mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-11-03 09:22:01 +00:00 
			
		
		
		
	* CUDA: add FP32 FlashAttention vector kernel * fixup! CUDA: add FP32 FlashAttention vector kernel * fixup! fixup! CUDA: add FP32 FlashAttention vector kernel * fixup! fixup! fixup! CUDA: add FP32 FlashAttention vector kernel
		
			
				
	
	
		
			3043 lines
		
	
	
		
			118 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			3043 lines
		
	
	
		
			118 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
#include "ggml-cuda.h"
 | 
						|
#include "ggml.h"
 | 
						|
#include "ggml-backend-impl.h"
 | 
						|
 | 
						|
#include "ggml-cuda/common.cuh"
 | 
						|
#include "ggml-cuda/acc.cuh"
 | 
						|
#include "ggml-cuda/arange.cuh"
 | 
						|
#include "ggml-cuda/argsort.cuh"
 | 
						|
#include "ggml-cuda/binbcast.cuh"
 | 
						|
#include "ggml-cuda/clamp.cuh"
 | 
						|
#include "ggml-cuda/concat.cuh"
 | 
						|
#include "ggml-cuda/convert.cuh"
 | 
						|
#include "ggml-cuda/cpy.cuh"
 | 
						|
#include "ggml-cuda/diagmask.cuh"
 | 
						|
#include "ggml-cuda/dmmv.cuh"
 | 
						|
#include "ggml-cuda/fattn.cuh"
 | 
						|
#include "ggml-cuda/getrows.cuh"
 | 
						|
#include "ggml-cuda/im2col.cuh"
 | 
						|
#include "ggml-cuda/mmq.cuh"
 | 
						|
#include "ggml-cuda/mmvq.cuh"
 | 
						|
#include "ggml-cuda/norm.cuh"
 | 
						|
#include "ggml-cuda/pad.cuh"
 | 
						|
#include "ggml-cuda/pool2d.cuh"
 | 
						|
#include "ggml-cuda/quantize.cuh"
 | 
						|
#include "ggml-cuda/rope.cuh"
 | 
						|
#include "ggml-cuda/scale.cuh"
 | 
						|
#include "ggml-cuda/softmax.cuh"
 | 
						|
#include "ggml-cuda/sumrows.cuh"
 | 
						|
#include "ggml-cuda/tsembd.cuh"
 | 
						|
#include "ggml-cuda/unary.cuh"
 | 
						|
#include "ggml-cuda/upscale.cuh"
 | 
						|
 | 
						|
#include <algorithm>
 | 
						|
#include <array>
 | 
						|
#include <atomic>
 | 
						|
#include <cinttypes>
 | 
						|
#include <cstddef>
 | 
						|
#include <cstdint>
 | 
						|
#include <float.h>
 | 
						|
#include <limits>
 | 
						|
#include <map>
 | 
						|
#include <memory>
 | 
						|
#include <mutex>
 | 
						|
#include <stdint.h>
 | 
						|
#include <stdio.h>
 | 
						|
#include <string>
 | 
						|
#include <vector>
 | 
						|
 | 
						|
static_assert(sizeof(half) == sizeof(ggml_fp16_t), "wrong fp16 size");
 | 
						|
 | 
						|
[[noreturn]]
 | 
						|
void ggml_cuda_error(const char * stmt, const char * func, const char * file, int line, const char * msg) {
 | 
						|
    int id = -1; // in case cudaGetDevice fails
 | 
						|
    cudaGetDevice(&id);
 | 
						|
 | 
						|
    fprintf(stderr, "CUDA error: %s\n", msg);
 | 
						|
    fprintf(stderr, "  current device: %d, in function %s at %s:%d\n", id, func, file, line);
 | 
						|
    fprintf(stderr, "  %s\n", stmt);
 | 
						|
    // abort with GGML_ASSERT to get a stack trace
 | 
						|
    GGML_ASSERT(!"CUDA error");
 | 
						|
}
 | 
						|
 | 
						|
// this is faster on Windows
 | 
						|
// probably because the Windows CUDA libraries forget to make this check before invoking the drivers
 | 
						|
void ggml_cuda_set_device(int device) {
 | 
						|
    int current_device;
 | 
						|
    CUDA_CHECK(cudaGetDevice(¤t_device));
 | 
						|
 | 
						|
    if (device == current_device) {
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    CUDA_CHECK(cudaSetDevice(device));
 | 
						|
}
 | 
						|
 | 
						|
int ggml_cuda_get_device() {
 | 
						|
    int id;
 | 
						|
    CUDA_CHECK(cudaGetDevice(&id));
 | 
						|
    return id;
 | 
						|
}
 | 
						|
 | 
						|
static ggml_cuda_device_info ggml_cuda_init() {
 | 
						|
#ifdef __HIP_PLATFORM_AMD__
 | 
						|
    // Workaround for a rocBLAS bug when using multiple graphics cards:
 | 
						|
    // https://github.com/ROCmSoftwarePlatform/rocBLAS/issues/1346
 | 
						|
    rocblas_initialize();
 | 
						|
    CUDA_CHECK(cudaDeviceSynchronize());
 | 
						|
#endif
 | 
						|
 | 
						|
    ggml_cuda_device_info info = {};
 | 
						|
 | 
						|
    cudaError_t err = cudaGetDeviceCount(&info.device_count);
 | 
						|
    if (err != cudaSuccess) {
 | 
						|
        fprintf(stderr, "%s: failed to initialize " GGML_CUDA_NAME ": %s\n", __func__, cudaGetErrorString(err));
 | 
						|
        return info;
 | 
						|
    }
 | 
						|
 | 
						|
    GGML_ASSERT(info.device_count <= GGML_CUDA_MAX_DEVICES);
 | 
						|
 | 
						|
    int64_t total_vram = 0;
 | 
						|
#if defined(GGML_CUDA_FORCE_MMQ)
 | 
						|
    fprintf(stderr, "%s: GGML_CUDA_FORCE_MMQ:   yes\n", __func__);
 | 
						|
#else
 | 
						|
    fprintf(stderr, "%s: GGML_CUDA_FORCE_MMQ:   no\n", __func__);
 | 
						|
#endif
 | 
						|
#if defined(CUDA_USE_TENSOR_CORES)
 | 
						|
    fprintf(stderr, "%s: CUDA_USE_TENSOR_CORES: yes\n", __func__);
 | 
						|
#else
 | 
						|
    fprintf(stderr, "%s: CUDA_USE_TENSOR_CORES: no\n", __func__);
 | 
						|
#endif
 | 
						|
    fprintf(stderr, "%s: found %d " GGML_CUDA_NAME " devices:\n", __func__, info.device_count);
 | 
						|
    for (int id = 0; id < info.device_count; ++id) {
 | 
						|
        int device_vmm = 0;
 | 
						|
 | 
						|
#if !defined(GGML_USE_HIPBLAS) && !defined(GGML_CUDA_NO_VMM)
 | 
						|
        CUdevice device;
 | 
						|
        CU_CHECK(cuDeviceGet(&device, id));
 | 
						|
        CU_CHECK(cuDeviceGetAttribute(&device_vmm, CU_DEVICE_ATTRIBUTE_VIRTUAL_MEMORY_MANAGEMENT_SUPPORTED, device));
 | 
						|
 | 
						|
        if (device_vmm) {
 | 
						|
            CUmemAllocationProp alloc_prop = {};
 | 
						|
            alloc_prop.type = CU_MEM_ALLOCATION_TYPE_PINNED;
 | 
						|
            alloc_prop.location.type = CU_MEM_LOCATION_TYPE_DEVICE;
 | 
						|
            alloc_prop.location.id = id;
 | 
						|
            CU_CHECK(cuMemGetAllocationGranularity(&info.devices[id].vmm_granularity, &alloc_prop, CU_MEM_ALLOC_GRANULARITY_RECOMMENDED));
 | 
						|
        }
 | 
						|
#endif // !defined(GGML_USE_HIPBLAS)
 | 
						|
        info.devices[id].vmm = !!device_vmm;
 | 
						|
 | 
						|
        cudaDeviceProp prop;
 | 
						|
        CUDA_CHECK(cudaGetDeviceProperties(&prop, id));
 | 
						|
        fprintf(stderr, "  Device %d: %s, compute capability %d.%d, VMM: %s\n", id, prop.name, prop.major, prop.minor, device_vmm ? "yes" : "no");
 | 
						|
 | 
						|
        info.default_tensor_split[id] = total_vram;
 | 
						|
        total_vram += prop.totalGlobalMem;
 | 
						|
 | 
						|
#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
 | 
						|
        info.devices[id].cc = 100*prop.major + 10*prop.minor + CC_OFFSET_AMD;
 | 
						|
#else
 | 
						|
        info.devices[id].cc = 100*prop.major + 10*prop.minor;
 | 
						|
#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
 | 
						|
        info.devices[id].smpb = prop.sharedMemPerBlock;
 | 
						|
        info.devices[id].nsm  = prop.multiProcessorCount;
 | 
						|
    }
 | 
						|
 | 
						|
    for (int id = 0; id < info.device_count; ++id) {
 | 
						|
        info.default_tensor_split[id] /= total_vram;
 | 
						|
    }
 | 
						|
 | 
						|
    // configure logging to stdout
 | 
						|
    // CUBLAS_CHECK(cublasLoggerConfigure(1, 1, 0, nullptr));
 | 
						|
 | 
						|
    return info;
 | 
						|
}
 | 
						|
 | 
						|
const ggml_cuda_device_info & ggml_cuda_info() {
 | 
						|
    static ggml_cuda_device_info info = ggml_cuda_init();
 | 
						|
    return info;
 | 
						|
}
 | 
						|
 | 
						|
// #define DEBUG_CUDA_MALLOC
 | 
						|
 | 
						|
// buffer pool for cuda (legacy)
 | 
						|
struct ggml_cuda_pool_leg : public ggml_cuda_pool {
 | 
						|
    static const int MAX_BUFFERS = 256;
 | 
						|
 | 
						|
    int device;
 | 
						|
    struct ggml_cuda_buffer {
 | 
						|
        void * ptr = nullptr;
 | 
						|
        size_t size = 0;
 | 
						|
    };
 | 
						|
 | 
						|
    ggml_cuda_buffer buffer_pool[MAX_BUFFERS] = {};
 | 
						|
    size_t pool_size = 0;
 | 
						|
 | 
						|
    explicit ggml_cuda_pool_leg(int device) :
 | 
						|
        device(device) {
 | 
						|
    }
 | 
						|
 | 
						|
    ~ggml_cuda_pool_leg() {
 | 
						|
        ggml_cuda_set_device(device);
 | 
						|
        for (int i = 0; i < MAX_BUFFERS; ++i) {
 | 
						|
            ggml_cuda_buffer & b = buffer_pool[i];
 | 
						|
            if (b.ptr != nullptr) {
 | 
						|
                CUDA_CHECK(cudaFree(b.ptr));
 | 
						|
                pool_size -= b.size;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        GGML_ASSERT(pool_size == 0);
 | 
						|
    }
 | 
						|
 | 
						|
    void * alloc(size_t size, size_t * actual_size) override {
 | 
						|
#ifdef DEBUG_CUDA_MALLOC
 | 
						|
        int nnz = 0;
 | 
						|
        size_t max_size = 0;
 | 
						|
#endif
 | 
						|
        size_t best_diff = 1ull << 36;
 | 
						|
        int ibest = -1;
 | 
						|
        for (int i = 0; i < MAX_BUFFERS; ++i) {
 | 
						|
            ggml_cuda_buffer& b = buffer_pool[i];
 | 
						|
            if (b.ptr != nullptr) {
 | 
						|
#ifdef DEBUG_CUDA_MALLOC
 | 
						|
                ++nnz;
 | 
