.size() - char_index - 1;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     return std::string::npos;
 | |
| }
 | |
| 
 | |
| template<class Iter>
 | |
| static std::string tokens_to_str(llama_context * ctx, Iter begin, Iter end) {
 | |
|     std::string ret;
 | |
|     for (; begin != end; ++begin) {
 | |
|         ret += llama_token_to_str(ctx, *begin);
 | |
|     }
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| static void server_log(const char * level, const char * function, int line,
 | |
|                        const char * message, const nlohmann::ordered_json & extra) {
 | |
|     nlohmann::ordered_json log {
 | |
|         { "timestamp", time(nullptr) },
 | |
|         { "level", level },
 | |
|         { "function", function },
 | |
|         { "line", line },
 | |
|         { "message", message },
 | |
|     };
 | |
| 
 | |
|     if (!extra.empty()) {
 | |
|         log.merge_patch(extra);
 | |
|     }
 | |
| 
 | |
|     const std::string str = log.dump(-1, ' ', false, json::error_handler_t::replace);
 | |
|     fprintf(stdout, "%.*s\n", (int)str.size(), str.data());
 | |
|     fflush(stdout);
 | |
| }
 | |
| 
 | |
| // format incomplete utf-8 multibyte character for output
 | |
| static std::string tokens_to_output_formatted_string(const llama_context * ctx, const llama_token token) {
 | |
|     std::string out = token == -1 ? "" : llama_token_to_str(ctx, token);
 | |
|     // if first bit is 1, meaning it's a partial character
 | |
|     if (out.size() > 0 && (out[0] & 0x80) == 0x80) {
 | |
|         std::stringstream ss;
 | |
|         ss<< std::hex << (out[0] & 0xff);
 | |
|         std::string res ( ss.str() );
 | |
|         out = "byte: \\x" + res;
 | |
|     }
 | |
|     return out;
 | |
| }
 | |
| 
 | |
| // convert a vector of completion_token_output to json
 | |
| static json probs_vector_to_json(const llama_context * ctx, const std::vector<completion_token_output> probs) {
 | |
|     json out = json::array();
 | |
|     for (const auto & prob : probs) {
 | |
|         json probs_for_token = json::array();
 | |
|         for (const auto & p : prob.probs) {
 | |
|             std::string tok_str = tokens_to_output_formatted_string(ctx, p.tok);
 | |
|             probs_for_token.push_back(json {
 | |
|                 { "tok_str", tok_str },
 | |
|                 { "prob", p.prob },
 | |
|             });
 | |
|         }
 | |
|         std::string tok_str = tokens_to_output_formatted_string(ctx, prob.tok);
 | |
|         out.push_back(json {
 | |
|             {"content", tok_str},
 | |
|             {"probs", probs_for_token},
 | |
|         });
 | |
|     }
 | |
|     return out;
 | |
| }
 | |
| 
 | |
| static bool server_verbose = false;
 | |
| 
 | |
| #if SERVER_VERBOSE != 1
 | |
| #  define LOG_VERBOSE(MSG, ...)
 | |
| #else
 | |
| #  define LOG_VERBOSE(MSG, ...)                                          \
 | |
|     do {                                                                 \
 | |
|         if (server_verbose) {                                            \
 | |
|             server_log("VERBOSE", __func__, __LINE__, MSG, __VA_ARGS__); \
 | |
|         }                                                                \
 | |
|     } while(0)
 | |
| #endif
 | |
| 
 | |
| #define LOG_ERROR(MSG, ...) server_log("ERROR", __func__, __LINE__, MSG, __VA_ARGS__)
 | |
| #define LOG_WARNING(MSG, ...) server_log("WARNING", __func__, __LINE__, MSG, __VA_ARGS__)
 | |
| #define LOG_INFO(MSG, ...) server_log("INFO", __func__, __LINE__, MSG, __VA_ARGS__)
 | |
| 
 | |
| struct llama_server_context {
 | |
|     bool stream = false;
 | |
|     bool has_next_token = false;
 | |
|     std::string generated_text;
 | |
|     std::vector<completion_token_output> generated_token_probs;
 | |
| 
 | |
|     size_t num_tokens_predicted = 0;
 | |
|     size_t n_past = 0;
 | |
|     size_t n_remain = 0;
 | |
| 
 | |
|     std::vector<llama_token> embd;
 | |
|     std::vector<llama_token> last_n_tokens;
 | |
| 
 | |
|     llama_model * model = nullptr;
 | |
|     llama_context * ctx = nullptr;
 | |
|     gpt_params params;
 | |
| 
 | |
|     bool truncated = false;
 | |
|     bool stopped_eos = false;
 | |
|     bool stopped_word = false;
 | |
|     bool stopped_limit = false;
 | |
|     std::string stopping_word;
 | |
|     int32_t multibyte_pending = 0;
 | |
| 
 | |
|     std::mutex mutex;
 | |
| 
 | |
|     std::unique_lock<std::mutex> lock() {
 | |
|         return std::unique_lock<std::mutex>(mutex);
 | |
|     }
 | |
| 
 | |
|     ~llama_server_context() {
 | |
|         if (ctx) {
 | |
|             llama_free(ctx);
 | |
|             ctx = nullptr;
 | |
|         }
 | |
|         if (model) {
 | |
|             llama_free_model(model);
 | |
|             model = nullptr;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     void rewind() {
 | |
|         params.antiprompt.clear();
 | |
|         num_tokens_predicted = 0;
 | |
|         generated_text = "";
 | |
|         generated_text.reserve(params.n_ctx);
 | |
|         generated_token_probs.clear();
 | |
|         truncated = false;
 | |
|         stopped_eos = false;
 | |
|         stopped_word = false;
 | |
|         stopped_limit = false;
 | |
|         stopping_word = "";
 | |
|         multibyte_pending = 0;
 | |
| 
 | |
|         n_remain = 0;
 | |
|         n_past = 0;
 | |
|     }
 | |
| 
 | |
|     bool loadModel(const gpt_params & params_) {
 | |
|         params = params_;
 | |
|         std::tie(model, ctx) = llama_init_from_gpt_params(params);
 | |
|         if (model == nullptr) {
 | |
|             LOG_ERROR("unable to load model", { { "model", params_.model } });
 | |
|             return false;
 | |
|         }
 | |
| 
 | |
|         last_n_tokens.resize(params.n_ctx);
 | |
|         std::fill(last_n_tokens.begin(), last_n_tokens.end(), 0);
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     void loadPrompt() {
 | |
|         params.prompt.insert(0, 1, ' '); // always add a first space
 | |
|         std::vector<llama_token> prompt_tokens = ::llama_tokenize(ctx, params.prompt, true);
 | |
| 
 | |
|         if (params.n_keep < 0) {
 | |
|             params.n_keep = (int)prompt_tokens.size();
 | |
|         }
 | |
|         params.n_keep = std::min(params.n_ctx - 4, params.n_keep);
 | |
| 
 | |
