mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-11-04 09:32:00 +00:00 
			
		
		
		
	* copy to llama.cpp as subdir * attempt enabling metal, fails * ggml metal compiles! * Update README.md * initial conversion to new format, utf8 errors? * bug fixes, but now has an invalid memory access :( * added O3, now has insufficient memory access * begin sync with master * update to match latest code, new errors * fixed it! * fix for loop conditionals, increase result size * fix current workflow errors * attempt a llama.swiftui workflow * Update .github/workflows/build.yml Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
		
			
				
	
	
		
			177 lines
		
	
	
		
			5.0 KiB
		
	
	
	
		
			Swift
		
	
	
	
	
	
			
		
		
	
	
			177 lines
		
	
	
		
			5.0 KiB
		
	
	
	
		
			Swift
		
	
	
	
	
	
import Foundation
 | 
						|
 | 
						|
// import llama
 | 
						|
 | 
						|
enum LlamaError: Error {
 | 
						|
    case couldNotInitializeContext
 | 
						|
}
 | 
						|
 | 
						|
actor LlamaContext {
 | 
						|
    private var model: OpaquePointer
 | 
						|
    private var context: OpaquePointer
 | 
						|
    private var batch: llama_batch
 | 
						|
    private var tokens_list: [llama_token]
 | 
						|
 | 
						|
    var n_len: Int32 = 512
 | 
						|
    var n_cur: Int32 = 0
 | 
						|
    var n_decode: Int32 = 0
 | 
						|
 | 
						|
    init(model: OpaquePointer, context: OpaquePointer) {
 | 
						|
        self.model = model
 | 
						|
        self.context = context
 | 
						|
        self.tokens_list = []
 | 
						|
        self.batch = llama_batch_init(512, 0, 1)
 | 
						|
    }
 | 
						|
 | 
						|
    deinit {
 | 
						|
        llama_free(context)
 | 
						|
        llama_free_model(model)
 | 
						|
        llama_backend_free()
 | 
						|
    }
 | 
						|
 | 
						|
    static func createContext(path: String) throws -> LlamaContext {
 | 
						|
        llama_backend_init(false)
 | 
						|
        let model_params = llama_model_default_params()
 | 
						|
 | 
						|
        let model = llama_load_model_from_file(path, model_params)
 | 
						|
        guard let model else {
 | 
						|
            print("Could not load model at \(path)")
 | 
						|
            throw LlamaError.couldNotInitializeContext
 | 
						|
        }
 | 
						|
        var ctx_params = llama_context_default_params()
 | 
						|
        ctx_params.seed = 1234
 | 
						|
        ctx_params.n_ctx = 2048
 | 
						|
        ctx_params.n_threads = 8
 | 
						|
        ctx_params.n_threads_batch = 8
 | 
						|
 | 
						|
        let context = llama_new_context_with_model(model, ctx_params)
 | 
						|
        guard let context else {
 | 
						|
            print("Could not load context!")
 | 
						|
            throw LlamaError.couldNotInitializeContext
 | 
						|
        }
 | 
						|
 | 
						|
        return LlamaContext(model: model, context: context)
 | 
						|
    }
 | 
						|
 | 
						|
    func get_n_tokens() -> Int32 {
 | 
						|
        return batch.n_tokens;
 | 
						|
    }
 | 
						|
 | 
						|
    func completion_init(text: String) {
 | 
						|
        print("attempting to complete \"\(text)\"")
 | 
						|
 | 
						|
        tokens_list = tokenize(text: text, add_bos: true)
 | 
						|
 | 
						|
        let n_ctx = llama_n_ctx(context)
 | 
						|
        let n_kv_req = tokens_list.count + (Int(n_len) - tokens_list.count)
 | 
						|
 | 
						|
        print("\n n_len = \(n_len), n_ctx = \(n_ctx), n_kv_req = \(n_kv_req)")
 | 
						|
 | 
						|
        if n_kv_req > n_ctx {
 | 
						|
            print("error: n_kv_req > n_ctx, the required KV cache size is not big enough")
 | 
						|
        }
 | 
						|
 | 
						|
        for id in tokens_list {
 | 
						|
            print(token_to_piece(token: id))
 | 
						|
        }
 | 
						|
 | 
						|
        // batch = llama_batch_init(512, 0) // done in init()
 | 
						|
        batch.n_tokens = Int32(tokens_list.count)
 | 
						|
 | 
						|