						|
                if (b.size > max_size) max_size = b.size;
 | 
						|
#endif
 | 
						|
                if (b.size >= size) {
 | 
						|
                    size_t diff = b.size - size;
 | 
						|
                    if (diff < best_diff) {
 | 
						|
                        best_diff = diff;
 | 
						|
                        ibest = i;
 | 
						|
                        if (!best_diff) {
 | 
						|
                            void * ptr = b.ptr;
 | 
						|
                            *actual_size = b.size;
 | 
						|
                            b.ptr = nullptr;
 | 
						|
                            b.size = 0;
 | 
						|
                            return ptr;
 | 
						|
                        }
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
        if (ibest >= 0) {
 | 
						|
            ggml_cuda_buffer& b = buffer_pool[ibest];
 | 
						|
            void * ptr = b.ptr;
 | 
						|
            *actual_size = b.size;
 | 
						|
            b.ptr = nullptr;
 | 
						|
            b.size = 0;
 | 
						|
            return ptr;
 | 
						|
        }
 | 
						|
        void * ptr;
 | 
						|
        size_t look_ahead_size = (size_t) (1.05 * size);
 | 
						|
        look_ahead_size = 256 * ((look_ahead_size + 255)/256);
 | 
						|
        ggml_cuda_set_device(device);
 | 
						|
        CUDA_CHECK(cudaMalloc((void **) &ptr, look_ahead_size));
 | 
						|
        *actual_size = look_ahead_size;
 | 
						|
        pool_size += look_ahead_size;
 | 
						|
#ifdef DEBUG_CUDA_MALLOC
 | 
						|
        fprintf(stderr, "%s[%d]: %d buffers, max_size = %u MB, pool_size = %u MB, requested %u MB\n", __func__, device, nnz,
 | 
						|
                (uint32_t)(max_size/1024/1024), (uint32_t)(pool_size/1024/1024), (uint32_t)(size/1024/1024));
 | 
						|
#endif
 | 
						|
        return ptr;
 | 
						|
    }
 | 
						|
 | 
						|
    void free(void * ptr, size_t size) override {
 | 
						|
        for (int i = 0; i < MAX_BUFFERS; ++i) {
 | 
						|
            ggml_cuda_buffer& b = buffer_pool[i];
 | 
						|
            if (b.ptr == nullptr) {
 | 
						|
                b.ptr = ptr;
 | 
						|
                b.size = size;
 | 
						|
                return;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        fprintf(stderr, "WARNING: cuda buffer pool full, increase MAX_CUDA_BUFFERS\n");
 | 
						|
        ggml_cuda_set_device(device);
 | 
						|
        CUDA_CHECK(cudaFree(ptr));
 | 
						|
        pool_size -= size;
 | 
						|
    }
 | 
						|
};
 | 
						|
 | 
						|
// pool with virtual memory
 | 
						|
#if !defined(GGML_USE_HIPBLAS) && !defined(GGML_CUDA_NO_VMM)
 | 
						|
struct ggml_cuda_pool_vmm : public ggml_cuda_pool {
 | 
						|
    static const size_t CUDA_POOL_VMM_MAX_SIZE = 1ull << 35; // 32 GB
 | 
						|
 | 
						|
    int device;
 | 
						|
    CUdeviceptr pool_addr = 0;
 | 
						|
    size_t pool_used = 0;
 | 
						|
    size_t pool_size = 0;
 | 
						|
    size_t granularity;
 | 
						|
 | 
						|
    explicit ggml_cuda_pool_vmm(int device) :
 | 
						|
        device(device),
 | 
						|
        granularity(ggml_cuda_info().devices[device].vmm_granularity) {
 | 
						|
    }
 | 
						|
 | 
						|
    ~ggml_cuda_pool_vmm() {
 | 
						|
        if (pool_addr != 0) {
 | 
						|
            CU_CHECK(cuMemUnmap(pool_addr, pool_size));
 | 
						|
            CU_CHECK(cuMemAddressFree(pool_addr, CUDA_POOL_VMM_MAX_SIZE));
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    void * alloc(size_t size, size_t * actual_size) override {
 | 
						|
        // round up the allocation size to the alignment to ensure that all allocations are aligned for all data types
 | 
						|
        const size_t alignment = 128;
 | 
						|
        size = alignment * ((size + alignment - 1) / alignment);
 | 
						|
 | 
						|
        size_t avail = pool_size - pool_used;
 | 
						|
 | 
						|
        if (size > avail) {
 | 
						|
            // round up to the next multiple of the granularity
 | 
						|
            size_t reserve_size = size - avail;
 | 
						|
            reserve_size = granularity * ((reserve_size + granularity - 1) / granularity);
 | 
						|
 | 
						|
            GGML_ASSERT(pool_size + reserve_size <= CUDA_POOL_VMM_MAX_SIZE);
 | 
						|
 | 
						|
            // allocate more physical memory
 | 
						|
            CUmemAllocationProp prop = {};
 | 
						|
            prop.type = CU_MEM_ALLOCATION_TYPE_PINNED;
 | 
						|
            prop.location.type = CU_MEM_LOCATION_TYPE_DEVICE;
 | 
						|
            prop.location.id = device;
 | 
						|
            CUmemGenericAllocationHandle handle;
 | 
						|
            CU_CHECK(cuMemCreate(&handle, reserve_size, &prop, 0));
 | 
						|
 | 
						|
            // reserve virtual address space (if not already reserved)
 | 
						|
            if (pool_addr == 0) {
 | 
						|
                CU_CHECK(cuMemAddressReserve(&pool_addr, CUDA_POOL_VMM_MAX_SIZE, 0, 0, 0));
 | 
						|
            }
 | 
						|
 | 
						|
            // map at the end of the pool
 | 
						|
            CU_CHECK(cuMemMap(pool_addr + pool_size, reserve_size, 0, handle, 0));
 | 
						|
 | 
						|
            // the memory allocation handle is no longer needed after mapping
 | 
						|
            CU_CHECK(cuMemRelease(handle));
 | 
						|
 | 
						|
            // set access
 | 
						|
            CUmemAccessDesc access = {};
 | 
						|
            access.location.type = CU_MEM_LOCATION_TYPE_DEVICE;
 | 
						|
            access.location.id = device;
 | 
						|
            access.flags = CU_MEM_ACCESS_FLAGS_PROT_READWRITE;
 | 
						|
            CU_CHECK(cuMemSetAccess(pool_addr + pool_size, reserve_size, &access, 1));
 | 
						|
 | 
						|
            // add to the pool
 | 
						|
            pool_size += reserve_size;
 | 
						|
 | 
						|
            //printf("cuda pool[%d]: size increased to %llu MB (reserved %llu MB)\n",
 | 
						|
            //       device, (unsigned long long) (pool_size/1024/1024),
 | 
						|
            //       (unsigned long long) (reserve_size/1024/1024));
 | 
						|
        }
 | 
						|
 | 
						|
        GGML_ASSERT(pool_addr != 0);
 | 
						|
 | 
						|
        void * ptr = (void *) (pool_addr + pool_used);
 | 
						|
        *actual_size = size;
 | 
						|
        pool_used += size;
 | 
						|
 | 
						|
#ifdef DEBUG_CUDA_MALLOC
 | 
						|
        printf("cuda pool[%d]: allocated %llu bytes at %llx\n", device, (unsigned long long) size, ptr);
 | 
						|
#endif
 | 
						|
 | 
						|
        return ptr;
 | 
						|
    }
 | 
						|
 | 
						|
    void free(void * ptr, size_t size) override {
 | 
						|
#ifdef DEBUG_CUDA_MALLOC
 | 
						|
        printf("cuda pool[%d]: freed %llu bytes at %llx\n", device, (unsigned long long) size, ptr);
 | 
						|
#endif
 | 
						|
 | 
						|
        pool_used -= size;
 | 
						|
 | 
						|
        // all deallocations must be in reverse order of the allocations
 | 
						|
        GGML_ASSERT(ptr == (void *) (pool_addr + pool_used));
 | 
						|
    }
 | 
						|
};
 | 
						|
#endif // !defined(GGML_USE_HIPBLAS)
 | 
						|
 | 
						|
std::unique_ptr<ggml_cuda_pool> ggml_backend_cuda_context::new_pool_for_device(int device) {
 | 
						|
#if !defined(GGML_USE_HIPBLAS) && !defined(GGML_CUDA_NO_VMM)
 | 
						|
    if (ggml_cuda_info().devices[device].vmm) {
 | 
						|
        return std::unique_ptr<ggml_cuda_pool>(new ggml_cuda_pool_vmm(device));
 | 
						|
    }
 | 
						|
#endif
 | 
						|
    return std::unique_ptr<ggml_cuda_pool>(new ggml_cuda_pool_leg(device));
 | 
						|
}
 | 
						|
 | 
						|
// cuda buffer
 | 
						|
 | 
						|
struct ggml_backend_cuda_buffer_context {
 | 
						|
    int device;
 | 
						|
    void * dev_ptr = nullptr;
 | 
						|
    std::string name;
 | 
						|
 | 
						|
    ggml_backend_cuda_buffer_context(int device, void * dev_ptr) :
 | 
						|
        device(device), dev_ptr(dev_ptr),
 | 
						|
        name(GGML_CUDA_NAME + std::to_string(device)) {
 | 
						|
    }
 | 
						|
 | 
						|
    ~ggml_backend_cuda_buffer_context() {
 | 
						|
        CUDA_CHECK(cudaFree(dev_ptr));
 | 
						|
    }
 | 
						|
};
 | 
						|
 | 
						|
GGML_CALL static const char * ggml_backend_cuda_buffer_get_name(ggml_backend_buffer_t buffer) {
 | 
						|
    ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
 | 
						|
    return ctx->name.c_str();
 | 
						|
}
 | 
						|
 | 
						|
GGML_CALL static bool ggml_backend_buffer_is_cuda(ggml_backend_buffer_t buffer) {
 | 
						|
    return buffer->iface.get_name == ggml_backend_cuda_buffer_get_name;
 | 
						|
}
 | 
						|
 | 
						|
GGML_CALL static void ggml_backend_cuda_buffer_free_buffer(ggml_backend_buffer_t buffer) {
 | 
						|
    ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
 | 
						|
    delete ctx;
 | 
						|
}
 | 
						|
 | 
						|
GGML_CALL static void * ggml_backend_cuda_buffer_get_base(ggml_backend_buffer_t buffer) {
 | 
						|
    ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
 | 
						|
    return ctx->dev_ptr;
 | 
						|
}
 | 
						|
 | 
						|