|         // if input prompt is too big, truncate like normal
 | |
|         if (prompt_tokens.size() >= (size_t)params.n_ctx) {
 | |
|             const int n_left = (params.n_ctx - params.n_keep) / 2;
 | |
|             std::vector<llama_token> new_tokens(prompt_tokens.begin(), prompt_tokens.begin() + params.n_keep);
 | |
|             const int erased_blocks = (prompt_tokens.size() - params.n_keep - n_left - 1) / n_left;
 | |
|             new_tokens.insert(new_tokens.end(), prompt_tokens.begin() + params.n_keep + erased_blocks * n_left, prompt_tokens.end());
 | |
|             std::copy(prompt_tokens.end() - params.n_ctx, prompt_tokens.end(), last_n_tokens.begin());
 | |
| 
 | |
|             LOG_VERBOSE("input truncated", {
 | |
|                 { "n_ctx", params.n_ctx },
 | |
|                 { "n_keep", params.n_keep },
 | |
|                 { "n_left", n_left },
 | |
|                 { "new_tokens", tokens_to_str(ctx, new_tokens.cbegin(), new_tokens.cend()) },
 | |
|             });
 | |
| 
 | |
|             truncated = true;
 | |
|             prompt_tokens = new_tokens;
 | |
|         } else {
 | |
|             const size_t ps = prompt_tokens.size();
 | |
|             std::fill(last_n_tokens.begin(), last_n_tokens.end() - ps, 0);
 | |
|             std::copy(prompt_tokens.begin(), prompt_tokens.end(), last_n_tokens.end() - ps);
 | |
|         }
 | |
| 
 | |
|         // compare the evaluated prompt with the new prompt
 | |
|         n_past = common_part(embd, prompt_tokens);
 | |
|         embd = prompt_tokens;
 | |
|         if (n_past == prompt_tokens.size()) {
 | |
|             // we have to evaluate at least 1 token to generate logits.
 | |
|             n_past--;
 | |
|         }
 | |
| 
 | |
|         LOG_VERBOSE("prompt ingested", {
 | |
|             { "n_past", n_past },
 | |
|             { "cached", tokens_to_str(ctx, embd.cbegin(), embd.cbegin() + n_past) },
 | |
|             { "to_eval", tokens_to_str(ctx, embd.cbegin() + n_past, embd.cend()) },
 | |
|         });
 | |
| 
 | |
|         has_next_token = true;
 | |
|     }
 | |
| 
 | |
|     void beginCompletion() {
 | |
|         // number of tokens to keep when resetting context
 | |
|         n_remain = params.n_predict;
 | |
|         llama_set_rng_seed(ctx, params.seed);
 | |
|     }
 | |
| 
 | |
|     completion_token_output nextToken() {
 | |
|         completion_token_output result;
 | |
|         result.tok = -1;
 | |
| 
 | |
|         if (embd.size() >= (size_t)params.n_ctx) {
 | |
|             // Reset context
 | |
|             const int n_left = (params.n_ctx - params.n_keep) / 2;
 | |
| 
 | |
|             std::vector<llama_token> new_tokens(embd.begin(), embd.begin() + params.n_keep);
 | |
|             new_tokens.insert(new_tokens.end(), embd.end() - n_left, embd.end());
 | |
|             embd = new_tokens;
 | |
|             n_past = params.n_keep;
 | |
|             truncated = true;
 | |
|             LOG_VERBOSE("input truncated", {
 | |
|                 { "n_ctx", params.n_ctx },
 | |
|                 { "n_keep", params.n_keep },
 | |
|                 { "n_left", n_left },
 | |
|                 { "new_tokens", tokens_to_str(ctx, new_tokens.cbegin(), new_tokens.cend()) },
 | |
|             });
 | |
|         }
 | |
| 
 | |
|         while (n_past < embd.size()) {
 | |
|             int n_eval = (int)embd.size() - n_past;
 | |
|             if (n_eval > params.n_batch) {
 | |
|                 n_eval = params.n_batch;
 | |
|             }
 | |
|             if (llama_eval(ctx, &embd[n_past], n_eval, n_past, params.n_threads)) {
 | |
|                 LOG_ERROR("failed to eval", {
 | |
|                     { "n_eval", n_eval },
 | |
|                     { "n_past", n_past },
 | |
|                     { "n_threads", params.n_threads },
 | |
|                     { "embd", tokens_to_str(ctx, embd.cbegin() + n_past, embd.cend()) },
 | |
|                 });
 | |
|                 has_next_token = false;
 | |
|                 return result;
 | |
|             }
 | |
|             n_past += n_eval;
 | |
|         }
 | |
| 
 | |
|         if (params.n_predict == 0) {
 | |
|             has_next_token = false;
 | |
|             result.tok = llama_token_eos();
 | |
|             return result;
 | |
|         }
 | |
| 
 | |
|         // out of user input, sample next token
 | |
|         const float temp = params.temp;
 | |
|         const int32_t top_k = params.top_k <= 0 ? llama_n_vocab(ctx) : params.top_k;
 | |
|         const float top_p = params.top_p;
 | |
|         const float tfs_z = params.tfs_z;
 | |
|         const float typical_p = params.typical_p;
 | |
|         const int32_t repeat_last_n = params.repeat_last_n < 0 ? params.n_ctx : params.repeat_last_n;
 | |
|         const float repeat_penalty = params.repeat_penalty;
 | |
|         const float alpha_presence = params.presence_penalty;
 | |
|         const float alpha_frequency = params.frequency_penalty;
 | |
|         const int mirostat = params.mirostat;
 | |
|         const float mirostat_tau = params.mirostat_tau;
 | |
|         const float mirostat_eta = params.mirostat_eta;
 | |
|         const bool penalize_nl = params.penalize_nl;
 | |
|         const int32_t n_probs = params.n_probs;
 | |
| 
 | |
|         {
 | |
|             auto * logits = llama_get_logits(ctx);
 | |
|             auto n_vocab = llama_n_vocab(ctx);
 | |
| 
 | |
|             // Apply params.logit_bias map
 | |
|             for (const auto & it : params.logit_bias) {
 | |
|                 logits[it.first] += it.second;
 | |
|             }
 | |
| 
 | |
|             std::vector<llama_token_data> candidates;
 | |
|             candidates.reserve(n_vocab);
 | |
|             for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
 | |
|                 candidates.emplace_back(llama_token_data{ token_id, logits[token_id], 0.0f });
 | |
|             }
 | |
| 
 | |
|             llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
 | |
| 
 | |
|             // Apply penalties
 | |
|             float nl_logit = logits[llama_token_nl()];
 | |
|             auto last_n_repeat = std::min(std::min((int)last_n_tokens.size(), repeat_last_n), params.n_ctx);
 | |
|             llama_sample_repetition_penalty(ctx, &candidates_p,
 | |
|                 last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
