mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-30 08:42:00 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			340 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			340 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| """TODOs
 | |
| 1. Implement writers for known architectures, LLaMA in particular.
 | |
| 2. Add docstrings from the format specs.
 | |
| 3. After development is done, Convert it to a proper pip-installable Python package, and possibly move it to its own repo under ggml-org.
 | |
| """
 | |
| 
 | |
| import struct
 | |
| import constants
 | |
| from enum import IntEnum
 | |
| from typing import Any, IO, List
 | |
| 
 | |
| import numpy as np
 | |
| import sys
 | |
| 
 | |
| 
 | |
| class GGMLQuantizationType(IntEnum):
 | |
|     F32 = 0
 | |
|     F16 = 1
 | |
| 
 | |
| 
 | |
| class GGUFValueType(IntEnum):
 | |
|     UINT8 = 0
 | |
|     INT8 = 1
 | |
|     UINT16 = 2
 | |
|     INT16 = 3
 | |
|     UINT32 = 4
 | |
|     INT32 = 5
 | |
|     FLOAT32 = 6
 | |
|     BOOL = 7
 | |
|     STRING = 8
 | |
|     ARRAY = 9
 | |
| 
 | |
|     @staticmethod
 | |
|     def get_type(val):
 | |
|         if isinstance(val, str) or isinstance(val, bytes) or isinstance(val, bytearray):
 | |
|             return GGUFValueType.STRING
 | |
|         elif isinstance(val, list):
 | |
|             return GGUFValueType.ARRAY
 | |
|         elif isinstance(val, float):
 | |
|             return GGUFValueType.FLOAT32
 | |
|         elif isinstance(val, bool):
 | |
|             return GGUFValueType.BOOL
 | |
|         elif isinstance(val, int):
 | |
|             return GGUFValueType.INT32
 | |
|         else:
 | |
|             print("Unknown type: "+str(type(val)))
 | |
|             sys.exit()
 | |
| 
 | |
| 
 | |
| class GGUFWriter:
 | |
|     def __init__(self, fout: IO):
 | |
|         self.fout = fout
 | |
|         self.offset_tensor = 0
 | |
|         self.data_alignment = constants.GGUF_DEFAULT_ALIGNMENT
 | |
|         self.kv_data = b""
 | |
|         self.kv_data_count = 0
 | |
|         self.ti_data = b""
 | |
|         self.ti_data_count = 0
 | |
| 
 | |
|     def write_header_to_file(self):
 | |
|         self.fout.write(struct.pack("<I", constants.GGUF_MAGIC))
 | |
|         self.fout.write(struct.pack("<I", constants.GGUF_VERSION))
 | |
|         self.fout.write(struct.pack("<I", self.ti_data_count))
 | |
|         self.fout.write(struct.pack("<I", self.kv_data_count))
 | |
|         self.flush()
 | |
| #        print("tensors " + str(self.ti_data_count) + " kv " + str(self.kv_data_count))
 | |
| 
 | |
|     def write_kv_data_to_file(self):
 | |
|         self.fout.write(self.kv_data)
 | |
|         self.flush()
 | |
| 
 | |
|     def write_ti_data_to_file(self):
 | |
|         self.fout.write(self.ti_data)
 | |
|         self.flush()
 | |
| 
 | |
|     @classmethod
 | |
|     def open(cls, path: str) -> "GGUFWriter":
 | |
|         f = open(path, "wb")
 | |
|         return cls(f)
 | |
| 
 | |
|     def add_key(self, key: str):
 | |
|         self.add_val(key, GGUFValueType.STRING, add_vtype=False)
 | |
| 
 | |
|     def add_uint8(self, key: str, val: int):
 | |
|         self.add_key(key)
 | |
|         self.add_val(val, GGUFValueType.UINT8)
 | |
| 
 | |
|     def add_int8(self, key: str, val: int):
 | |
|         self.add_key(key)
 | |
|         self.add_val(val, GGUFValueType.INT8)
 | |
| 
 | |
|     def add_uint16(self, key: str, val: int):
 | |
|         self.add_key(key)
 | |
|         self.add_val(val, GGUFValueType.UINT16)
 | |
| 
 | |
|     def add_int16(self, key: str, val: int):
 | |
|         self.add_key(key)
 | |
|         self.add_val(val, GGUFValueType.INT16)