GGML_CALL static void ggml_backend_cuda_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
 | 
						|
    ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
 | 
						|
 | 
						|
    if (tensor->view_src != NULL) {
 | 
						|
        assert(tensor->view_src->buffer->buft == buffer->buft);
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    if (ggml_is_quantized(tensor->type)) {
 | 
						|
        // initialize padding to 0 to avoid possible NaN values
 | 
						|
        size_t original_size = ggml_nbytes(tensor);
 | 
						|
        size_t padded_size = ggml_backend_buft_get_alloc_size(buffer->buft, tensor);
 | 
						|
 | 
						|
        if (padded_size > original_size && tensor->view_src == nullptr) {
 | 
						|
            ggml_cuda_set_device(ctx->device);
 | 
						|
            CUDA_CHECK(cudaMemset((char *)tensor->data + original_size, 0, padded_size - original_size));
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
GGML_CALL static void ggml_backend_cuda_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
 | 
						|
    ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
 | 
						|
 | 
						|
    ggml_cuda_set_device(ctx->device);
 | 
						|
    CUDA_CHECK(cudaMemcpyAsync((char *)tensor->data + offset, data, size, cudaMemcpyHostToDevice, cudaStreamPerThread));
 | 
						|
    CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread));
 | 
						|
}
 | 
						|
 | 
						|
GGML_CALL static void ggml_backend_cuda_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
 | 
						|
    ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
 | 
						|
 | 
						|
    ggml_cuda_set_device(ctx->device);
 | 
						|
    CUDA_CHECK(cudaMemcpyAsync(data, (const char *)tensor->data + offset, size, cudaMemcpyDeviceToHost, cudaStreamPerThread));
 | 
						|
    CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread));
 | 
						|
}
 | 
						|
 | 
						|
GGML_CALL static bool ggml_backend_cuda_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * src, ggml_tensor * dst) {
 | 
						|
    if (ggml_backend_buffer_is_cuda(src->buffer)) {
 | 
						|
        ggml_backend_cuda_buffer_context * src_ctx = (ggml_backend_cuda_buffer_context *)src->buffer->context;
 | 
						|
        ggml_backend_cuda_buffer_context * dst_ctx = (ggml_backend_cuda_buffer_context *)dst->buffer->context;
 | 
						|
        if (src_ctx->device == dst_ctx->device) {
 | 
						|
            CUDA_CHECK(cudaMemcpyAsync(dst->data, src->data, ggml_nbytes(src), cudaMemcpyDeviceToDevice, cudaStreamPerThread));
 | 
						|
        } else {
 | 
						|
#ifdef GGML_CUDA_NO_PEER_COPY
 | 
						|
            return false;
 | 
						|
#else
 | 
						|
            CUDA_CHECK(cudaMemcpyPeerAsync(dst->data, dst_ctx->device, src->data, src_ctx->device, ggml_nbytes(src), cudaStreamPerThread));
 | 
						|
#endif
 | 
						|
        }
 | 
						|
        CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread));
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
 | 
						|
    GGML_UNUSED(buffer);
 | 
						|
}
 | 
						|
 | 
						|
GGML_CALL static void ggml_backend_cuda_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
 | 
						|
    ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
 | 
						|
 | 
						|
    ggml_cuda_set_device(ctx->device);
 | 
						|
    CUDA_CHECK(cudaDeviceSynchronize());
 | 
						|
    CUDA_CHECK(cudaMemset(ctx->dev_ptr, value, buffer->size));
 | 
						|
    CUDA_CHECK(cudaDeviceSynchronize());
 | 
						|
}
 | 
						|
 | 
						|
static ggml_backend_buffer_i ggml_backend_cuda_buffer_interface = {
 | 
						|
    /* .get_name        = */ ggml_backend_cuda_buffer_get_name,
 | 
						|
    /* .free_buffer     = */ ggml_backend_cuda_buffer_free_buffer,
 | 
						|
    /* .get_base        = */ ggml_backend_cuda_buffer_get_base,
 | 
						|
    /* .init_tensor     = */ ggml_backend_cuda_buffer_init_tensor,
 | 
						|
    /* .set_tensor      = */ ggml_backend_cuda_buffer_set_tensor,
 | 
						|
    /* .get_tensor      = */ ggml_backend_cuda_buffer_get_tensor,
 | 
						|
    /* .cpy_tensor      = */ ggml_backend_cuda_buffer_cpy_tensor,
 | 
						|
    /* .clear           = */ ggml_backend_cuda_buffer_clear,
 | 
						|
    /* .reset           = */ NULL,
 | 
						|
};
 | 
						|
 | 
						|
// cuda buffer type
 | 
						|
struct ggml_backend_cuda_buffer_type_context {
 | 
						|
    int device;
 | 
						|
    std::string name;
 | 
						|
};
 | 
						|
 | 
						|
GGML_CALL static const char * ggml_backend_cuda_buffer_type_name(ggml_backend_buffer_type_t buft) {
 | 
						|
    ggml_backend_cuda_buffer_type_context * ctx = (ggml_backend_cuda_buffer_type_context *)buft->context;
 | 
						|
 | 
						|
    return ctx->name.c_str();
 | 
						|
}
 | 
						|
 | 
						|
GGML_CALL static ggml_backend_buffer_t ggml_backend_cuda_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
 | 
						|
    ggml_backend_cuda_buffer_type_context * buft_ctx = (ggml_backend_cuda_buffer_type_context *)buft->context;
 | 
						|
 | 
						|
    ggml_cuda_set_device(buft_ctx->device);
 | 
						|
 | 
						|
    size = std::max(size, (size_t)1); // cudaMalloc returns null for size 0
 | 
						|
 | 
						|
    void * dev_ptr;
 | 
						|
    cudaError_t err = cudaMalloc(&dev_ptr, size);
 | 
						|
    if (err != cudaSuccess) {
 | 
						|
        fprintf(stderr, "%s: allocating %.2f MiB on device %d: cudaMalloc failed: %s\n", __func__, size/1024.0/1024.0, buft_ctx->device, cudaGetErrorString(err));
 | 
						|
        return nullptr;
 | 
						|
    }
 | 
						|
 | 
						|
    ggml_backend_cuda_buffer_context * ctx = new ggml_backend_cuda_buffer_context(buft_ctx->device, dev_ptr);
 | 
						|
 | 
						|
    return ggml_backend_buffer_init(buft, ggml_backend_cuda_buffer_interface, ctx, size);
 | 
						|
}
 | 
						|
 | 
						|
GGML_CALL static size_t ggml_backend_cuda_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
 | 
						|
    return 128;
 | 
						|
 | 
						|
    GGML_UNUSED(buft);
 | 
						|
}
 | 
						|
 | 
						|
GGML_CALL static size_t ggml_backend_cuda_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
 | 
						|
    size_t size = ggml_nbytes(tensor);
 | 
						|
    int64_t ne0 = tensor->ne[0];
 | 
						|
 | 
						|
    if (ggml_is_quantized(tensor->type)) {
 | 
						|
        if (ne0 % MATRIX_ROW_PADDING != 0) {
 | 
						|
            size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    return size;
 | 
						|
 | 
						|
    GGML_UNUSED(buft);
 | 
						|
}
 | 
						|
 | 
						|
GGML_CALL static bool ggml_backend_cuda_buffer_type_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) {
 | 
						|
    if (!ggml_backend_is_cuda(backend)) {
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
 | 
						|
    ggml_backend_cuda_buffer_type_context * buft_ctx = (ggml_backend_cuda_buffer_type_context *)buft->context;
 | 
						|
    ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
 | 
						|
 | 
						|
    return buft_ctx->device == cuda_ctx->device;
 | 
						|
}
 | 
						|
 | 
						|
static ggml_backend_buffer_type_i ggml_backend_cuda_buffer_type_interface = {
 | 
						|
    /* .get_name         = */ ggml_backend_cuda_buffer_type_name,
 | 
						|
    /* .alloc_buffer     = */ ggml_backend_cuda_buffer_type_alloc_buffer,
 | 
						|
    /* .get_alignment    = */ ggml_backend_cuda_buffer_type_get_alignment,
 | 
						|
    /* .get_max_size     = */ NULL, // defaults to SIZE_MAX
 | 
						|
    /* .get_alloc_size   = */ ggml_backend_cuda_buffer_type_get_alloc_size,
 | 
						|
    /* .supports_backend = */ ggml_backend_cuda_buffer_type_supports_backend,
 | 
						|
    /* .is_host          = */ NULL,
 | 
						|
};
 | 
						|
 | 
						|
GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_buffer_type(int device) {
 | 
						|
    static std::mutex mutex;
 | 
						|
    std::lock_guard<std::mutex> lock(mutex);
 | 
						|
 | 
						|
    if (device >= ggml_backend_cuda_get_device_count()) {
 | 
						|
        return nullptr;
 | 
						|
    }
 | 
						|
 | 
						|
    static ggml_backend_buffer_type ggml_backend_cuda_buffer_types[GGML_CUDA_MAX_DEVICES];
 | 
						|
 | 
						|
    static bool ggml_backend_cuda_buffer_type_initialized = false;
 | 
						|
 | 
						|
    if (!ggml_backend_cuda_buffer_type_initialized) {
 | 
						|
        for (int i = 0; i < GGML_CUDA_MAX_DEVICES; i++) {
 | 
						|
            ggml_backend_cuda_buffer_types[i] = {
 | 
						|
                /* .iface    = */ ggml_backend_cuda_buffer_type_interface,
 | 
						|
                /* .context  = */ new ggml_backend_cuda_buffer_type_context{i, GGML_CUDA_NAME + std::to_string(i)},
 | 
						|
            };
 | 
						|
        }
 | 
						|
        ggml_backend_cuda_buffer_type_initialized = true;
 | 
						|
    }
 | 
						|
 | 
						|
    return &ggml_backend_cuda_buffer_types[device];
 | 
						|
}
 | 
						|
 | 
						|
// cuda split buffer
 | 
						|
 | 
						|
static int64_t get_row_rounding(ggml_type type, const std::array<float, GGML_CUDA_MAX_DEVICES> & tensor_split) {
 | 
						|
    int64_t min_compute_capability = INT_MAX;
 | 
						|