 | |
|                 last_n_repeat, repeat_penalty);
 | |
|             llama_sample_frequency_and_presence_penalties(ctx, &candidates_p,
 | |
|                 last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
 | |
|                 last_n_repeat, alpha_frequency, alpha_presence);
 | |
|             if (!penalize_nl) {
 | |
|                 logits[llama_token_nl()] = nl_logit;
 | |
|             }
 | |
| 
 | |
|             if (temp <= 0) {
 | |
|                 // Greedy sampling
 | |
|                 result.tok = llama_sample_token_greedy(ctx, &candidates_p);
 | |
|                 if (n_probs > 0) {
 | |
|                     llama_sample_softmax(ctx, &candidates_p);
 | |
|                 }
 | |
|             } else {
 | |
|                 if (mirostat == 1) {
 | |
|                     static float mirostat_mu = 2.0f * mirostat_tau;
 | |
|                     const int mirostat_m = 100;
 | |
|                     llama_sample_temperature(ctx, &candidates_p, temp);
 | |
|                     result.tok = llama_sample_token_mirostat(ctx, &candidates_p, mirostat_tau, mirostat_eta, mirostat_m, &mirostat_mu);
 | |
|                 } else if (mirostat == 2) {
 | |
|                     static float mirostat_mu = 2.0f * mirostat_tau;
 | |
|                     llama_sample_temperature(ctx, &candidates_p, temp);
 | |
|                     result.tok = llama_sample_token_mirostat_v2(ctx, &candidates_p, mirostat_tau, mirostat_eta, &mirostat_mu);
 | |
|                 } else {
 | |
|                     // Temperature sampling
 | |
|                     size_t min_keep = std::max(1, n_probs);
 | |
|                     llama_sample_top_k(ctx, &candidates_p, top_k, min_keep);
 | |
|                     llama_sample_tail_free(ctx, &candidates_p, tfs_z, min_keep);
 | |
|                     llama_sample_typical(ctx, &candidates_p, typical_p, min_keep);
 | |
|                     llama_sample_top_p(ctx, &candidates_p, top_p, min_keep);
 | |
|                     llama_sample_temperature(ctx, &candidates_p, temp);
 | |
|                     result.tok = llama_sample_token(ctx, &candidates_p);
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             for (size_t i = 0; i < std::min(candidates_p.size, (size_t) n_probs); ++i) {
 | |
|                 result.probs.push_back({candidates_p.data[i].id, candidates_p.data[i].p});
 | |
|             }
 | |
|             last_n_tokens.erase(last_n_tokens.begin());
 | |
|             last_n_tokens.push_back(result.tok);
 | |
|             num_tokens_predicted++;
 | |
|         }
 | |
| 
 | |
|         // add it to the context
 | |
|         embd.push_back(result.tok);
 | |
|         // decrement remaining sampling budget
 | |
|         --n_remain;
 | |
| 
 | |
|         if (!embd.empty() && embd.back() == llama_token_eos()) {
 | |
|             //stopping_word = llama_token_to_str(ctx, embd.back());
 | |
|             has_next_token = false;
 | |
|             stopped_eos = true;
 | |
|             LOG_VERBOSE("eos token found", {});
 | |
|             return result;
 | |
|         }
 | |
| 
 | |
|         has_next_token = params.n_predict == -1 || n_remain != 0;
 | |
|         return result;
 | |
|     }
 | |
| 
 | |
|     size_t findStoppingStrings(const std::string & text, const size_t last_token_size,
 | |
|                                const stop_type type) {
 | |
|         size_t stop_pos = std::string::npos;
 | |
|         for (const std::string & word : params.antiprompt) {
 | |
|             size_t pos;
 | |
|             if (type == STOP_FULL) {
 | |
|                 const size_t tmp = word.size() + last_token_size;
 | |
|                 const size_t from_pos = text.size() > tmp ? text.size() - tmp : 0;
 | |
|                 pos = text.find(word, from_pos);
 | |
|             }
 | |
|             else {
 | |
|                 pos = find_partial_stop_string(word, text);
 | |
|             }
 | |
|             if (pos != std::string::npos &&
 | |
|                 (stop_pos == std::string::npos || pos < stop_pos)) {
 | |
|                 if (type == STOP_FULL) {
 | |
|                     stopping_word = word;
 | |
|                     stopped_word = true;
 | |
|                     has_next_token = false;
 | |
|                 }
 | |
|                 stop_pos = pos;
 | |
|             }
 | |
|         }
 | |
|         return stop_pos;
 | |
|     }
 | |
| 
 | |
|     completion_token_output doCompletion() {
 | |
|         const completion_token_output token_with_probs = nextToken();
 | |
| 
 | |
|         const std::string token_text = token_with_probs.tok == -1 ? "" : llama_token_to_str(ctx, token_with_probs.tok);
 | |
|         generated_text += token_text;
 | |
| 
 | |
|         if (params.n_probs > 0) {
 | |
|             generated_token_probs.push_back(token_with_probs);
 | |
|         }
 | |
| 
 | |
|         if (multibyte_pending > 0) {
 | |
|             multibyte_pending -= token_text.size();
 | |
|         } else if (token_text.size() == 1) {
 | |
|             const char c = token_text[0];
 | |
|             // 2-byte characters: 110xxxxx 10xxxxxx
 | |
|             if ((c & 0xE0) == 0xC0) {
 | |
|                 multibyte_pending = 1;
 | |
|             // 3-byte characters: 1110xxxx 10xxxxxx 10xxxxxx
 | |
|             } else if ((c & 0xF0) == 0xE0) {
 | |
|                 multibyte_pending = 2;
 | |
|             // 4-byte characters: 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx
 | |
|             } else if ((c & 0xF8) == 0xF0) {
 | |
|                 multibyte_pending = 3;
 | |
|             } else {
 | |
|                 multibyte_pending = 0;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         if (multibyte_pending > 0 && !has_next_token) {
 | |
|             has_next_token = true;
 | |
|             n_remain++;
 | |
|         }
 | |
| 
 | |
|         if (!has_next_token && n_remain == 0) {
 | |
|             stopped_limit = true;
 | |
|         }
 | |
| 
 | |
|         LOG_VERBOSE("next token", {
 | |
|             { "token", token_with_probs.tok },
 | |
|             { "token_text", tokens_to_output_formatted_string(ctx, token_with_probs.tok) },
 | |
|             { "has_next_token", has_next_token },
 | |
|             { "n_remain", n_remain },
 | |
|             { "num_tokens_predicted", num_tokens_predicted },