        for i1 in 0..<batch.n_tokens {
 | 
						|
            let i = Int(i1)
 | 
						|
            batch.token[i] = tokens_list[i]
 | 
						|
            batch.pos[i] = i1
 | 
						|
            batch.n_seq_id[Int(i)] = 1
 | 
						|
            batch.seq_id[Int(i)]![0] = 0
 | 
						|
            batch.logits[i] = 0
 | 
						|
        }
 | 
						|
        batch.logits[Int(batch.n_tokens) - 1] = 1 // true
 | 
						|
 | 
						|
        if llama_decode(context, batch) != 0 {
 | 
						|
            print("llama_decode() failed")
 | 
						|
        }
 | 
						|
 | 
						|
        n_cur = batch.n_tokens
 | 
						|
    }
 | 
						|
 | 
						|
    func completion_loop() -> String {
 | 
						|
        var new_token_id: llama_token = 0
 | 
						|
 | 
						|
        let n_vocab = llama_n_vocab(model)
 | 
						|
        let logits = llama_get_logits_ith(context, batch.n_tokens - 1)
 | 
						|
 | 
						|
        var candidates = Array<llama_token_data>()
 | 
						|
        candidates.reserveCapacity(Int(n_vocab))
 | 
						|
 | 
						|
        for token_id in 0..<n_vocab {
 | 
						|
            candidates.append(llama_token_data(id: token_id, logit: logits![Int(token_id)], p: 0.0))
 | 
						|
        }
 | 
						|
        candidates.withUnsafeMutableBufferPointer() { buffer in
 | 
						|
            var candidates_p = llama_token_data_array(data: buffer.baseAddress, size: buffer.count, sorted: false)
 | 
						|
 | 
						|
            new_token_id = llama_sample_token_greedy(context, &candidates_p)
 | 
						|
        }
 | 
						|
 | 
						|
        if new_token_id == llama_token_eos(context) || n_cur == n_len {
 | 
						|
            print("\n")
 | 
						|
            return ""
 | 
						|
        }
 | 
						|
 | 
						|
        let new_token_str = token_to_piece(token: new_token_id)
 | 
						|
        print(new_token_str)
 | 
						|
        // tokens_list.append(new_token_id)
 | 
						|
 | 
						|
        batch.n_tokens = 0
 | 
						|
 | 
						|
        batch.token[Int(batch.n_tokens)] = new_token_id
 | 
						|
        batch.pos[Int(batch.n_tokens)] = n_cur
 | 
						|
        batch.n_seq_id[Int(batch.n_tokens)] = 1
 | 
						|
        batch.seq_id[Int(batch.n_tokens)]![0] = 0
 | 
						|
        batch.logits[Int(batch.n_tokens)] = 1 // true
 | 
						|
        batch.n_tokens += 1
 | 
						|
 | 
						|
        n_decode += 1
 | 
						|
 | 
						|
        n_cur += 1
 | 
						|
 | 
						|
        if llama_decode(context, batch) != 0 {
 | 
						|
            print("failed to evaluate llama!")
 | 
						|
        }
 | 
						|
 | 
						|
        return new_token_str
 | 
						|
    }
 | 
						|
 | 
						|
    func clear() {
 | 
						|
        tokens_list.removeAll()
 | 
						|
    }
 | 
						|
 | 
						|
    private func tokenize(text: String, add_bos: Bool) -> [llama_token] {
 | 
						|
        let n_tokens = text.count + (add_bos ? 1 : 0)
 | 
						|
        let tokens = UnsafeMutablePointer<llama_token>.allocate(capacity: n_tokens)
 | 
						|
        let tokenCount = llama_tokenize(model, text, Int32(text.count), tokens, Int32(n_tokens), add_bos, false)
 | 
						|
 | 
						|
        var swiftTokens: [llama_token] = []
 | 
						|
        for i in 0..<tokenCount {
 | 
						|
            swiftTokens.append(tokens[Int(i)])
 | 
						|
        }
 | 
						|
 | 
						|
        tokens.deallocate()
 | 
						|
 | 
						|
        return swiftTokens
 | 
						|
    }
 | 
						|
 | 
						|
    private func token_to_piece(token: llama_token) -> String {
 | 
						|
        let result = UnsafeMutablePointer<Int8>.allocate(capacity: 8)
 | 
						|
        result.initialize(repeating: Int8(0), count: 8)
 | 
						|
 | 
						|
        let _ = llama_token_to_piece(model, token, result, 8)
 | 
						|
 | 
						|
        let resultStr = String(cString: result)
 | 
						|
 | 
						|
        result.deallocate()
 | 
						|
 | 
						|
        return resultStr
 | 
						|
    }
 | 
						|
}
 |