    int64_t max_compute_capability = INT_MIN;
 | 
						|
    for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
 | 
						|
        if (tensor_split[id] < (id + 1 < ggml_backend_cuda_get_device_count() ? tensor_split[id + 1] : 1.0f)) {
 | 
						|
            if (min_compute_capability > ggml_cuda_info().devices[id].cc) {
 | 
						|
                min_compute_capability = ggml_cuda_info().devices[id].cc;
 | 
						|
            }
 | 
						|
            if (max_compute_capability < ggml_cuda_info().devices[id].cc) {
 | 
						|
                max_compute_capability = ggml_cuda_info().devices[id].cc;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
 | 
						|
    switch(type) {
 | 
						|
        case GGML_TYPE_Q4_0:
 | 
						|
        case GGML_TYPE_Q4_1:
 | 
						|
        case GGML_TYPE_Q5_0:
 | 
						|
        case GGML_TYPE_Q5_1:
 | 
						|
        case GGML_TYPE_Q8_0:
 | 
						|
            return max_compute_capability >= CC_RDNA2 ? 128 : 64;
 | 
						|
        case GGML_TYPE_F16:
 | 
						|
        case GGML_TYPE_F32:
 | 
						|
            return 1;
 | 
						|
        case GGML_TYPE_Q2_K:
 | 
						|
            return max_compute_capability >= CC_RDNA2 ? 128 : 32;
 | 
						|
        case GGML_TYPE_Q3_K:
 | 
						|
            return min_compute_capability < CC_RDNA2 ? 128 : 64;
 | 
						|
        case GGML_TYPE_Q4_K:
 | 
						|
        case GGML_TYPE_Q5_K:
 | 
						|
        case GGML_TYPE_Q6_K:
 | 
						|
        case GGML_TYPE_IQ2_XXS:
 | 
						|
        case GGML_TYPE_IQ2_XS:
 | 
						|
        case GGML_TYPE_IQ2_S:
 | 
						|
        case GGML_TYPE_IQ3_XXS:
 | 
						|
        case GGML_TYPE_IQ1_S:
 | 
						|
        case GGML_TYPE_IQ1_M:
 | 
						|
        case GGML_TYPE_IQ4_NL:
 | 
						|
        case GGML_TYPE_IQ4_XS:
 | 
						|
        case GGML_TYPE_IQ3_S:
 | 
						|
            return max_compute_capability >= CC_RDNA2 ? 128 : 64;
 | 
						|
        default:
 | 
						|
            GGML_ASSERT(false);
 | 
						|
    }
 | 
						|
#else
 | 
						|
    switch(type) {
 | 
						|
        case GGML_TYPE_Q4_0:
 | 
						|
        case GGML_TYPE_Q4_1:
 | 
						|
            return max_compute_capability >= CC_VOLTA ? 128 : 64;
 | 
						|
        case GGML_TYPE_Q5_0:
 | 
						|
        case GGML_TYPE_Q5_1:
 | 
						|
        case GGML_TYPE_Q8_0:
 | 
						|
            return 64;
 | 
						|
        case GGML_TYPE_F16:
 | 
						|
        case GGML_TYPE_F32:
 | 
						|
            return 1;
 | 
						|
        case GGML_TYPE_Q2_K:
 | 
						|
        case GGML_TYPE_Q3_K:
 | 
						|
        case GGML_TYPE_Q4_K:
 | 
						|
        case GGML_TYPE_Q5_K:
 | 
						|
        case GGML_TYPE_IQ2_XXS:
 | 
						|
        case GGML_TYPE_IQ2_XS:
 | 
						|
        case GGML_TYPE_IQ2_S:
 | 
						|
        case GGML_TYPE_IQ3_XXS:
 | 
						|
        case GGML_TYPE_IQ1_S:
 | 
						|
        case GGML_TYPE_IQ1_M:
 | 
						|
        case GGML_TYPE_IQ4_NL:
 | 
						|
        case GGML_TYPE_IQ4_XS:
 | 
						|
        case GGML_TYPE_IQ3_S:
 | 
						|
            return max_compute_capability >= CC_VOLTA ? 128 : 64;
 | 
						|
        case GGML_TYPE_Q6_K:
 | 
						|
            return 64;
 | 
						|
        default:
 | 
						|
            GGML_ASSERT(false);
 | 
						|
    }
 | 
						|
#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
 | 
						|
}
 | 
						|
 | 
						|
static void get_row_split(int64_t * row_low, int64_t * row_high, const ggml_tensor * tensor, const std::array<float, GGML_CUDA_MAX_DEVICES> & tensor_split, int id) {
 | 
						|
    const int64_t nrows = ggml_nrows(tensor);
 | 
						|
    const int64_t rounding = get_row_rounding(tensor->type, tensor_split);
 | 
						|
 | 
						|
    *row_low = id == 0 ? 0 : nrows*tensor_split[id];
 | 
						|
    *row_low -= *row_low % rounding;
 | 
						|
 | 
						|
    if (id == ggml_backend_cuda_get_device_count() - 1) {
 | 
						|
        *row_high = nrows;
 | 
						|
    } else {
 | 
						|
        *row_high = nrows*tensor_split[id + 1];
 | 
						|
        *row_high -= *row_high % rounding;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split) {
 | 
						|
    static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
 | 
						|
 | 
						|
    return nrows_split*ggml_row_size(tensor->type, tensor->ne[0]);
 | 
						|
}
 | 
						|
 | 
						|
struct ggml_backend_cuda_split_buffer_type_context {
 | 
						|
    std::array<float, GGML_CUDA_MAX_DEVICES> tensor_split;
 | 
						|
};
 | 
						|
 | 
						|
struct ggml_backend_cuda_split_buffer_context {
 | 
						|
    ~ggml_backend_cuda_split_buffer_context() {
 | 
						|
        for (ggml_tensor_extra_gpu * extra : tensor_extras) {
 | 
						|
            for (int id = 0; id < GGML_CUDA_MAX_DEVICES; ++id) {
 | 
						|
                for (int64_t is = 0; is < GGML_CUDA_MAX_STREAMS; ++is) {
 | 
						|
                    if (extra->events[id][is] != nullptr) {
 | 
						|
                        CUDA_CHECK(cudaEventDestroy(extra->events[id][is]));
 | 
						|
                    }
 | 
						|
                }
 | 
						|
                if (extra->data_device[id] != nullptr) {
 | 
						|
                    CUDA_CHECK(cudaFree(extra->data_device[id]));
 | 
						|
                }
 | 
						|
            }
 | 
						|
            delete extra;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    std::vector<ggml_tensor_extra_gpu *> tensor_extras;
 | 
						|
};
 | 
						|
 | 
						|
GGML_CALL static const char * ggml_backend_cuda_split_buffer_get_name(ggml_backend_buffer_t buffer) {
 | 
						|
    return GGML_CUDA_NAME "_Split";
 | 
						|
 | 
						|
    GGML_UNUSED(buffer);
 | 
						|
}
 | 
						|
 | 
						|
static bool ggml_backend_buffer_is_cuda_split(ggml_backend_buffer_t buffer) {
 | 
						|
    return buffer->iface.get_name == ggml_backend_cuda_split_buffer_get_name;
 | 
						|
    GGML_UNUSED(ggml_backend_buffer_is_cuda_split); // only used in debug builds currently, avoid unused function warning in release builds
 | 
						|
}
 | 
						|
 | 
						|
GGML_CALL static void ggml_backend_cuda_split_buffer_free_buffer(ggml_backend_buffer_t buffer) {
 | 
						|
    ggml_backend_cuda_split_buffer_context * ctx = (ggml_backend_cuda_split_buffer_context *)buffer->context;
 | 
						|
    delete ctx;
 | 
						|
}
 | 
						|
 | 
						|
GGML_CALL static void * ggml_backend_cuda_split_buffer_get_base(ggml_backend_buffer_t buffer) {
 | 
						|
    // the pointers are stored in the tensor extras, this is just a dummy address and never dereferenced
 | 
						|
    return (void *)0x1000;
 | 
						|
 | 
						|
    GGML_UNUSED(buffer);
 | 
						|
}
 | 
						|
 | 
						|
GGML_CALL static void ggml_backend_cuda_split_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
 | 
						|
    GGML_ASSERT(tensor->view_src == nullptr); // views of split tensors are not supported
 | 
						|
 | 
						|
    ggml_backend_cuda_split_buffer_context * ctx = (ggml_backend_cuda_split_buffer_context *)buffer->context;
 | 
						|
    ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *)buffer->buft->context;
 | 
						|
 | 
						|
    const int64_t ne0 = tensor->ne[0];
 | 
						|
 | 
						|
    ggml_tensor_extra_gpu * extra = new ggml_tensor_extra_gpu{};
 | 
						|
    ctx->tensor_extras.push_back(extra);
 | 
						|
 | 
						|
    for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
 | 
						|
        int64_t row_low, row_high;
 | 
						|
        get_row_split(&row_low, &row_high, tensor, buft_ctx->tensor_split, id);
 | 
						|
 | 
						|
        int64_t nrows_split = row_high - row_low;
 | 
						|
        if (nrows_split == 0) {
 | 
						|
            continue;
 | 
						|
        }
 | 
						|
 | 
						|
        size_t size = ggml_nbytes_split(tensor, nrows_split);
 | 
						|
        const size_t original_size = size;
 | 
						|
 | 
						|
        // pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses
 | 
						|
        if (ne0 % MATRIX_ROW_PADDING != 0) {
 | 
						|
            size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
 | 
						|
        }
 | 
						|
 | 
						|
        // FIXME: do not crash if cudaMalloc fails
 | 
						|
        // currently, init_tensor cannot fail, it needs to be fixed in ggml-backend first
 | 
						|
        ggml_cuda_set_device(id);
 | 
						|
        char * buf;
 | 
						|
        CUDA_CHECK(cudaMalloc(&buf, size));
 | 
						|
 | 
						|
        // set padding to 0 to avoid possible NaN values
 | 
						|
        if (size > original_size) {
 | 
						|
            CUDA_CHECK(cudaMemset(buf + original_size, 0, size - original_size));
 | 
						|
        }
 | 
						|
 | 
						|
        extra->data_device[id] = buf;
 | 
						|
 | 
						|
        for (int64_t is = 0; is < GGML_CUDA_MAX_STREAMS; ++is) {
 | 
						|
            CUDA_CHECK(cudaEventCreateWithFlags(&extra->events[id][is], cudaEventDisableTiming));
 | 
						|
        }
 | 
						|
    }
 | 
						|
    tensor->extra = extra;
 | 
						|
}
 | 
						|
 | 
						|
GGML_CALL static void ggml_backend_cuda_split_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
 | 
						|
    // split tensors must always be set in their entirety at once