 | |
|             { "stopped_eos", stopped_eos },
 | |
|             { "stopped_word", stopped_word },
 | |
|             { "stopped_limit", stopped_limit },
 | |
|             { "stopping_word", stopping_word },
 | |
|         });
 | |
| 
 | |
|         return token_with_probs;
 | |
|     }
 | |
| 
 | |
|     std::vector<float> getEmbedding() {
 | |
|         static const int n_embd = llama_n_embd(ctx);
 | |
|         if (!params.embedding) {
 | |
|             LOG_WARNING("embedding disabled", {
 | |
|                 { "params.embedding", params.embedding },
 | |
|             });
 | |
|             return std::vector<float>(n_embd, 0.0f);
 | |
|         }
 | |
|         const float * data = llama_get_embeddings(ctx);
 | |
|         std::vector<float> embedding(data, data + n_embd);
 | |
|         return embedding;
 | |
|     }
 | |
| };
 | |
| 
 | |
| static void server_print_usage(const char * argv0, const gpt_params & params,
 | |
|                                const server_params & sparams) {
 | |
|     fprintf(stderr, "usage: %s [options]\n", argv0);
 | |
|     fprintf(stderr, "\n");
 | |
|     fprintf(stderr, "options:\n");
 | |
|     fprintf(stderr, "  -h, --help            show this help message and exit\n");
 | |
|     fprintf(stderr, "  -v, --verbose         verbose output (default: %s)\n", server_verbose ? "enabled" : "disabled");
 | |
|     fprintf(stderr, "  -t N, --threads N     number of threads to use during computation (default: %d)\n", params.n_threads);
 | |
|     fprintf(stderr, "  -c N, --ctx-size N    size of the prompt context (default: %d)\n", params.n_ctx);
 | |
|     fprintf(stderr, "  -b N, --batch-size N  batch size for prompt processing (default: %d)\n", params.n_batch);
 | |
|     fprintf(stderr, "  --memory-f32          use f32 instead of f16 for memory key+value (default: disabled)\n");
 | |
|     fprintf(stderr, "                        not recommended: doubles context memory required and no measurable increase in quality\n");
 | |
|     if (llama_mlock_supported()) {
 | |
|         fprintf(stderr, "  --mlock               force system to keep model in RAM rather than swapping or compressing\n");
 | |
|     }
 | |
|     if (llama_mmap_supported()) {
 | |
|         fprintf(stderr, "  --no-mmap             do not memory-map model (slower load but may reduce pageouts if not using mlock)\n");
 | |
|     }
 | |
| #ifdef LLAMA_SUPPORTS_GPU_OFFLOAD
 | |
|     fprintf(stderr, "  -ngl N, --n-gpu-layers N\n");
 | |
|     fprintf(stderr, "                        number of layers to store in VRAM\n");
 | |
|     fprintf(stderr, "  -ts SPLIT --tensor-split SPLIT\n");
 | |
|     fprintf(stderr, "                        how to split tensors across multiple GPUs, comma-separated list of proportions, e.g. 3,1\n");
 | |
|     fprintf(stderr, "                        how to split tensors across multiple GPUs, comma-separated list of proportions, e.g. 3,1\n");
 | |
|     fprintf(stderr, "  -mg i, --main-gpu i   the GPU to use for scratch and small tensors\n");
 | |
|     fprintf(stderr, "  -lv, --low-vram don't allocate VRAM scratch buffer\n");
 | |
| #endif
 | |
|     fprintf(stderr, "  -m FNAME, --model FNAME\n");
 | |
|     fprintf(stderr, "                        model path (default: %s)\n", params.model.c_str());
 | |
|     fprintf(stderr, "  -a ALIAS, --alias ALIAS\n");
 | |
|     fprintf(stderr, "                        set an alias for the model, will be added as `model` field in completion response\n");
 | |
|     fprintf(stderr, "  --lora FNAME          apply LoRA adapter (implies --no-mmap)\n");
 | |
|     fprintf(stderr, "  --lora-base FNAME     optional model to use as a base for the layers modified by the LoRA adapter\n");
 | |
|     fprintf(stderr, "  --host                ip address to listen (default  (default: %s)\n", sparams.hostname.c_str());
 | |
|     fprintf(stderr, "  --port PORT           port to listen (default  (default: %d)\n", sparams.port);
 | |
|     fprintf(stderr, "  --path PUBLIC_PATH    path from which to serve static files (default %s)\n", sparams.public_path.c_str());
 | |
|     fprintf(stderr, "  -to N, --timeout N    server read/write timeout in seconds (default: %d)\n", sparams.read_timeout);
 | |
|     fprintf(stderr, "  --embedding           enable embedding vector output (default: %s)\n", params.embedding ? "enabled" : "disabled");
 | |
|     fprintf(stderr, "\n");
 | |
| }
 | |
| 
 | |
| static void server_params_parse(int argc, char ** argv, server_params & sparams,
 | |
|                                 gpt_params & params) {
 | |
|     gpt_params default_params;
 | |
|     server_params default_sparams;
 | |
|     std::string arg;
 | |
|     bool invalid_param = false;
 | |
| 
 | |
|     for (int i = 1; i < argc; i++) {
 | |
|         arg = argv[i];
 | |
|         if (arg == "--port") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             sparams.port = std::stoi(argv[i]);
 | |
|         } else if (arg == "--host") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             sparams.hostname = argv[i];
 | |
|         } else if (arg == "--path") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             sparams.public_path = argv[i];
 | |
|         } else if (arg == "--timeout" || arg == "-to") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             sparams.read_timeout = std::stoi(argv[i]);
 | |
|             sparams.write_timeout = std::stoi(argv[i]);
 | |
|         } else if (arg == "-m" || arg == "--model") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             params.model = argv[i];
 | |
|         } else if (arg == "-a" || arg == "--alias") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             params.model_alias = argv[i];
 | |
|         } else if (arg == "-h" || arg == "--help") {
 | |
|             server_print_usage(argv[0], default_params, default_sparams);
 | |
|             exit(0);
 | |
|         } else if (arg == "-c" || arg == "--ctx-size" || arg == "--ctx_size") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             params.n_ctx = std::stoi(argv[i]);
 | |
|         } else if (arg == "--memory-f32" || arg == "--memory_f32") {
 | |
|             params.memory_f16 = false;
 | |
|         } else if (arg == "--threads" || arg == "-t") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             params.n_threads = std::stoi(argv[i]);
