mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-11-02 09:12:03 +00:00 
			
		
		
		
	Key changes: * BERT conversion: fix abuse of LlamaHfVocab, do not set BOS or EOS * Nomic Embed conversion: pad vocab instead of slicing embedding tensor * llama_tokenize: handle added special tokens like HF does
		
			
				
	
	
		
			139 lines
		
	
	
		
			4.9 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			139 lines
		
	
	
		
			4.9 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
#!/usr/bin/env python3
 | 
						|
from __future__ import annotations
 | 
						|
 | 
						|
import argparse
 | 
						|
import os
 | 
						|
import sys
 | 
						|
from pathlib import Path
 | 
						|
from pprint import pprint
 | 
						|
 | 
						|
import torch
 | 
						|
from sentencepiece import SentencePieceProcessor
 | 
						|
 | 
						|
if 'NO_LOCAL_GGUF' not in os.environ:
 | 
						|
    sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
 | 
						|
import gguf
 | 
						|
 | 
						|
 | 
						|
def _flatten_dict(dct, tensors, prefix=None):
 | 
						|
    assert isinstance(dct, dict)
 | 
						|
    for key in dct.keys():
 | 
						|
        new_prefix = prefix + '.' + key if prefix is not None else key
 | 
						|
        if isinstance(dct[key], torch.Tensor):
 | 
						|
            tensors[new_prefix] = dct[key]
 | 
						|
        elif isinstance(dct[key], dict):
 | 
						|
            _flatten_dict(dct[key], tensors, new_prefix)
 | 
						|
        else:
 | 
						|
            raise ValueError(type(dct[key]))
 | 
						|
    return None
 | 
						|
 | 
						|
 | 
						|
def _get_sentencepiece_tokenizer_info(dir_model: Path):
 | 
						|
    tokenizer_path = dir_model / 'adept_vocab.model'
 | 
						|
    print('gguf: getting sentencepiece tokenizer from', tokenizer_path)
 | 
						|
    tokenizer = SentencePieceProcessor(str(tokenizer_path))
 | 
						|
    print('gguf: adding tokens')
 | 
						|
    tokens: list[bytes] = []
 | 
						|
    scores: list[float] = []
 | 
						|
    toktypes: list[int] = []
 | 
						|
 | 
						|
    for i in range(tokenizer.vocab_size()):
 | 
						|
        text: bytes
 | 
						|
        score: float
 | 
						|
 | 
						|
        piece = tokenizer.id_to_piece(i)
 | 
						|
        text = piece.encode("utf-8")
 | 
						|
        score = tokenizer.get_score(i)
 | 
						|
 | 
						|
        toktype = 1
 | 
						|
        if tokenizer.is_unknown(i):
 | 
						|
            toktype = 2
 | 
						|
        if tokenizer.is_control(i):
 | 
						|
            toktype = 3
 | 
						|
        if tokenizer.is_unused(i):
 | 
						|
            toktype = 5
 | 
						|
        if tokenizer.is_byte(i):
 | 
						|
            toktype = 6
 | 
						|
 | 
						|
        tokens.append(text)
 | 
						|
        scores.append(score)
 | 
						|
        toktypes.append(toktype)
 | 
						|
        pass
 | 
						|
    return tokens, scores, toktypes
 | 
						|
 | 
						|
 | 
						|
def main():
 | 
						|
    parser = argparse.ArgumentParser(description="Convert a Persimmon model from Adept (e.g. Persimmon 8b chat) to a GGML compatible file")
 | 
						|
    parser.add_argument("--outfile",             type=Path, help="path to write to; default: based on input")
 | 
						|
    parser.add_argument("--ckpt-path",           type=Path, help="path to persimmon checkpoint .pt file")
 | 
						|
    parser.add_argument("--model-dir",           type=Path, help="directory containing model e.g. 8b_chat_model_release")
 | 
						|
    parser.add_argument("--adept-inference-dir", type=str, help="path to adept-inference code directory")