 | 
						|
    GGML_ASSERT(offset == 0);
 | 
						|
    GGML_ASSERT(size == ggml_nbytes(tensor));
 | 
						|
 | 
						|
    ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *)buffer->buft->context;
 | 
						|
 | 
						|
    const int64_t ne0 = tensor->ne[0];
 | 
						|
    const size_t nb1 = tensor->nb[1];
 | 
						|
    ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *)tensor->extra;
 | 
						|
 | 
						|
    for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
 | 
						|
        int64_t row_low, row_high;
 | 
						|
        get_row_split(&row_low, &row_high, tensor, buft_ctx->tensor_split, id);
 | 
						|
 | 
						|
        int64_t nrows_split = row_high - row_low;
 | 
						|
        if (nrows_split == 0) {
 | 
						|
            continue;
 | 
						|
        }
 | 
						|
 | 
						|
        const size_t offset_split = row_low*nb1;
 | 
						|
        size_t size = ggml_nbytes_split(tensor, nrows_split);
 | 
						|
        const size_t original_size = size;
 | 
						|
 | 
						|
        // pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses
 | 
						|
        if (ne0 % MATRIX_ROW_PADDING != 0) {
 | 
						|
            size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
 | 
						|
        }
 | 
						|
 | 
						|
        const char * buf_host = (const char *)data + offset_split;
 | 
						|
        CUDA_CHECK(cudaMemcpyAsync(extra->data_device[id], buf_host, original_size, cudaMemcpyHostToDevice, cudaStreamPerThread));
 | 
						|
    }
 | 
						|
 | 
						|
    for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
 | 
						|
        CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread));
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
GGML_CALL static void ggml_backend_cuda_split_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
 | 
						|
    // split tensors must always be set in their entirety at once
 | 
						|
    GGML_ASSERT(offset == 0);
 | 
						|
    GGML_ASSERT(size == ggml_nbytes(tensor));
 | 
						|
 | 
						|
    ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *)buffer->buft->context;
 | 
						|
 | 
						|
    const int64_t ne0 = tensor->ne[0];
 | 
						|
    const size_t nb1 = tensor->nb[1];
 | 
						|
    ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *)tensor->extra;
 | 
						|
 | 
						|
    for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
 | 
						|
        int64_t row_low, row_high;
 | 
						|
        get_row_split(&row_low, &row_high, tensor, buft_ctx->tensor_split, id);
 | 
						|
 | 
						|
        int64_t nrows_split = row_high - row_low;
 | 
						|
        if (nrows_split == 0) {
 | 
						|
            continue;
 | 
						|
        }
 | 
						|
 | 
						|
        const size_t offset_split = row_low*nb1;
 | 
						|
        size_t size = ggml_nbytes_split(tensor, nrows_split);
 | 
						|
        const size_t original_size = size;
 | 
						|
 | 
						|
        // pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses
 | 
						|
        if (ne0 % MATRIX_ROW_PADDING != 0) {
 | 
						|
            size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
 | 
						|
        }
 | 
						|
 | 
						|
        char * buf_host = (char *)data + offset_split;
 | 
						|
        CUDA_CHECK(cudaMemcpyAsync(buf_host, extra->data_device[id], original_size, cudaMemcpyDeviceToHost, cudaStreamPerThread));
 | 
						|
    }
 | 
						|
 | 
						|
    for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
 | 
						|
        CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread));
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
GGML_CALL static void ggml_backend_cuda_split_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
 | 
						|
    GGML_UNUSED(buffer);
 | 
						|
    GGML_UNUSED(value);
 | 
						|
}
 | 
						|
 | 
						|
static struct ggml_backend_buffer_i ggml_backend_cuda_split_buffer_interface = {
 | 
						|
    /* .get_name        = */ ggml_backend_cuda_split_buffer_get_name,
 | 
						|
    /* .free_buffer     = */ ggml_backend_cuda_split_buffer_free_buffer,
 | 
						|
    /* .get_base        = */ ggml_backend_cuda_split_buffer_get_base,
 | 
						|
    /* .init_tensor     = */ ggml_backend_cuda_split_buffer_init_tensor,
 | 
						|
    /* .set_tensor      = */ ggml_backend_cuda_split_buffer_set_tensor,
 | 
						|
    /* .get_tensor      = */ ggml_backend_cuda_split_buffer_get_tensor,
 | 
						|
    /* .cpy_tensor      = */ NULL,
 | 
						|
    /* .clear           = */ ggml_backend_cuda_split_buffer_clear,
 | 
						|
    /* .reset           = */ NULL,
 | 
						|
};
 | 
						|
 | 
						|
// cuda split buffer type
 | 
						|
 | 
						|
GGML_CALL static const char * ggml_backend_cuda_split_buffer_type_name(ggml_backend_buffer_type_t buft) {
 | 
						|
    return GGML_CUDA_NAME "_Split";
 | 
						|
 | 
						|
    GGML_UNUSED(buft);
 | 
						|
}
 | 
						|
 | 
						|
GGML_CALL static ggml_backend_buffer_t ggml_backend_cuda_split_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
 | 
						|
    // since we don't know the exact split after rounding, we cannot allocate the device buffers at this point
 | 
						|
    // instead, we allocate them for each tensor separately in init_tensor
 | 
						|
    // however, the size still represents the maximum cumulative size of all the device buffers after the tensors are allocated,
 | 
						|
    // as returned by get_alloc_size. this limit is enforced during tensor allocation by ggml-alloc, so it must be correct.
 | 
						|
    ggml_backend_cuda_split_buffer_context * ctx = new ggml_backend_cuda_split_buffer_context();
 | 
						|
 | 
						|
    return ggml_backend_buffer_init(buft, ggml_backend_cuda_split_buffer_interface, ctx, size);
 | 
						|
}
 | 
						|
 | 
						|
GGML_CALL static size_t ggml_backend_cuda_split_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
 | 
						|
    return 128;
 | 
						|
 | 
						|
    GGML_UNUSED(buft);
 | 
						|
}
 | 
						|
 | 
						|
GGML_CALL static size_t ggml_backend_cuda_split_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
 | 
						|
    ggml_backend_cuda_split_buffer_type_context * ctx = (ggml_backend_cuda_split_buffer_type_context *)buft->context;
 | 
						|
 | 
						|
    size_t total_size = 0;
 | 
						|
 | 
						|
    const int64_t ne0 = tensor->ne[0];
 | 
						|
 | 
						|
    for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
 | 
						|
        int64_t row_low, row_high;
 | 
						|
        get_row_split(&row_low, &row_high, tensor, ctx->tensor_split, id);
 | 
						|
 | 
						|
        int64_t nrows_split = row_high - row_low;
 | 
						|
        if (nrows_split == 0) {
 | 
						|
            continue;
 | 
						|
        }
 | 
						|
 | 
						|
        total_size += ggml_nbytes_split(tensor, nrows_split);
 | 
						|
 | 
						|
        // pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses
 | 
						|
        if (ne0 % MATRIX_ROW_PADDING != 0) {
 | 
						|
            total_size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    return total_size;
 | 
						|
}
 | 
						|
 | 
						|
GGML_CALL static bool ggml_backend_cuda_split_buffer_type_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) {
 | 
						|
    return ggml_backend_is_cuda(backend);
 | 
						|
 | 
						|
    GGML_UNUSED(buft);
 | 
						|
}
 | 
						|
 | 
						|
GGML_CALL static bool ggml_backend_cuda_split_buffer_type_is_host(ggml_backend_buffer_type_t buft) {
 | 
						|
    return false;
 | 
						|
 | 
						|
    GGML_UNUSED(buft);
 | 
						|
}
 | 
						|
 | 
						|
static ggml_backend_buffer_type_i ggml_backend_cuda_split_buffer_type_interface = {
 | 
						|
    /* .get_name         = */ ggml_backend_cuda_split_buffer_type_name,
 | 
						|
    /* .alloc_buffer     = */ ggml_backend_cuda_split_buffer_type_alloc_buffer,
 | 
						|
    /* .get_alignment    = */ ggml_backend_cuda_split_buffer_type_get_alignment,
 | 
						|
    /* .get_max_size     = */ NULL, // defaults to SIZE_MAX
 | 
						|
    /* .get_alloc_size   = */ ggml_backend_cuda_split_buffer_type_get_alloc_size,
 | 
						|
    /* .supports_backend = */ ggml_backend_cuda_split_buffer_type_supports_backend,
 | 
						|
    /* .is_host          = */ ggml_backend_cuda_split_buffer_type_is_host,
 | 
						|
};
 | 
						|
 | 
						|
GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_split_buffer_type(const float * tensor_split) {
 | 
						|
    static std::mutex mutex;
 | 
						|
    std::lock_guard<std::mutex> lock(mutex);
 | 
						|
 | 
						|
    static std::map<std::array<float, GGML_CUDA_MAX_DEVICES>, struct ggml_backend_buffer_type> buft_map;
 | 
						|
 | 
						|
    std::array<float, GGML_CUDA_MAX_DEVICES> tensor_split_arr = {};
 | 
						|
 | 
						|
    bool all_zero = tensor_split == nullptr || std::all_of(tensor_split, tensor_split + GGML_CUDA_MAX_DEVICES, [](float x) { return x == 0.0f; });
 | 
						|
    if (all_zero) {
 | 
						|
        tensor_split_arr = ggml_cuda_info().default_tensor_split;
 | 
						|
    } else {
 | 
						|
        float split_sum = 0.0f;
 | 
						|