 | |
|         } else if (arg == "-b" || arg == "--batch-size") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             params.n_batch = std::stoi(argv[i]);
 | |
|             params.n_batch = std::min(512, params.n_batch);
 | |
|         } else if (arg == "--gpu-layers" || arg == "-ngl" || arg == "--n-gpu-layers") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
| #ifdef LLAMA_SUPPORTS_GPU_OFFLOAD
 | |
|             params.n_gpu_layers = std::stoi(argv[i]);
 | |
| #else
 | |
|             LOG_WARNING("Not compiled with GPU offload support, --n-gpu-layers option will be ignored. "
 | |
|                         "See main README.md for information on enabling GPU BLAS support", { { "n_gpu_layers", params.n_gpu_layers } });
 | |
| #endif
 | |
|         }
 | |
|         else if (arg == "--tensor-split" || arg == "-ts") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
| #ifdef GGML_USE_CUBLAS
 | |
|             std::string arg_next = argv[i];
 | |
| 
 | |
|             // split string by , and /
 | |
|             const std::regex regex{ R"([,/]+)" };
 | |
|             std::sregex_token_iterator it{ arg_next.begin(), arg_next.end(), regex, -1 };
 | |
|             std::vector<std::string> split_arg{ it, {} };
 | |
|             GGML_ASSERT(split_arg.size() <= LLAMA_MAX_DEVICES);
 | |
| 
 | |
|             for (size_t i_device = 0; i_device < LLAMA_MAX_DEVICES; ++i_device) {
 | |
|                 if (i_device < split_arg.size()) {
 | |
|                     params.tensor_split[i_device] = std::stof(split_arg[i_device]);
 | |
|                 }
 | |
|                 else {
 | |
|                     params.tensor_split[i_device] = 0.0f;
 | |
|                 }
 | |
|             }
 | |
| #else
 | |
|             LOG_WARNING("llama.cpp was compiled without cuBLAS. It is not possible to set a tensor split.", {});
 | |
| #endif // GGML_USE_CUBLAS
 | |
|         }
 | |
|         else if (arg == "--low-vram" || arg == "-lv")
 | |
|         {
 | |
| #ifdef GGML_USE_CUBLAS
 | |
|             params.low_vram = true;
 | |
| #else
 | |
|             fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS. It is not possible to set lower vram usage.\n");
 | |
| #endif // GGML_USE_CUBLAS
 | |
|         }
 | |
|         else if (arg == "--main-gpu" || arg == "-mg") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
| #ifdef GGML_USE_CUBLAS
 | |
|             params.main_gpu = std::stoi(argv[i]);
 | |
| #else
 | |
|             LOG_WARNING("llama.cpp was compiled without cuBLAS. It is not possible to set a main GPU.", {});
 | |
| #endif
 | |
|         } else if (arg == "--lora") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             params.lora_adapter = argv[i];
 | |
|             params.use_mmap = false;
 | |
|         } else if (arg == "--lora-base") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             params.lora_base = argv[i];
 | |
|         } else if (arg == "-v" || arg == "--verbose") {
 | |
| #if SERVER_VERBOSE != 1
 | |
|             LOG_WARNING("server.cpp is not built with verbose logging.", {});
 | |
| #else
 | |
|             server_verbose = true;
 | |
| #endif
 | |
|         } else if (arg == "--mlock") {
 | |
|             params.use_mlock = true;
 | |
|         } else if (arg == "--no-mmap") {
 | |
|             params.use_mmap = false;
 | |
|         } else if (arg == "--embedding") {
 | |
|             params.embedding = true;
 | |
|         } else {
 | |
|             fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
 | |
|             server_print_usage(argv[0], default_params, default_sparams);
 | |
|             exit(1);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (invalid_param) {
 | |
|         fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
 | |
|         server_print_usage(argv[0], default_params, default_sparams);
 | |
|         exit(1);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static json format_generation_settings(llama_server_context & llama) {
 | |
|     const auto eos_bias = llama.params.logit_bias.find(llama_token_eos());
 | |
|     const bool ignore_eos = eos_bias != llama.params.logit_bias.end() &&
 | |
|         eos_bias->second < 0.0f && std::isinf(eos_bias->second);
 | |
| 
 | |
|     return json {
 | |
|         { "n_ctx", llama.params.n_ctx },
 | |
|         { "model", llama.params.model_alias },
 | |
|         { "seed", llama.params.seed },
 | |
|         { "temp", llama.params.temp },
 | |
|         { "top_k", llama.params.top_k },
 | |
|         { "top_p", llama.params.top_p },
 | |
|         { "tfs_z", llama.params.tfs_z },
 | |
|         { "typical_p", llama.params.typical_p },
 | |
|         { "repeat_last_n", llama.params.repeat_last_n },
 | |
|         { "repeat_penalty", llama.params.repeat_penalty },
 | |
|         { "presence_penalty", llama.params.presence_penalty },
 | |
|         { "frequency_penalty", llama.params.frequency_penalty },
 | |
|         { "mirostat", llama.params.mirostat },
 | |
|         { "mirostat_tau", llama.params.mirostat_tau },
 | |
|         { "mirostat_eta", llama.params.mirostat_eta },
 | |
|         { "penalize_nl", llama.params.penalize_nl },
 | |
|         { "stop", llama.params.antiprompt },
 | |
|         { "n_predict", llama.params.n_predict },
 | |
|         { "n_keep", llama.params.n_keep },
 | |
|         { "ignore_eos", ignore_eos },
 | |
|         { "stream", llama.stream },
 | |
|         { "logit_bias", llama.params.logit_bias },
 | |
|         { "n_probs", llama.params.n_probs },
 | |
|     };
 | |
| }
 | |
| 
 | |
| static json format_embedding_response(llama_server_context & llama) {
 | |
|     return json {
 | |
|         { "embedding", llama.getEmbedding() },
 | |
|     };
 | |
| }
 | |
| 
 | |
| static json format_timings(llama_server_context & llama) {
 | |
|     const auto timings = llama_get_timings(llama.ctx);
 | |
| 
 | |
|     assert(timings.n_eval == llama.num_tokens_predicted);
 | |
| 
 | |
|     return json {
 | |
|             { "prompt_n", timings.n_eval },
 | |
|             { "prompt_ms", timings.prompt_eval_time_ms },
 | |
|             { "prompt_per_token_ms", timings.prompt_eval_time_ms / timings.n_p_eval },
 | |
|             { "prompt_per_second", 1e3 / timings.prompt_eval_time_ms * timings.n_p_eval },