 | 
						|
    args = parser.parse_args()
 | 
						|
    sys.path.append(str(args.adept_inference_dir))
 | 
						|
    persimmon_model = torch.load(args.ckpt_path)
 | 
						|
    hparams = persimmon_model['args']
 | 
						|
    pprint(hparams)
 | 
						|
    tensors: dict[str, torch.Tensor] = {}
 | 
						|
    _flatten_dict(persimmon_model['model'], tensors, None)
 | 
						|
 | 
						|
    arch = gguf.MODEL_ARCH.PERSIMMON
 | 
						|
    gguf_writer = gguf.GGUFWriter(args.outfile, gguf.MODEL_ARCH_NAMES[arch])
 | 
						|
 | 
						|
    block_count = hparams.num_layers
 | 
						|
    head_count = hparams.num_attention_heads
 | 
						|
    head_count_kv = head_count
 | 
						|
    ctx_length = hparams.seq_length
 | 
						|
    hidden_size = hparams.hidden_size
 | 
						|
 | 
						|
    gguf_writer.add_name('persimmon-8b-chat')
 | 
						|
    gguf_writer.add_context_length(ctx_length)
 | 
						|
    gguf_writer.add_embedding_length(hidden_size)
 | 
						|
    gguf_writer.add_block_count(block_count)
 | 
						|
    gguf_writer.add_feed_forward_length(hparams.ffn_hidden_size)
 | 
						|
    # ref: https://github.com/ggerganov/llama.cpp/pull/4889/commits/eea19039fc52ea2dbd1aab45b59ab4e3e29a3443
 | 
						|
    gguf_writer.add_rope_dimension_count(hidden_size // head_count // 2)
 | 
						|
    gguf_writer.add_head_count(head_count)
 | 
						|
    gguf_writer.add_head_count_kv(head_count_kv)
 | 
						|
    gguf_writer.add_rope_freq_base(hparams.rotary_emb_base)
 | 
						|
    gguf_writer.add_layer_norm_eps(hparams.layernorm_epsilon)
 | 
						|
 | 
						|
    tokens, scores, toktypes = _get_sentencepiece_tokenizer_info(args.model_dir)
 | 
						|
    gguf_writer.add_tokenizer_model('llama')
 | 
						|
    gguf_writer.add_token_list(tokens)
 | 
						|
    gguf_writer.add_token_scores(scores)
 | 
						|
    gguf_writer.add_token_types(toktypes)
 | 
						|
    gguf_writer.add_bos_token_id(71013)
 | 
						|
    gguf_writer.add_eos_token_id(71013)
 | 
						|
 | 
						|
    tensor_map = gguf.get_tensor_name_map(arch, block_count)
 | 
						|
    print(tensor_map)
 | 
						|
    for name in tensors.keys():
 | 
						|
        data_torch = tensors[name]
 | 
						|
        if name.endswith(".self_attention.rotary_emb.inv_freq"):
 | 
						|
            continue
 | 
						|
        old_dtype = data_torch.dtype
 | 
						|
        # TODO: FP16 conversion produces garbage outputs. (Q8_0 does not, so..?)
 | 
						|
        data = data_torch.to(torch.float32).squeeze().numpy()
 | 
						|
        new_name = tensor_map.get_name(name, try_suffixes = (".weight", ".bias"))
 | 
						|
        if new_name is None:
 | 
						|
            print("Can not map tensor '" + name + "'")
 | 
						|
            sys.exit()
 | 
						|
        n_dims = len(data.shape)
 | 
						|
        print(new_name + ", n_dims = " + str(n_dims) + ", " + str(old_dtype) + " --> " + str(data.dtype))
 | 
						|
        gguf_writer.add_tensor(new_name, data)
 | 
						|
    print("gguf: write header")
 | 
						|
    gguf_writer.write_header_to_file()
 | 
						|
    print("gguf: write metadata")
 | 
						|
    gguf_writer.write_kv_data_to_file()
 | 
						|
    print("gguf: write tensors")
 | 
						|
    gguf_writer.write_tensors_to_file()
 | 
						|
 | 
						|
    gguf_writer.close()
 | 
						|
 | 
						|
    print(f"gguf: model successfully exported to '{args.outfile}'")
 | 
						|
    print("")
 | 
						|
 | 
						|
 | 
						|
if __name__ == '__main__':
 | 
						|
    main()
 |