        for (int i = 0; i < ggml_backend_cuda_get_device_count(); ++i) {
 | 
						|
            tensor_split_arr[i] = split_sum;
 | 
						|
            split_sum += tensor_split[i];
 | 
						|
        }
 | 
						|
        for (int i = 0; i < ggml_backend_cuda_get_device_count(); ++i) {
 | 
						|
            tensor_split_arr[i] /= split_sum;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    auto it = buft_map.find(tensor_split_arr);
 | 
						|
    if (it != buft_map.end()) {
 | 
						|
        return &it->second;
 | 
						|
    }
 | 
						|
 | 
						|
    struct ggml_backend_buffer_type buft {
 | 
						|
        /* .iface   = */ ggml_backend_cuda_split_buffer_type_interface,
 | 
						|
        /* .context = */ new ggml_backend_cuda_split_buffer_type_context{tensor_split_arr},
 | 
						|
    };
 | 
						|
 | 
						|
    auto result = buft_map.emplace(tensor_split_arr, buft);
 | 
						|
    return &result.first->second;
 | 
						|
}
 | 
						|
 | 
						|
// host buffer type
 | 
						|
 | 
						|
GGML_CALL static const char * ggml_backend_cuda_host_buffer_type_name(ggml_backend_buffer_type_t buft) {
 | 
						|
    return GGML_CUDA_NAME "_Host";
 | 
						|
 | 
						|
    GGML_UNUSED(buft);
 | 
						|
}
 | 
						|
 | 
						|
GGML_CALL static const char * ggml_backend_cuda_host_buffer_name(ggml_backend_buffer_t buffer) {
 | 
						|
    return GGML_CUDA_NAME "_Host";
 | 
						|
 | 
						|
    GGML_UNUSED(buffer);
 | 
						|
}
 | 
						|
 | 
						|
GGML_CALL static void ggml_backend_cuda_host_buffer_free_buffer(ggml_backend_buffer_t buffer) {
 | 
						|
    CUDA_CHECK(cudaFreeHost(buffer->context));
 | 
						|
}
 | 
						|
 | 
						|
static void * ggml_cuda_host_malloc(size_t size) {
 | 
						|
    if (getenv("GGML_CUDA_NO_PINNED") != nullptr) {
 | 
						|
        return nullptr;
 | 
						|
    }
 | 
						|
 | 
						|
    void * ptr = nullptr;
 | 
						|
    cudaError_t err = cudaMallocHost((void **) &ptr, size);
 | 
						|
    if (err != cudaSuccess) {
 | 
						|
        // clear the error
 | 
						|
        cudaGetLastError();
 | 
						|
        fprintf(stderr, "%s: warning: failed to allocate %.2f MiB of pinned memory: %s\n", __func__,
 | 
						|
            size/1024.0/1024.0, cudaGetErrorString(err));
 | 
						|
        return nullptr;
 | 
						|
    }
 | 
						|
 | 
						|
    return ptr;
 | 
						|
}
 | 
						|
 | 
						|
GGML_CALL static ggml_backend_buffer_t ggml_backend_cuda_host_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
 | 
						|
    void * ptr = ggml_cuda_host_malloc(size);
 | 
						|
 | 
						|
    if (ptr == nullptr) {
 | 
						|
        // fallback to cpu buffer
 | 
						|
        return ggml_backend_buft_alloc_buffer(ggml_backend_cpu_buffer_type(), size);
 | 
						|
    }
 | 
						|
 | 
						|
    ggml_backend_buffer_t buffer = ggml_backend_cpu_buffer_from_ptr(ptr, size);
 | 
						|
    buffer->buft = buft;
 | 
						|
    buffer->iface.get_name = ggml_backend_cuda_host_buffer_name;
 | 
						|
    buffer->iface.free_buffer = ggml_backend_cuda_host_buffer_free_buffer;
 | 
						|
 | 
						|
    return buffer;
 | 
						|
}
 | 
						|
 | 
						|
GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_host_buffer_type() {
 | 
						|
    static struct ggml_backend_buffer_type ggml_backend_cuda_buffer_type_host = {
 | 
						|
        /* .iface    = */ {
 | 
						|
            /* .get_name         = */ ggml_backend_cuda_host_buffer_type_name,
 | 
						|
            /* .alloc_buffer     = */ ggml_backend_cuda_host_buffer_type_alloc_buffer,
 | 
						|
            /* .get_alignment    = */ ggml_backend_cpu_buffer_type()->iface.get_alignment,
 | 
						|
            /* .get_max_size     = */ NULL, // defaults to SIZE_MAX
 | 
						|
            /* .get_alloc_size   = */ ggml_backend_cpu_buffer_type()->iface.get_alloc_size,
 | 
						|
            /* .supports_backend = */ ggml_backend_cpu_buffer_type()->iface.supports_backend,
 | 
						|
            /* .is_host          = */ ggml_backend_cpu_buffer_type()->iface.is_host,
 | 
						|
        },
 | 
						|
        /* .context  = */ nullptr,
 | 
						|
    };
 | 
						|
 | 
						|
    return &ggml_backend_cuda_buffer_type_host;
 | 
						|
}
 | 
						|
 | 
						|
//static bool ggml_backend_buffer_is_cuda_host(ggml_backend_buffer_t buffer) {
 | 
						|
//    return buffer->buft->iface.get_name == ggml_backend_cuda_host_buffer_type_name;
 | 
						|
//}
 | 
						|
 | 
						|
/// kernels
 | 
						|
 | 
						|
typedef void (*ggml_cuda_op_mul_mat_t)(
 | 
						|
    ggml_backend_cuda_context & ctx,
 | 
						|
    const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i,
 | 
						|
    const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
 | 
						|
    const int64_t src1_padded_row_size, cudaStream_t stream);
 | 
						|
 | 
						|
#ifndef GGML_CUDA_PEER_MAX_BATCH_SIZE
 | 
						|
#define GGML_CUDA_PEER_MAX_BATCH_SIZE 128
 | 
						|
#endif // GGML_CUDA_PEER_MAX_BATCH_SIZE
 | 
						|
 | 
						|
#define MUL_MAT_SRC1_COL_STRIDE 128
 | 
						|
 | 
						|
static __global__ void mul_mat_p021_f16_f32(
 | 
						|
    const void * __restrict__ vx, const float * __restrict__ y, float * __restrict__ dst,
 | 
						|
    const int ncols_x, const int nrows_x, const int nchannels_x, const int nchannels_y) {
 | 
						|
 | 
						|
    const half * x = (const half *) vx;
 | 
						|
 | 
						|
    const int row_x = blockDim.y*blockIdx.y + threadIdx.y;
 | 
						|
    const int channel = blockDim.z*blockIdx.z + threadIdx.z;
 | 
						|
    const int channel_x = channel / (nchannels_y / nchannels_x);
 | 
						|
 | 
						|
    const int nrows_y = ncols_x;
 | 
						|
    const int nrows_dst = nrows_x;
 | 
						|
    const int row_dst = row_x;
 | 
						|
 | 
						|
    float tmp = 0.0f;
 | 
						|
 | 
						|
    for (int col_x0 = 0; col_x0 < ncols_x; col_x0 += blockDim.x) {
 | 
						|
        const int col_x = col_x0 + threadIdx.x;
 | 
						|
 | 
						|
        if (col_x >= ncols_x) {
 | 
						|
            break;
 | 
						|
        }
 | 
						|
 | 
						|
        // x is transposed and permuted
 | 
						|
        const int ix = row_x*nchannels_x*ncols_x + channel_x*ncols_x + col_x;
 | 
						|
        const float xi = __half2float(x[ix]);
 | 
						|
 | 
						|
        const int row_y = col_x;
 | 
						|
 | 
						|
        // y is not transposed but permuted
 | 
						|
        const int iy = channel*nrows_y + row_y;
 | 
						|
 | 
						|
        tmp += xi * y[iy];
 | 
						|
    }
 | 
						|
 | 
						|
    // dst is not transposed and not permuted
 | 
						|
    const int idst = channel*nrows_dst + row_dst;
 | 
						|
 | 
						|
    // sum up partial sums and write back result
 | 
						|
    tmp = warp_reduce_sum(tmp);
 | 
						|
 | 
						|
    if (threadIdx.x == 0) {
 | 
						|
        dst[idst] = tmp;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static __global__ void mul_mat_vec_nc_f16_f32( // nc == non-contiguous
 | 
						|
    const void * __restrict__ vx, const float * __restrict__ y, float * __restrict__ dst, const int ncols_x, const int nrows_x,
 | 
						|
    const int row_stride_x, const int channel_stride_x, const int channel_x_divisor) {
 | 
						|
 | 
						|
    const half * x = (const half *) vx;
 | 
						|
 | 
						|
    const int row_x     = blockDim.y*blockIdx.y + threadIdx.y;
 | 
						|
    const int channel   = blockDim.z*blockIdx.z + threadIdx.z;
 | 
						|
    const int channel_x = channel / channel_x_divisor;
 | 
						|
 | 
						|
    const int nrows_y   = ncols_x;
 | 
						|
    const int nrows_dst = nrows_x;
 | 
						|
    const int row_dst   = row_x;
 | 
						|
 | 
						|
    const int idst = channel*nrows_dst + row_dst;
 | 
						|
 | 
						|
    float tmp = 0.0f;
 | 
						|
 | 
						|
    for (int col_x0 = 0; col_x0 < ncols_x; col_x0 += blockDim.x) {
 | 
						|
        const int col_x = col_x0 + threadIdx.x;
 | 
						|
 | 
						|
        if (col_x >= ncols_x) {
 | 
						|
            break;
 | 
						|
        }
 | 
						|
 | 
						|
        const int row_y = col_x;
 | 
						|
 | 
						|
        const int ix = channel_x*channel_stride_x + row_x*row_stride_x + col_x;
 | 
						|
        const int iy = channel*nrows_y + row_y;
 | 
						|
 | 
						|
        const float xi = __half2float(x[ix]);
 | 
						|
 | 
						|
        tmp += xi * y[iy];
 | 
						|
    }
 | 
						|
 | 
						|
    // sum up partial sums and write back result
 | 
						|
    tmp = warp_reduce_sum(tmp);
 | 
						|
 | 
						|
    if (threadIdx.x == 0) {
 | 
						|
        dst[idst] = tmp;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void ggml_mul_mat_p021_f16_f32_cuda(
 | 
						|
    const void * vx, const float * y, float * dst, const int ncols_x, const int nrows_x,
 | 
						|
    const int nchannels_x, const int nchannels_y, cudaStream_t stream) {
 | 
						|
 | 
						|
    const dim3 block_nums(1, nrows_x, nchannels_y);
 | 
						|
    const dim3 block_dims(WARP_SIZE, 1, 1);
 | 
						|
    mul_mat_p021_f16_f32<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols_x, nrows_x, nchannels_x, nchannels_y);
 | 
						|
}
 | 
						|