 | |
| 
 | |
|     def add_uint32(self, key: str, val: int):
 | |
|         self.add_key(key)
 | |
|         self.add_val(val, GGUFValueType.UINT32)
 | |
| 
 | |
|     def add_int32(self, key: str, val: int):
 | |
|         self.add_key(key)
 | |
|         self.add_val(val, GGUFValueType.INT32)
 | |
| 
 | |
|     def add_float32(self, key: str, val: float):
 | |
|         self.add_key(key)
 | |
|         self.add_val(val, GGUFValueType.FLOAT32)
 | |
| 
 | |
|     def add_bool(self, key: str, val: bool):
 | |
|         self.add_key(key)
 | |
|         self.add_val(val, GGUFValueType.BOOL)
 | |
| 
 | |
|     def add_string(self, key: str, val: str):
 | |
|         if len(val) == 0: return
 | |
|         self.add_key(key)
 | |
|         self.add_val(val, GGUFValueType.STRING)
 | |
| 
 | |
|     def add_array(self, key: str, val: list):
 | |
|         if not isinstance(val, list):
 | |
|             raise ValueError("Value must be a list for array type")
 | |
| 
 | |
|         self.add_key(key)
 | |
|         self.add_val(val, GGUFValueType.ARRAY)
 | |
| 
 | |
|     def add_val(self: str, val: Any, vtype: GGUFValueType = None, add_vtype: bool = True):
 | |
|         if vtype is None:
 | |
|             vtype = GGUFValueType.get_type(val)
 | |
| 
 | |
|         if add_vtype:
 | |
|             self.kv_data += struct.pack("<I", vtype)
 | |
|             self.kv_data_count += 1
 | |
| 
 | |
|         if vtype == GGUFValueType.UINT8:
 | |
|             self.kv_data += struct.pack("<B", val)
 | |
|         elif vtype == GGUFValueType.INT8:
 | |
|             self.kv_data += struct.pack("<b", val)
 | |
|         elif vtype == GGUFValueType.UINT16:
 | |
|             self.kv_data += struct.pack("<H", val)
 | |
|         elif vtype == GGUFValueType.INT16:
 | |
|             self.kv_data += struct.pack("<h", val)
 | |
|         elif vtype == GGUFValueType.UINT32:
 | |
|             self.kv_data += struct.pack("<I", val)
 | |
|         elif vtype == GGUFValueType.INT32:
 | |
|             self.kv_data += struct.pack("<i", val)
 | |
|         elif vtype == GGUFValueType.FLOAT32:
 | |
|             self.kv_data += struct.pack("<f", val)
 | |
|         elif vtype == GGUFValueType.BOOL:
 | |
|             self.kv_data += struct.pack("?", val)
 | |
|         elif vtype == GGUFValueType.STRING:
 | |
|             encoded_val = val.encode("utf8") if isinstance(val, str) else val
 | |
|             self.kv_data += struct.pack("<I", len(encoded_val))
 | |
|             self.kv_data += encoded_val
 | |
|         elif vtype == GGUFValueType.ARRAY:
 | |
|             ltype = set([GGUFValueType.get_type(item) for item in val])
 | |
|             assert len(ltype) == 1, "All items in a GGUF array should be of the same type"
 | |
|             self.kv_data += struct.pack("<I", list(ltype)[0])
 | |
|             self.kv_data += struct.pack("<I", len(val))
 | |
|             for item in val:
 | |
|                 self.add_val(item, add_vtype=False)
 | |
|         else:
 | |
|             raise ValueError("Invalid GGUF metadata value type")
 | |
| 
 | |
|     @staticmethod
 | |
|     def ggml_pad(x: int, n: int) -> int:
 | |
|         return ((x + n - 1) // n) * n
 | |
| 
 | |
|     def add_tensor_info(self, name: str, tensor_shape: np.ndarray, tensor_dtype: np.dtype, tensor_nbytes: int):
 | |
|         encoded_name = name.encode("utf8")
 | |
|         self.ti_data += struct.pack("<I", len(encoded_name))
 | |
|         self.ti_data += encoded_name
 | |
|         n_dims = len(tensor_shape)
 | |
|         self.ti_data += struct.pack("<I", n_dims)
 | |
|         for i in range(n_dims):
 | |
