mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-31 08:51:55 +00:00 
			
		
		
		
	 ec893798b7
			
		
	
	ec893798b7
	
	
	
		
			
			* tests : verify that RoPE is "additive" * llama : replace ggml_diag_mask_inf with ggml_add (custom -inf mask) * ggml : ggml_rope now takes a vector with positions instead of n_past * metal : add rope_f16 kernel + optimize cpy kernels * llama : unified KV cache + batch inference API * llama : add new llama_decode() API that works with llama_batch * llama : add cell_max heuristic for more efficient kv_cache * llama : extend llama_kv_cache API * llama : more robust cell_max heuristic + wip shift * metal : disable concurrency optimization * llama : add llama_kv_cache_shift_seq + no more context swaps * llama : apply K-cache roping for Falcon and Baichuan * speculative : fix KV cache management * parallel : example for serving multiple users in parallel * parallel : disable hot-plug to avoid cache fragmentation * fixes : speculative KV cache + llama worst-case graph * llama : extend batch API to select which logits to output * llama : fix worst case graph build * ggml-cuda : update rope implementation for parallel decoding (#3254) * ggml-cuda : update rope implementation for parallel decoding * better solution for p0 computation * fix rope * simpler rope implementation --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * make : add parallel to build + fix static functions in llama.cpp * simple : fix token counting * parallel : various improvements * llama : fix cell_max logic + rename functions * parallel : try smaller batches when the KV cache is fragmented * parallel : fix sequence termination criteria * llama : silence errors KV cache errors * parallel : remove new line from prompt * parallel : process system prompt once + configurable paramters + llama API * parallel : remove question with short answers * parallel : count cache misses * parallel : print misses on each request * parallel : minor * llama : fix n_kv to never become 0 * parallel : rename hot-plug to continuous-batching * llama : improve llama_batch API + simplify parallel example * simple : add parallel decoding support * simple : improve comments + free batch * ggml-cuda : add rope f16, restore performance with parallel decoding (#3272) * ggml-cuda : add rope f16, restore performance * offload KQ_mask with all models * fix rope shift --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * llama : disable MPI for now ggml-ci * train : make KQ_pos memory buffer permanent via dummy scale op * ggml : revert change to ggml_cpy, add ggml_cont_Nd instead (#3275) ggml-ci * parallel : fix bug (extra BOS) + smaller token_prev array * parallel : fix cases where the input prompts can overflow the batch * parallel : add disabled experimental batch chunking in powers of two * llama : llama.h formatting + comments * simple : add README.md * llama : fix kv cache heuristic when context is less than 32 * parallel : fix crash when `-n -1` * llama : simplify returns if/else branches * metal : use mm kernels for batch size > 2 * examples : utilize new llama_get_logits_ith() * examples : add example for batched decoding * examples : do not eval prompt 2 times (close #3348) * server : clear the KV cache beyond n_past before llama_decode * server : avoid context swaps by shifting the KV cache --------- Co-authored-by: slaren <slarengh@gmail.com>
		
			
				
	
	
		
			183 lines
		
	
	
		
			4.9 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			183 lines
		
	
	