 | 
						|
static void ggml_mul_mat_vec_nc_f16_f32_cuda(
 | 
						|
    const void * vx, const float * y, float * dst, const int ncols_x, const int nrows_x, const int row_stride_x,
 | 
						|
    const int nchannels_x, const int nchannels_y, const int channel_stride_x, cudaStream_t stream) {
 | 
						|
 | 
						|
    const dim3 block_nums(1, nrows_x, nchannels_y);
 | 
						|
    const dim3 block_dims(WARP_SIZE, 1, 1);
 | 
						|
    mul_mat_vec_nc_f16_f32<<<block_nums, block_dims, 0, stream>>>
 | 
						|
        (vx, y, dst, ncols_x, nrows_x, row_stride_x, channel_stride_x, nchannels_y/nchannels_x);
 | 
						|
}
 | 
						|
 | 
						|
static cudaError_t ggml_cuda_cpy_tensor_2d(
 | 
						|
    void * dst, const struct ggml_tensor * src, int64_t i3, int64_t i2, int64_t i1_low, int64_t i1_high, cudaStream_t stream) {
 | 
						|
 | 
						|
    GGML_ASSERT(ggml_backend_buffer_is_cuda(src->buffer));
 | 
						|
    char * src_ptr = (char *) src->data;
 | 
						|
    char * dst_ptr = (char *) dst;
 | 
						|
 | 
						|
    const int64_t ne0 = src->ne[0];
 | 
						|
    const int64_t nb0 = src->nb[0];
 | 
						|
    const int64_t nb1 = src->nb[1];
 | 
						|
    const int64_t nb2 = src->nb[2];
 | 
						|
    const int64_t nb3 = src->nb[3];
 | 
						|
    const enum ggml_type type = src->type;
 | 
						|
    const int64_t ts = ggml_type_size(type);
 | 
						|
    const int64_t bs = ggml_blck_size(type);
 | 
						|
    int64_t i1_diff = i1_high - i1_low;
 | 
						|
 | 
						|
    const char * x = src_ptr + i1_low*nb1 + i2*nb2 + i3*nb3;
 | 
						|
    if (nb0 == ts && nb1 == ts*ne0/bs) {
 | 
						|
        return cudaMemcpyAsync(dst_ptr, x, i1_diff*nb1, cudaMemcpyDeviceToDevice, stream);
 | 
						|
    } else if (nb0 == ts) {
 | 
						|
        return cudaMemcpy2DAsync(dst_ptr, ts*ne0/bs, x, nb1, ts*ne0/bs, i1_diff, cudaMemcpyDeviceToDevice, stream);
 | 
						|
    } else {
 | 
						|
        for (int64_t i1 = 0; i1 < i1_diff; i1++) {
 | 
						|
            const void * rx = (const void *) ((const char *) x + i1*nb1);
 | 
						|
            void * rd = (void *) (dst_ptr + i1*ts*ne0/bs);
 | 
						|
            // pretend the row is a matrix with cols=1
 | 
						|
            cudaError_t r = cudaMemcpy2DAsync(rd, ts/bs, rx, nb0, ts/bs, ne0, cudaMemcpyDeviceToDevice, stream);
 | 
						|
            if (r != cudaSuccess) {
 | 
						|
                return r;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        return cudaSuccess;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void ggml_cuda_op_mul_mat_cublas(
 | 
						|
    ggml_backend_cuda_context & ctx,
 | 
						|
    const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i,
 | 
						|
    const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
 | 
						|
    const int64_t src1_padded_row_size, cudaStream_t stream) {
 | 
						|
 | 
						|
    GGML_ASSERT(src0_dd_i  != nullptr);
 | 
						|
    GGML_ASSERT(src1_ddf_i != nullptr);
 | 
						|
    GGML_ASSERT(dst_dd_i   != nullptr);
 | 
						|
 | 
						|
    const int64_t ne00 = src0->ne[0];
 | 
						|
    const int64_t ne10 = src1->ne[0];
 | 
						|
 | 
						|
    const int64_t ne0 = dst->ne[0];
 | 
						|
 | 
						|
    const int64_t row_diff = row_high - row_low;
 | 
						|
 | 
						|
    int id = ggml_cuda_get_device();
 | 
						|
 | 
						|
    // the main device has a larger memory buffer to hold the results from all GPUs
 | 
						|
    // ldc == nrows of the matrix that cuBLAS writes into
 | 
						|
    int64_t ldc = id == ctx.device ? ne0 : row_diff;
 | 
						|
 | 
						|
    const int compute_capability = ggml_cuda_info().devices[id].cc;
 | 
						|
 | 
						|
    if (compute_capability >= CC_VOLTA && (src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) && ggml_is_contiguous(src0) && row_diff == src0->ne[1] && dst->op_params[0] == GGML_PREC_DEFAULT) {
 | 
						|
        // convert src0 and src1 to fp16, multiply as fp16, convert dst to fp32
 | 
						|
        ggml_cuda_pool_alloc<half> src0_as_f16(ctx.pool(id));
 | 
						|
        if (src0->type != GGML_TYPE_F16) {
 | 
						|
            const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src0->type);
 | 
						|
            GGML_ASSERT(to_fp16_cuda != nullptr);
 | 
						|
            size_t ne = row_diff*ne00;
 | 
						|
            src0_as_f16.alloc(ne);
 | 
						|
            to_fp16_cuda(src0_dd_i, src0_as_f16.get(), ne, stream);
 | 
						|
        }
 | 
						|
        const half * src0_ptr = src0->type == GGML_TYPE_F16 ? (const half *) src0_dd_i : src0_as_f16.get();
 | 
						|
 | 
						|
        ggml_cuda_pool_alloc<half> src1_as_f16(ctx.pool(id));
 | 
						|
        if (src1->type != GGML_TYPE_F16) {
 | 
						|
            const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src1->type);
 | 
						|
            GGML_ASSERT(to_fp16_cuda != nullptr);
 | 
						|
            size_t ne = src1_ncols*ne10;
 | 
						|
            src1_as_f16.alloc(ne);
 | 
						|
            to_fp16_cuda(src1_ddf_i, src1_as_f16.get(), ne, stream);
 | 
						|
        }
 | 
						|
        const half * src1_ptr = src1->type == GGML_TYPE_F16 ? (const half *) src1_ddf_i : src1_as_f16.get();
 | 
						|
        ggml_cuda_pool_alloc<half> dst_f16(ctx.pool(id), row_diff*src1_ncols);
 | 
						|
 | 
						|
        const half alpha_f16 = 1.0f;
 | 
						|
        const half beta_f16 = 0.0f;
 | 
						|
 | 
						|
        CUBLAS_CHECK(cublasSetStream(ctx.cublas_handle(id), stream));
 | 
						|
        CUBLAS_CHECK(
 | 
						|
            cublasGemmEx(ctx.cublas_handle(id), CUBLAS_OP_T, CUBLAS_OP_N,
 | 
						|
                    row_diff, src1_ncols, ne10,
 | 
						|
                    &alpha_f16, src0_ptr,       CUDA_R_16F, ne00,
 | 
						|
                                src1_ptr,       CUDA_R_16F, ne10,
 | 
						|
                    &beta_f16,   dst_f16.get(), CUDA_R_16F, ldc,
 | 
						|
                    CUBLAS_COMPUTE_16F,
 | 
						|
                    CUBLAS_GEMM_DEFAULT_TENSOR_OP));
 | 
						|
 | 
						|
        const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(GGML_TYPE_F16);
 | 
						|
        to_fp32_cuda(dst_f16.get(), dst_dd_i, row_diff*src1_ncols, stream);
 | 
						|
    } else {
 | 
						|
        ggml_cuda_pool_alloc<float> src0_ddq_as_f32(ctx.pool(id));
 | 
						|
        ggml_cuda_pool_alloc<float> src1_ddq_as_f32(ctx.pool(id));
 | 
						|
 | 
						|
        if (src0->type != GGML_TYPE_F32) {
 | 
						|
            const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(src0->type);
 | 
						|
            GGML_ASSERT(to_fp32_cuda != nullptr);
 | 
						|
            src0_ddq_as_f32.alloc(row_diff*ne00);
 | 
						|
            to_fp32_cuda(src0_dd_i, src0_ddq_as_f32.get(), row_diff*ne00, stream);
 | 
						|
        }
 | 
						|
        if (src1->type != GGML_TYPE_F32) {
 | 
						|
            const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(src1->type);
 | 
						|
            GGML_ASSERT(to_fp32_cuda != nullptr);
 | 
						|
            src1_ddq_as_f32.alloc(src1_ncols*ne10);
 | 
						|
            to_fp32_cuda(src1_ddf_i, src1_ddq_as_f32.get(), src1_ncols*ne10, stream);
 | 
						|
        }
 | 
						|
 | 
						|
        const float * src0_ddf_i = src0->type == GGML_TYPE_F32 ? (const float *) src0_dd_i : src0_ddq_as_f32.get();
 | 
						|
        const float * src1_ddf1_i = src1->type == GGML_TYPE_F32 ? (const float *) src1_ddf_i : src1_ddq_as_f32.get();
 | 
						|
 | 
						|
        const float alpha = 1.0f;
 | 
						|
        const float beta = 0.0f;
 | 
						|
 | 
						|
        CUBLAS_CHECK(cublasSetStream(ctx.cublas_handle(id), stream));
 | 
						|
        CUBLAS_CHECK(
 | 
						|
            cublasSgemm(ctx.cublas_handle(id), CUBLAS_OP_T, CUBLAS_OP_N,
 | 
						|
                    row_diff, src1_ncols, ne10,
 | 
						|
                    &alpha, src0_ddf_i,  ne00,
 | 
						|
                            src1_ddf1_i, ne10,
 | 
						|
                    &beta,  dst_dd_i,    ldc));
 | 
						|
    }
 | 
						|
 | 
						|
    GGML_UNUSED(dst);
 | 
						|
    GGML_UNUSED(src1_ddq_i);
 | 
						|
    GGML_UNUSED(src1_padded_row_size);
 | 
						|
}
 | 
						|
 | 
						|
static void ggml_cuda_set_peer_access(const int n_tokens, int main_device) {
 | 
						|
    static bool peer_access_enabled = false;
 | 
						|
 | 
						|
    const bool enable_peer_access = n_tokens <= GGML_CUDA_PEER_MAX_BATCH_SIZE;
 | 
						|
 | 
						|
    if (peer_access_enabled == enable_peer_access) {
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
#ifdef NDEBUG
 | 
						|
    for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
 | 
						|
        ggml_cuda_set_device(id);
 | 
						|
        CUDA_CHECK(cudaDeviceSynchronize());
 | 
						|
    }
 | 
						|
 | 
						|
    for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
 | 
						|
        ggml_cuda_set_device(id);
 | 
						|
 | 
						|
        for (int id_other = 0; id_other < ggml_backend_cuda_get_device_count(); ++id_other) {
 | 
						|
            if (id == id_other) {
 | 
						|
                continue;
 | 
						|
            }
 | 
						|