 | |
| 
 | |
|             { "predicted_n", timings.n_eval },
 | |
|             { "predicted_ms", timings.eval_time_ms },
 | |
|             { "predicted_per_token_ms", timings.eval_time_ms / timings.n_eval },
 | |
|             { "predicted_per_second", 1e3 / timings.eval_time_ms * timings.n_eval },
 | |
|     };
 | |
| }
 | |
| 
 | |
| static json format_final_response(llama_server_context & llama, const std::string & content, const std::vector<completion_token_output> & probs) {
 | |
| 
 | |
|     json res = json {
 | |
|         { "content", content },
 | |
|         { "stop", true },
 | |
|         { "generation_settings", format_generation_settings(llama) },
 | |
|         { "prompt", llama.params.prompt },
 | |
|         { "truncated", llama.truncated },
 | |
|         { "stopped_eos", llama.stopped_eos },
 | |
|         { "stopped_word", llama.stopped_word },
 | |
|         { "stopped_limit", llama.stopped_limit },
 | |
|         { "stopping_word", llama.stopping_word },
 | |
|         { "tokens_cached", llama.n_past },
 | |
|         { "tokens_predicted", llama.num_tokens_predicted },
 | |
|         { "timings", format_timings(llama) },
 | |
|     };
 | |
| 
 | |
|     if (llama.params.n_probs > 0) {
 | |
|         res["completion_probabilities"] = probs_vector_to_json(llama.ctx, probs);
 | |
|     }
 | |
| 
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| static json format_partial_response(llama_server_context & llama, const std::string & content, const std::vector<completion_token_output> & probs) {
 | |
|     json res = json {
 | |
|         { "content", content },
 | |
|         { "stop", false },
 | |
|     };
 | |
| 
 | |
|     if (llama.params.n_probs > 0) {
 | |
|         res["completion_probabilities"] = probs_vector_to_json(llama.ctx, probs);
 | |
|     }
 | |
| 
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| static json format_tokenizer_response(const std::vector<llama_token> & tokens) {
 | |
|     return json {
 | |
|         { "tokens", tokens }
 | |
|     };
 | |
| }
 | |
| 
 | |
| static void parse_options_completion(const json & body, llama_server_context & llama) {
 | |
|     gpt_params default_params;
 | |
| 
 | |
|     llama.stream = body.value("stream", false);
 | |
|     llama.params.n_predict = body.value("n_predict", default_params.n_predict);
 | |
|     llama.params.top_k = body.value("top_k", default_params.top_k);
 | |
|     llama.params.top_p = body.value("top_p", default_params.top_p);
 | |
|     llama.params.tfs_z = body.value("tfs_z", default_params.tfs_z);
 | |
|     llama.params.typical_p = body.value("typical_p", default_params.typical_p);
 | |
|     llama.params.repeat_last_n = body.value("repeat_last_n", default_params.repeat_last_n);
 | |
|     llama.params.temp = body.value("temperature", default_params.temp);
 | |
|     llama.params.repeat_penalty = body.value("repeat_penalty", default_params.repeat_penalty);
 | |
|     llama.params.presence_penalty = body.value("presence_penalty", default_params.presence_penalty);
 | |
|     llama.params.frequency_penalty = body.value("frequency_penalty", default_params.frequency_penalty);
 | |
|     llama.params.mirostat = body.value("mirostat", default_params.mirostat);
 | |
|     llama.params.mirostat_tau = body.value("mirostat_tau", default_params.mirostat_tau);
 | |
|     llama.params.mirostat_eta = body.value("mirostat_eta", default_params.mirostat_eta);
 | |
|     llama.params.penalize_nl = body.value("penalize_nl", default_params.penalize_nl);
 | |
|     llama.params.n_keep = body.value("n_keep", default_params.n_keep);
 | |
|     llama.params.seed = body.value("seed", default_params.seed);
 | |
|     llama.params.prompt = body.value("prompt", default_params.prompt);
 | |
|     llama.params.n_probs = body.value("n_probs", default_params.n_probs);
 | |
| 
 | |
|     llama.params.logit_bias.clear();
 | |
|     if (body.value("ignore_eos", false)) {
 | |
|         llama.params.logit_bias[llama_token_eos()] = -INFINITY;
 | |
|     }
 | |
| 
 | |
|     const auto & logit_bias = body.find("logit_bias");
 | |
|     if (logit_bias != body.end() && logit_bias->is_array()) {
 | |
|         const int n_vocab = llama_n_vocab(llama.ctx);
 | |
|         for (const auto & el : *logit_bias) {
 | |
|             if (el.is_array() && el.size() == 2 && el[0].is_number_integer()) {
 | |
|                 llama_token tok = el[0].get<llama_token>();
 | |
|                 if (tok >= 0 && tok < n_vocab) {
 | |
|                     if (el[1].is_number()) {
 | |
|                         llama.params.logit_bias[tok] = el[1].get<float>();
 | |
|                     } else if (el[1].is_boolean() && !el[1].get<bool>()) {
 | |
|                         llama.params.logit_bias[tok] = -INFINITY;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     llama.params.antiprompt.clear();
 | |
|     const auto & stop = body.find("stop");
 | |
|     if (stop != body.end() && stop->is_array()) {
 | |
|         for (const auto & word : *stop) {
 | |
|             if (!word.empty()) {
 | |
|                 llama.params.antiprompt.push_back(word);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     LOG_VERBOSE("completion parameters parsed", format_generation_settings(llama));
 | |
| }
 | |
| 
 | |
| 
 | |
| static void log_server_request(const Request & req, const Response & res) {
 | |
|     LOG_INFO("request", {
 | |
|         { "remote_addr", req.remote_addr },
 | |
|         { "remote_port", req.remote_port },
 | |
|         { "status", res.status },
 | |
|         { "method", req.method },
 | |
|         { "path", req.path },
 | |
|         { "params", req.params },
 | |
|     });
 | |
| 
 | |
|     LOG_VERBOSE("request", {
 | |
|         { "request", req.body },
 | |
|         { "response", res.body },
 | |
|     });
 | |
| }
 | |
| 
 | |
| 
 | |
| int main(int argc, char ** argv) {
 | |
|     // own arguments required by this example
 | |
|     gpt_params params;
 | |
|     server_params sparams;
 | |
| 
 | |
|     // struct that contains llama context and inference
 | |
|     llama_server_context llama;
 | |
| 
 | |
|     server_params_parse(argc, argv, sparams, params);
 | |
| 
 | |
|     if (params.model_alias == "unknown") {
 | |
|         params.model_alias = params.model;
 | |
|     }
 | |
| 
 | |
|     llama_init_backend(params.numa);