|             self.ti_data += struct.pack("<I", tensor_shape[n_dims - 1 - i])
 | |
| 
 | |
|         assert tensor_dtype in (np.float32, np.float16), "Only F32 and F16 tensors are supported for now"
 | |
|         dtype = GGMLQuantizationType.F32 if tensor_dtype == np.float32 else GGMLQuantizationType.F16
 | |
|         self.ti_data += struct.pack("<I", dtype)
 | |
|         self.ti_data += struct.pack("<Q", self.offset_tensor)
 | |
|         self.offset_tensor += GGUFWriter.ggml_pad(tensor_nbytes, self.data_alignment)
 | |
|         self.ti_data_count += 1
 | |
| 
 | |
|     def write_tensor_to_file(self, tensor: np.ndarray):
 | |
|         pad = GGUFWriter.ggml_pad(self.fout.tell(), self.data_alignment) - self.fout.tell()
 | |
|         if pad != 0:
 | |
|             self.fout.write(bytes([0] * pad))
 | |
| 
 | |
|         tensor.tofile(self.fout)
 | |
| 
 | |
|         pad = GGUFWriter.ggml_pad(tensor.nbytes, self.data_alignment) - tensor.nbytes
 | |
|         if pad != 0:
 | |
|             self.fout.write(bytes([0] * pad))
 | |
| 
 | |
|     def flush(self):
 | |
|         self.fout.flush()
 | |
| 
 | |
|     def close(self):
 | |
|         self.fout.close()
 | |
| 
 | |
|     def add_architecture(self, architecture: str):
 | |
|         self.add_string(constants.KEY_GENERAL_ARCHITECTURE,
 | |
|                         architecture)
 | |
| 
 | |
|     def add_author(self, author: str):
 | |
|         self.add_string(constants.KEY_GENERAL_AUTHOR, author)
 | |
| 
 | |
|     def add_url(self, url: str):
 | |
|         self.add_string(constants.KEY_GENERAL_URL, url)
 | |
| 
 | |
|     def add_description(self, description: str):
 | |
|         self.add_string(constants.KEY_GENERAL_DESCRIPTION, description)
 | |
| 
 | |
|     def add_file_type(self, file_type: str):
 | |
|         self.add_string(constants.KEY_GENERAL_FILE_TYPE, file_type)
 | |
| 
 | |
|     def add_source_url(self, url: str):
 | |
|         self.add_string(constants.KEY_GENERAL_SOURCE_URL, url)
 | |
| 
 | |
|     def add_source_hf_repo(self, repo: str):
 | |
|         self.add_string(constants.KEY_GENERAL_SOURCE_HF_REPO, repo)
 | |
| 
 | |
|     def add_name(self, name: str):
 | |
|         self.add_string(constants.KEY_GENERAL_NAME, name)
 | |
| 
 | |
|     def add_quantization_version(self, quantization_version: GGMLQuantizationType):
 | |
|         self.add_uint32(
 | |
|             constants.KEY_GENERAL_QUANTIZATION_VERSION, quantization_version)
 | |
| 
 | |
|     def add_custom_alignment(self, alignment: int):
 | |
|         self.data_alignment = alignment
 | |
|         self.add_uint32(constants.KEY_GENERAL_ALIGNMENT, alignment)
 | |
| 
 | |
|     def add_context_length(self, llm: str, length: int):
 | |
|         self.add_uint32(
 | |
|             constants.KEY_LLM_CONTEXT_LENGTH.format(llm=llm), length)
 | |
| 
 | |
|     def add_embedding_length(self, llm: str, length: int):
 | |
|         self.add_uint32(
 | |
|             constants.KEY_LLM_EMBEDDING_LENGTH.format(llm=llm), length)
 | |
| 
 | |
|     def add_block_count(self, llm: str, length: int):
 | |
|         self.add_uint32(
 | |
|             constants.KEY_LLM_BLOCK_COUNT.format(llm=llm), length)
 | |
| 
 | |
|     def add_feed_forward_length(self, llm: str, length: int):
 | |
|         self.add_uint32(
 | |
|             constants.KEY_LLM_FEED_FORWARD_LENGTH.format(llm=llm), length)
 | |
| 
 | |
|     def add_parallel_residual(self, llm: str, use: bool):
 | |
|         self.add_bool(
 | |
|             constants.KEY_LLM_USE_PARALLEL_RESIDUAL.format(llm=llm), use)
 | |
| 
 | |
|     def add_tensor_data_layout(self, llm: str, layout: str):
 | |
