mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-11-03 09:22:01 +00:00 
			
		
		
		
	* init * add readme * update readme * no use make * update readme * update fix code * fix editorconfig-checker * no change convert py * use clip_image_u8_free
		
			
				
	
	
		
			46 lines
		
	
	
		
			1.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			46 lines
		
	
	
		
			1.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import argparse
 | 
						|
import os
 | 
						|
import torch
 | 
						|
from transformers import AutoModel, AutoTokenizer
 | 
						|
 | 
						|
ap = argparse.ArgumentParser()
 | 
						|
ap.add_argument("-m", "--model", help="Path to MiniCPM-V model")
 | 
						|
args = ap.parse_args()
 | 
						|
 | 
						|
# find the model part that includes the the multimodal projector weights
 | 
						|
model = AutoModel.from_pretrained(args.model, trust_remote_code=True, local_files_only=True, torch_dtype=torch.bfloat16)
 | 
						|
checkpoint = model.state_dict()
 | 
						|
 | 
						|
# get a list of mm tensor names
 | 
						|
mm_tensors = [k for k, v in checkpoint.items() if k.startswith("resampler")]
 | 
						|
 | 
						|
# store these tensors in a new dictionary and torch.save them
 | 
						|
projector = {name: checkpoint[name].float() for name in mm_tensors}
 | 
						|
torch.save(projector, f"{args.model}/minicpmv.projector")
 | 
						|
 | 
						|
clip_tensors = [k for k, v in checkpoint.items() if k.startswith("vpm")]
 | 
						|
if len(clip_tensors) > 0:
 | 
						|
    clip = {name.replace("vpm.", ""): checkpoint[name].float() for name in clip_tensors}
 | 
						|
    torch.save(clip, f"{args.model}/minicpmv.clip")
 | 
						|
 | 
						|
    # added tokens should be removed to be able to convert Mistral models
 | 
						|
    if os.path.exists(f"{args.model}/added_tokens.json"):
 | 
						|
        with open(f"{args.model}/added_tokens.json", "w") as f:
 | 
						|
            f.write("{}\n")
 | 
						|
 | 
						|
config = model.llm.config
 | 
						|
config.auto_map = {
 | 
						|
    "AutoConfig": "configuration_minicpm.MiniCPMConfig",
 | 
						|
    "AutoModel": "modeling_minicpm.MiniCPMModel",
 | 
						|
    "AutoModelForCausalLM": "modeling_minicpm.MiniCPMForCausalLM",
 | 
						|
    "AutoModelForSeq2SeqLM": "modeling_minicpm.MiniCPMForCausalLM",
 | 
						|
    "AutoModelForSequenceClassification": "modeling_minicpm.MiniCPMForSequenceClassification"
 | 
						|
}
 | 
						|
model.llm.save_pretrained(f"{args.model}/model")
 | 
						|
tok = AutoTokenizer.from_pretrained(args.model, trust_remote_code=True)
 | 
						|
tok.save_pretrained(f"{args.model}/model")
 | 
						|
 | 
						|
print("Done!")
 | 
						|
print(f"Now you can convert {args.model} to a regular LLaMA GGUF file.")
 | 
						|
print(f"Also, use {args.model}/minicpmv.projector to prepare a minicpmv-encoder.gguf file.")
 |