 | |
| 
 | |
|     LOG_INFO("build info", {
 | |
|         { "build", BUILD_NUMBER },
 | |
|         { "commit", BUILD_COMMIT }
 | |
|     });
 | |
|     LOG_INFO("system info", {
 | |
|         { "n_threads", params.n_threads },
 | |
|         { "total_threads", std::thread::hardware_concurrency() },
 | |
|         { "system_info", llama_print_system_info() },
 | |
|     });
 | |
| 
 | |
|     // load the model
 | |
|     if (!llama.loadModel(params)) {
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     Server svr;
 | |
| 
 | |
|     svr.set_default_headers({
 | |
|         { "Server", "llama.cpp" },
 | |
|         { "Access-Control-Allow-Origin", "*" },
 | |
|         { "Access-Control-Allow-Headers", "content-type" }
 | |
|     });
 | |
| 
 | |
|     // this is only called if no index.html is found in the public --path
 | |
|     svr.Get("/", [](const Request &, Response & res) {
 | |
|         res.set_content(reinterpret_cast<const char*>(&index_html), index_html_len, "text/html");
 | |
|         return false;
 | |
|     });
 | |
| 
 | |
|     // this is only called if no index.js is found in the public --path
 | |
|     svr.Get("/index.js", [](const Request &, Response & res) {
 | |
|         res.set_content(reinterpret_cast<const char *>(&index_js), index_js_len, "text/javascript");
 | |
|         return false;
 | |
|     });
 | |
| 
 | |
|     // this is only called if no index.html is found in the public --path
 | |
|     svr.Get("/completion.js", [](const Request &, Response & res) {
 | |
|         res.set_content(reinterpret_cast<const char*>(&completion_js), completion_js_len, "application/javascript");
 | |
|         return false;
 | |
|     });
 | |
| 
 | |
|     svr.Post("/completion", [&llama](const Request & req, Response & res) {
 | |
|         auto lock = llama.lock();
 | |
| 
 | |
|         llama.rewind();
 | |
| 
 | |
|         llama_reset_timings(llama.ctx);
 | |
| 
 | |
|         parse_options_completion(json::parse(req.body), llama);
 | |
| 
 | |
|         llama.loadPrompt();
 | |
|         llama.beginCompletion();
 | |
| 
 | |
|         if (!llama.stream) {
 | |
|             size_t stop_pos = std::string::npos;
 | |
| 
 | |
|             while (llama.has_next_token) {
 | |
|                 const completion_token_output token_with_probs = llama.doCompletion();
 | |
|                 const std::string token_text = token_with_probs.tok == -1 ? "" : llama_token_to_str(llama.ctx, token_with_probs.tok);
 | |
| 
 | |
|                 stop_pos = llama.findStoppingStrings(llama.generated_text,
 | |
|                     token_text.size(), STOP_FULL);
 | |
|             }
 | |
| 
 | |
|             if (stop_pos == std::string::npos) {
 | |
|                 stop_pos = llama.findStoppingStrings(llama.generated_text, 0, STOP_PARTIAL);
 | |
|             }
 | |
|             if (stop_pos != std::string::npos) {
 | |
|                 llama.generated_text.erase(llama.generated_text.begin() + stop_pos,
 | |
|                     llama.generated_text.end());
 | |
|             }
 | |
| 
 | |
|             const json data = format_final_response(llama, llama.generated_text, llama.generated_token_probs);
 | |
| 
 | |
|             llama_print_timings(llama.ctx);
 | |
| 
 | |
|             res.set_content(data.dump(-1, ' ', false, json::error_handler_t::replace),
 | |
|                             "application/json");
 | |
|         } else {
 | |
|             const auto chunked_content_provider = [&](size_t, DataSink & sink) {
 | |
|                 size_t sent_count = 0;
 | |
|                 size_t sent_token_probs_index = 0;
 | |
| 
 | |
|                 while (llama.has_next_token) {
 | |
|                     const completion_token_output token_with_probs = llama.doCompletion();
 | |
|                     const std::string token_text = token_with_probs.tok == -1 ? "" : llama_token_to_str(llama.ctx, token_with_probs.tok);
 | |
|                     if (llama.multibyte_pending > 0) {
 | |
|                         continue;
 | |
|                     }
 | |
| 
 | |
|                     size_t pos = std::min(sent_count, llama.generated_text.size());
 | |
| 
 | |
|                     const std::string str_test = llama.generated_text.substr(pos);
 | |
|                     size_t stop_pos =
 | |
|                         llama.findStoppingStrings(str_test, token_text.size(), STOP_FULL);
 | |
|                     if (stop_pos != std::string::npos) {
 | |
|                         llama.generated_text.erase(
 | |
|                             llama.generated_text.begin() + pos + stop_pos,
 | |
|                             llama.generated_text.end());
 | |
|                         pos = std::min(sent_count, llama.generated_text.size());
 | |
|                     } else {
 | |
|                         stop_pos = llama.findStoppingStrings(str_test, token_text.size(),
 | |
|                             STOP_PARTIAL);
 | |
|                     }
 | |
| 
 | |
|                     const std::string to_send = llama.generated_text.substr(pos, stop_pos);
 | |
|                     sent_count += to_send.size();
 | |
| 
 | |
|                     std::vector<completion_token_output> probs_output = {};
 | |
| 
 | |
|                     if (llama.params.n_probs > 0) {
 | |
|                         const std::vector<llama_token> to_send_toks = llama_tokenize(llama.ctx, to_send, false);
 | |
|                         size_t probs_pos = std::min(sent_token_probs_index, llama.generated_token_probs.size());
 | |
|                         size_t probs_stop_pos = std::min(sent_token_probs_index + to_send_toks.size(), llama.generated_token_probs.size());
 | |
|                         if (probs_pos < probs_stop_pos) {
 | |
|                             probs_output = std::vector<completion_token_output>(llama.generated_token_probs.begin() + probs_pos, llama.generated_token_probs.begin() + probs_stop_pos);
 | |
|                         }
 | |
|                         sent_token_probs_index = probs_stop_pos;
 | |
|                     }
 | |
| 
 | |
|                     const json data = llama.has_next_token
 | |
|                                           ? format_partial_response(llama, to_send, probs_output)
 | |
|                                           // Generation is done, send extra information.