		
			4.9 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #include "common.h"
 | |
| #include "llama.h"
 | |
| 
 | |
| #include <cmath>
 | |
| #include <cstdio>
 | |
| #include <string>
 | |
| #include <vector>
 | |
| 
 | |
| int main(int argc, char ** argv) {
 | |
|     gpt_params params;
 | |
| 
 | |
|     if (argc == 1 || argv[1][0] == '-') {
 | |
|         printf("usage: %s MODEL_PATH [PROMPT]\n" , argv[0]);
 | |
|         return 1 ;
 | |
|     }
 | |
| 
 | |
|     if (argc >= 2) {
 | |
|         params.model = argv[1];
 | |
|     }
 | |
| 
 | |
|     if (argc >= 3) {
 | |
|         params.prompt = argv[2];
 | |
|     }
 | |
| 
 | |
|     if (params.prompt.empty()) {
 | |
|         params.prompt = "Hello my name is";
 | |
|     }
 | |
| 
 | |
|     // total length of the sequence including the prompt
 | |
|     const int n_len = 32;
 | |
| 
 | |
|     // init LLM
 | |
| 
 | |
|     llama_backend_init(params.numa);
 | |
| 
 | |
|     llama_context_params ctx_params = llama_context_default_params();
 | |
| 
 | |
|     ctx_params.seed  = 1234;
 | |
|     ctx_params.n_ctx = 2048;
 | |
| 
 | |
|     llama_model * model = llama_load_model_from_file(params.model.c_str(), ctx_params);
 | |
| 
 | |
|     if (model == NULL) {
 | |
|         fprintf(stderr , "%s: error: unable to load model\n" , __func__);
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     llama_context * ctx = llama_new_context_with_model(model, ctx_params);
 | |
| 
 | |
|     if (ctx == NULL) {
 | |
|         fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__);
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     // tokenize the prompt
 | |
| 
 | |
|     std::vector<llama_token> tokens_list;
 | |
|     tokens_list = ::llama_tokenize(ctx, params.prompt, true);
 | |
| 
 | |
|     const int n_ctx    = llama_n_ctx(ctx);
 | |
|     const int n_kv_req = tokens_list.size() + (n_len - tokens_list.size());
 | |
| 
 | |
|     LOG_TEE("\n%s: n_len = %d, n_ctx = %d, n_kv_req = %d\n", __func__, n_len, n_ctx, n_kv_req);
 | |
| 
 | |
|     // make sure the KV cache is big enough to hold all the prompt and generated tokens
 | |
|     if (n_kv_req > n_ctx) {
 | |
|         LOG_TEE("%s: error: n_kv_req > n_ctx, the required KV cache size is not big enough\n", __func__);
 | |
|         LOG_TEE("%s:        either reduce n_parallel or increase n_ctx\n", __func__);
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     // print the prompt token-by-token
 | |
| 
 | |
|     fprintf(stderr, "\n");
 | |
| 
 | |
|     for (auto id : tokens_list) {
 | |
|         fprintf(stderr, "%s", llama_token_to_piece(ctx, id).c_str());
 | |
|     }
 | |
| 
 | |
|     fflush(stderr);
 | |
| 
 | |
|     // create a llama_batch with size 512
 | |
|     // we use this object to submit token data for decoding
 | |
| 
 | |
|     llama_batch batch = llama_batch_init(512, 0);
 | |
| 
 | |
|     // evaluate the initial prompt
 | |
|     batch.n_tokens = tokens_list.size();
 | |
| 
 | |
|     for (int32_t i = 0; i < batch.n_tokens; i++) {
 | |
|         batch.token[i]  = tokens_list[i];
 | |
|         batch.pos[i]    = i;
 | |
|         batch.seq_id[i] = 0;
 | |
|         batch.logits[i] = false;
 | |
|     }
 | |
| 
 | |
|     // llama_decode will output logits only for the last token of the prompt
 | |
|     batch.logits[batch.n_tokens - 1] = true;
 | |
| 
 | |
|     if (llama_decode(ctx, batch, params.n_threads) != 0) {
 | |
|         LOG_TEE("%s: llama_decode() failed\n", __func__);
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     // main loop
 | |
| 
 | |
|     int n_cur    = batch.n_tokens;
 | |
|     int n_decode = 0;
 | |
| 
 | |
|     const auto t_main_start = ggml_time_us();
 | |
| 
 | |
|     while (n_cur <= n_len) {
 | |
|         // sample the next token
 | |
|         {
 | |
|             auto   n_vocab = llama_n_vocab(ctx);
 | |
|             auto * logits  = llama_get_logits_ith(ctx, batch.n_tokens - 1);
 | |
| 
 | |
|             std::vector<llama_token_data> candidates;
 | |
|             candidates.reserve(n_vocab);
 | |
| 
 | |
|             for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
 | |
|                 candidates.emplace_back(llama_token_data{ token_id, logits[token_id], 0.0f });
 | |
|             }
 | |
| 
 | |
|             llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
 | |
| 
 | |
|             // sample the most likely token
 | |
|             const llama_token new_token_id = llama_sample_token_greedy(ctx, &candidates_p);
 | |
| 
 | |
|             // is it an end of stream?
 | |
|             if (new_token_id == llama_token_eos(ctx) || n_cur == n_len) {
 | |
|                 LOG_TEE("\n");
 | |
| 
 | |
|                 break;
 | |
|             }
 | |
| 
 | |
|             LOG_TEE("%s", llama_token_to_piece(ctx, new_token_id).c_str());
 | |
|             fflush(stdout);
 | |
| 
 | |
|             // prepare the next batch
 | |
|             batch.n_tokens = 0;
 | |
| 
 | |
|             // push this new token for next evaluation
 | |
|             batch.token [batch.n_tokens] = new_token_id;
 | |
|             batch.pos   [batch.n_tokens] = n_cur;
 | |
|             batch.seq_id[batch.n_tokens] = 0;
 | |
|             batch.logits[batch.n_tokens] = true;
 | |
| 
 | |
|             batch.n_tokens += 1;
 | |
| 
 | |
|             n_decode += 1;
 | |
|         }
 | |
| 
 | |
|         n_cur += 1;
 | |
| 
 | |
|         // evaluate the current batch with the transformer model
 | |
|         if (llama_decode(ctx, batch, params.n_threads)) {
 | |
|             fprintf(stderr, "%s : failed to eval, return code %d\n", __func__, 1);
 | |
|             return 1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     LOG_TEE("\n");
 | |
| 
 | |
|     const auto t_main_end = ggml_time_us();
 | |
| 
 | |
|     LOG_TEE("%s: decoded %d tokens in %.2f s, speed: %.2f t/s\n",
 | |
|             __func__, n_decode, (t_main_end - t_main_start) / 1000000.0f, n_decode / ((t_main_end - t_main_start) / 1000000.0f));
 | |
| 
 | |
|     llama_print_timings(ctx);
 | |
| 
 | |
|     fprintf(stderr, "\n");
 | |
| 
 | |
|     llama_batch_free(batch);
 | |
| 
 | |
|     llama_free(ctx);
 | |
|     llama_free_model(model);
 | |
| 
 | |
|     llama_backend_free();
 | |
| 
 | |
|     return 0;
 | |
| }
 |