|         self.add_string(
 | |
|             constants.KEY_LLM_TENSOR_DATA_LAYOUT.format(llm=llm), layout)
 | |
| 
 | |
|     def add_head_count(self, llm: str, count: int):
 | |
|         self.add_uint32(
 | |
|             constants.KEY_ATTENTION_HEAD_COUNT.format(llm=llm), count)
 | |
| 
 | |
|     def add_head_count_kv(self, llm: str, count: int):
 | |
|         self.add_uint32(
 | |
|             constants.KEY_ATTENTION_HEAD_COUNT_KV.format(llm=llm), count)
 | |
| 
 | |
|     def add_max_alibi_bias(self, llm: str, bias: float):
 | |
|         self.add_float32(
 | |
|             constants.KEY_ATTENTION_MAX_ALIBI_BIAS.format(llm=llm), bias)
 | |
| 
 | |
|     def add_clamp_kqv(self, llm: str, value: float):
 | |
|         self.add_float32(
 | |
|             constants.KEY_ATTENTION_CLAMP_KQV.format(llm=llm), value)
 | |
| 
 | |
|     def add_layer_norm_eps(self, llm: str, value: float):
 | |
|         self.add_float32(
 | |
|             constants.KEY_ATTENTION_LAYERNORM_EPS.format(llm=llm), value)
 | |
| 
 | |
|     def add_layer_norm_rms_eps(self, llm: str, value: float):
 | |
|         self.add_float32(
 | |
|             constants.KEY_ATTENTION_LAYERNORM_RMS_EPS.format(llm=llm), value)
 | |
| 
 | |
|     def add_rope_dimension_count(self, llm: str, count: int):
 | |
|         self.add_uint32(
 | |
|             constants.KEY_ROPE_DIMENSION_COUNT.format(llm=llm), count)
 | |
| 
 | |
|     def add_rope_scale(self, llm: str, value:  float):
 | |
|         self.add_float32(constants.KEY_ROPE_SCALE.format(llm=llm), value)
 | |
| 
 | |
|     def add_tokenizer_model(self, model: str):
 | |
|         self.add_string(constants.KEY_TOKENIZER_MODEL, model)
 | |
| 
 | |
|     def add_token_list(self, tokens: List):
 | |
|         self.add_array(constants.KEY_TOKENIZER_LIST, tokens)
 | |
| 
 | |
|     def add_token_merges(self, merges: List):
 | |
|         self.add_array(constants.KEY_TOKENIZER_MERGES, merges)
 | |
| 
 | |
|     def add_token_scores(self, scores: List[float]):
 | |
|         self.add_array(constants.KEY_TOKENIZER_SCORES, scores)
 | |
| 
 | |
|     def add_bos_token_id(self, id: int):
 | |
|         self.add_uint32(constants.KEY_TOKENIZER_BOS_ID, id)
 | |
| 
 | |
|     def add_eos_token_id(self, id: int):
 | |
|         self.add_uint32(constants.KEY_TOKENIZER_EOS_ID, id)
 | |
| 
 | |
|     def add_unk_token_id(self, id: int):
 | |
|         self.add_uint32(constants.KEY_TOKENIZER_UNK_ID, id)
 | |
| 
 | |
|     def add_sep_token_id(self, id: int):
 | |
|         self.add_uint32(constants.KEY_TOKENIZER_SEP_ID, id)
 | |
| 
 | |
|     def add_pad_token_id(self, id: int):
 | |
|         self.add_uint32(constants.KEY_TOKENIZER_PAD_ID, id)
 | |
| 
 | |
| 
 | |
| # Example usage:
 | |
| if __name__ == "__main__":
 | |
|     # Example usage with a file
 | |
|     gguf_writer = GGUFWriter.open("example.gguf")
 | |
| 
 | |
|     gguf_writer.add_architecture("llama")
 | |
|     gguf_writer.add_uint32("answer", 42)  # Write a 32-bit integer
 | |
|     gguf_writer.add_float32("answer_in_float", 42.0)  # Write a 32-bit float
 | |
|     gguf_writer.add_custom_alignment(64)
 | |
|     tensor1 = np.ones((32,), dtype=np.float32) * 100.0
 | |
|     tensor2 = np.ones((32,), dtype=np.float32) * 101.0
 | |
|     gguf_writer.add_tensor_info("tensor0", tensor1)
 | |
|     gguf_writer.add_tensor_info("tensor1", tensor2)
 | |
| 
 | |
|     gguf_writer.write_header_to_file()
 | |
|     gguf_writer.write_kv_data_to_file()
 | |
|     gguf_writer.write_ti_data_to_file()
 | |
|     gguf_writer.write_tensor_to_file(tensor1)
 | |
|     gguf_writer.write_tensor_to_file(tensor2)
 | |
| 
 | |
|     gguf_writer.close()
 | 