 | |
|                                           : format_final_response(llama, to_send, llama.generated_token_probs);
 | |
| 
 | |
|                     const std::string str =
 | |
|                         "data: " +
 | |
|                         data.dump(-1, ' ', false, json::error_handler_t::replace) +
 | |
|                         "\n\n";
 | |
| 
 | |
|                     LOG_VERBOSE("data stream", {
 | |
|                         { "to_send", str }
 | |
|                     });
 | |
| 
 | |
|                     if (!sink.write(str.data(), str.size())) {
 | |
|                         LOG_VERBOSE("stream closed", {});
 | |
|                         llama_print_timings(llama.ctx);
 | |
|                         return false;
 | |
|                     }
 | |
|                 }
 | |
| 
 | |
|                 llama_print_timings(llama.ctx);
 | |
|                 sink.done();
 | |
|                 return true;
 | |
|             };
 | |
|             res.set_chunked_content_provider("text/event-stream", chunked_content_provider);
 | |
|         }
 | |
|     });
 | |
| 
 | |
|     svr.Get("/model.json", [&llama](const Request &, Response & res) {
 | |
|         const json data = format_generation_settings(llama);
 | |
|         return res.set_content(data.dump(), "application/json");
 | |
|     });
 | |
| 
 | |
|     svr.Options(R"(/.*)", [](const Request &, Response & res) {
 | |
|         return res.set_content("", "application/json");
 | |
|     });
 | |
| 
 | |
|     svr.Post("/tokenize", [&llama](const Request & req, Response & res) {
 | |
|         auto lock = llama.lock();
 | |
| 
 | |
|         const json body = json::parse(req.body);
 | |
|         const std::string content = body.value("content", "");
 | |
|         const std::vector<llama_token> tokens = llama_tokenize(llama.ctx, content, false);
 | |
|         const json data = format_tokenizer_response(tokens);
 | |
|         return res.set_content(data.dump(), "application/json");
 | |
|     });
 | |
| 
 | |
|     svr.Post("/embedding", [&llama](const Request & req, Response & res) {
 | |
|         auto lock = llama.lock();
 | |
| 
 | |
|         const json body = json::parse(req.body);
 | |
| 
 | |
|         llama.rewind();
 | |
|         llama_reset_timings(llama.ctx);
 | |
|         llama.params.prompt = body.value("content", "");
 | |
|         llama.params.n_predict = 0;
 | |
|         llama.loadPrompt();
 | |
|         llama.beginCompletion();
 | |
|         llama.doCompletion();
 | |
| 
 | |
|         const json data = format_embedding_response(llama);
 | |
|         return res.set_content(data.dump(), "application/json");
 | |
|     });
 | |
| 
 | |
|     svr.set_logger(log_server_request);
 | |
| 
 | |
|     svr.set_exception_handler([](const Request &, Response & res, std::exception_ptr ep) {
 | |
|         const auto * fmt = "500 Internal Server Error\n%s";
 | |
|         char buf[BUFSIZ];
 | |
|         try {
 | |
|             std::rethrow_exception(std::move(ep));
 | |
|         } catch (std::exception & e) {
 | |
|             snprintf(buf, sizeof(buf), fmt, e.what());
 | |
|         } catch (...) {
 | |
|             snprintf(buf, sizeof(buf), fmt, "Unknown Exception");
 | |
|         }
 | |
|         res.set_content(buf, "text/plain");
 | |
|         res.status = 500;
 | |
|     });
 | |
| 
 | |
|     svr.set_error_handler([](const Request &, Response & res) {
 | |
|         res.set_content("File Not Found", "text/plain");
 | |
|         res.status = 404;
 | |
|     });
 | |
| 
 | |
| 
 | |
|     // set timeouts and change hostname and port
 | |
|     svr.set_read_timeout(sparams.read_timeout);
 | |
|     svr.set_write_timeout(sparams.write_timeout);
 | |
| 
 | |
|     if (!svr.bind_to_port(sparams.hostname, sparams.port)) {
 | |
|         fprintf(stderr, "\ncouldn't bind to server socket: hostname=%s port=%d\n\n", sparams.hostname.c_str(), sparams.port);
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     // Set the base directory for serving static files
 | |
|     svr.set_base_dir(sparams.public_path);
 | |
| 
 | |
|     // to make it ctrl+clickable:
 | |
|     fprintf(stdout, "\nllama server listening at http://%s:%d\n\n", sparams.hostname.c_str(), sparams.port);
 | |
| 
 | |
|     LOG_INFO("HTTP server listening", {
 | |
|         { "hostname", sparams.hostname },
 | |
|         { "port", sparams.port },
 | |
|     });
 | |
| 
 | |
|     if (!svr.listen_after_bind()) {
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | 