            if (id != main_device && id_other != main_device) {
 | 
						|
                continue;
 | 
						|
            }
 | 
						|
 | 
						|
            int can_access_peer;
 | 
						|
            CUDA_CHECK(cudaDeviceCanAccessPeer(&can_access_peer, id, id_other));
 | 
						|
            if (can_access_peer) {
 | 
						|
                if (enable_peer_access) {
 | 
						|
                    cudaError_t err = cudaDeviceEnablePeerAccess(id_other, 0);
 | 
						|
                    if (err != cudaErrorPeerAccessAlreadyEnabled) {
 | 
						|
                        CUDA_CHECK(err);
 | 
						|
                    }
 | 
						|
                } else {
 | 
						|
                    cudaError_t err = cudaDeviceDisablePeerAccess(id_other);
 | 
						|
                    if (err != cudaErrorPeerAccessNotEnabled) {
 | 
						|
                        CUDA_CHECK(err);
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    ggml_cuda_set_device(main_device);
 | 
						|
#endif // NDEBUG
 | 
						|
 | 
						|
    peer_access_enabled = enable_peer_access;
 | 
						|
 | 
						|
    GGML_UNUSED(main_device);
 | 
						|
}
 | 
						|
 | 
						|
static void ggml_cuda_op_mul_mat(
 | 
						|
    ggml_backend_cuda_context & ctx,
 | 
						|
    const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, ggml_cuda_op_mul_mat_t op,
 | 
						|
    const bool convert_src1_to_q8_1) {
 | 
						|
 | 
						|
    const int64_t ne00 = src0->ne[0];
 | 
						|
    const int64_t ne01 = src0->ne[1];
 | 
						|
    const int64_t ne02 = src0->ne[2];
 | 
						|
    const int64_t ne03 = src0->ne[3];
 | 
						|
 | 
						|
    const int64_t ne10 = src1->ne[0];
 | 
						|
    const int64_t ne11 = src1->ne[1];
 | 
						|
    const int64_t ne12 = src1->ne[2];
 | 
						|
    const int64_t ne13 = src1->ne[3];
 | 
						|
    const int64_t nrows1 = ggml_nrows(src1);
 | 
						|
 | 
						|
    GGML_ASSERT(ne03 == ne13);
 | 
						|
 | 
						|
    const int64_t ne0 = dst->ne[0];
 | 
						|
    const int64_t ne1 = dst->ne[1];
 | 
						|
 | 
						|
    const int64_t nb2 = dst->nb[2];
 | 
						|
    const int64_t nb3 = dst->nb[3];
 | 
						|
 | 
						|
    GGML_ASSERT(ggml_backend_buffer_is_cuda(dst->buffer));
 | 
						|
    GGML_ASSERT(ggml_backend_buffer_is_cuda(src1->buffer));
 | 
						|
    ggml_backend_cuda_buffer_context * src1_ctx = (ggml_backend_cuda_buffer_context *) src1->buffer->context;
 | 
						|
    ggml_backend_cuda_buffer_context * dst_ctx  = (ggml_backend_cuda_buffer_context *) dst->buffer->context;
 | 
						|
 | 
						|
    GGML_ASSERT(src1->type == GGML_TYPE_F32 || (src1->ne[2] == 1 && src1->ne[3] == 1));
 | 
						|
 | 
						|
    GGML_ASSERT(ne12 >= ne02 && ne12 % ne02 == 0);
 | 
						|
 | 
						|
    const int64_t i02_divisor = ne12 / ne02;
 | 
						|
 | 
						|
    const size_t src0_ts = ggml_type_size(src0->type);
 | 
						|
    const size_t src0_bs = ggml_blck_size(src0->type);
 | 
						|
    const size_t q8_1_ts = sizeof(block_q8_1);
 | 
						|
    const size_t q8_1_bs = QK8_1;
 | 
						|
 | 
						|
    const bool src0_is_contiguous = ggml_is_contiguous(src0);
 | 
						|
    const bool src1_is_contiguous = ggml_is_contiguous(src1);
 | 
						|
 | 
						|
    const int64_t src1_padded_col_size = GGML_PAD(ne10, MATRIX_ROW_PADDING);
 | 
						|
 | 
						|
    const bool split = ggml_backend_buffer_is_cuda_split(src0->buffer);
 | 
						|
    GGML_ASSERT(!(split && ne02 > 1));
 | 
						|
    GGML_ASSERT(!(split && ne03 > 1));
 | 
						|
    GGML_ASSERT(!(split && ne02 < ne12));
 | 
						|
 | 
						|
    ggml_tensor_extra_gpu * src0_extra = split ? (ggml_tensor_extra_gpu *) src0->extra : nullptr;
 | 
						|
 | 
						|
 | 
						|
    std::array<float, GGML_CUDA_MAX_DEVICES> tensor_split;
 | 
						|
    if (split) {
 | 
						|
        ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *) src0->buffer->buft->context;
 | 
						|
        tensor_split = buft_ctx->tensor_split;
 | 
						|
    }
 | 
						|
 | 
						|
    struct dev_data {
 | 
						|
        ggml_cuda_pool_alloc<char>  src0_dd_alloc;
 | 
						|
        ggml_cuda_pool_alloc<float> src1_ddf_alloc;
 | 
						|
        ggml_cuda_pool_alloc<char>  src1_ddq_alloc;
 | 
						|
        ggml_cuda_pool_alloc<float>   dst_dd_alloc;
 | 
						|
 | 
						|
        char  *  src0_dd = nullptr;
 | 
						|
        float * src1_ddf = nullptr; // float
 | 
						|
        char  * src1_ddq = nullptr; // q8_1
 | 
						|
        float *   dst_dd = nullptr;
 | 
						|
 | 
						|
        int64_t  row_low;
 | 
						|
        int64_t row_high;
 | 
						|
    };
 | 
						|
 | 
						|
    dev_data dev[GGML_CUDA_MAX_DEVICES];
 | 
						|
 | 
						|
    int used_devices = 0;
 | 
						|
 | 
						|
    for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
 | 
						|
        // by default, use all rows
 | 
						|
        dev[id].row_low  = 0;
 | 
						|
        dev[id].row_high = ne01;
 | 
						|
 | 
						|
        // for multi GPU, get the row boundaries from tensor split
 | 
						|
        // and round to mul_mat_q tile sizes
 | 
						|
        if (split) {
 | 
						|
            const int64_t rounding = get_row_rounding(src0->type, tensor_split);
 | 
						|
 | 
						|
            if (id != 0) {
 | 
						|
                dev[id].row_low  = ne01*tensor_split[id];
 | 
						|
                if (dev[id].row_low < ne01) {
 | 
						|
                    dev[id].row_low -= dev[id].row_low % rounding;
 | 
						|
                }
 | 
						|
            }
 | 
						|
 | 
						|
            if (id != ggml_backend_cuda_get_device_count() - 1) {
 | 
						|
                dev[id].row_high  = ne01*tensor_split[id + 1];
 | 
						|
                if (dev[id].row_high < ne01) {
 | 
						|
                    dev[id].row_high -= dev[id].row_high % rounding;
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
 | 
						|
        if ((!split && id != ctx.device) || dev[id].row_low == dev[id].row_high) {
 | 
						|
            continue;
 | 
						|
        }
 | 
						|
 | 
						|
        used_devices++;
 | 
						|
 | 
						|
        const bool src1_on_device = id == src1_ctx->device;
 | 
						|
        const bool  dst_on_device = id == dst_ctx->device;
 | 
						|
 | 
						|
        ggml_cuda_set_device(id);
 | 
						|
        cudaStream_t stream = ctx.stream(id, 0);
 | 
						|
 | 
						|
        if (src0_is_contiguous) {
 | 
						|
            dev[id].src0_dd = split ? (char *) src0_extra->data_device[id] : (char *) src0->data;
 | 
						|
        } else {
 | 
						|
            dev[id].src0_dd = dev[id].src0_dd_alloc.alloc(ctx.pool(id), ggml_nbytes(src0));
 | 
						|
        }
 | 
						|
 | 
						|
        if (src1_on_device && src1_is_contiguous) {
 | 
						|
            dev[id].src1_ddf = (float *) src1->data;
 | 
						|
        } else {
 | 
						|
            dev[id].src1_ddf = dev[id].src1_ddf_alloc.alloc(ctx.pool(id), ggml_nelements(src1));
 | 
						|
        }
 | 
						|
 | 
						|
        if (convert_src1_to_q8_1) {
 | 
						|
            dev[id].src1_ddq = dev[id].src1_ddq_alloc.alloc(ctx.pool(id), nrows1*src1_padded_col_size*q8_1_ts/q8_1_bs);
 | 
						|
 | 
						|
            if (src1_on_device && src1_is_contiguous) {
 | 
						|
                quantize_row_q8_1_cuda(dev[id].src1_ddf, dev[id].src1_ddq, ne10, nrows1, src1_padded_col_size, stream);
 | 
						|
                CUDA_CHECK(cudaGetLastError());
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        if (dst_on_device) {
 | 
						|
            dev[id].dst_dd = (float *) dst->data;
 | 
						|
        } else {
 | 
						|
            const size_t size_dst_ddf = split ? (dev[id].row_high - dev[id].row_low)*ne1 : ggml_nelements(dst);
 | 
						|
            dev[id].dst_dd = dev[id].dst_dd_alloc.alloc(ctx.pool(id), size_dst_ddf);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    // if multiple devices are used they need to wait for the main device
 | 
						|
    // here an event is recorded that signals that the main device has finished calculating the input data
 | 
						|
    if (split && used_devices > 1) {
 | 
						|
        ggml_cuda_set_device(ctx.device);
 | 
						|
        CUDA_CHECK(cudaEventRecord(src0_extra->events[ctx.device][0], ctx.stream()));
 | 
						|
    }
 | 
						|
 | 
						|
    const int64_t src1_col_stride = split && used_devices > 1 ? MUL_MAT_SRC1_COL_STRIDE : ne11;
 | 
						|
    for (int64_t src1_col_0 = 0; src1_col_0 < ne11; src1_col_0 += src1_col_stride) {
 | 
						|
        const int64_t is = split ? (src1_col_0/src1_col_stride) % GGML_CUDA_MAX_STREAMS : 0;
 | 
						|
        const int64_t src1_ncols = src1_col_0 + src1_col_stride > ne11 ? ne11 - src1_col_0 : src1_col_stride;
 | 
						|
 | 
						|
        for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
 | 
						|
            if ((!split && id != ctx.device) || dev[id].row_low == dev[id].row_high) {
 | 
						|
                continue;
 | 
						|
            }
 | 
						|
 | 
						|
            const bool src1_on_device = id == src1_ctx->device;
 | 
						|
            const bool  dst_on_device = id == dst_ctx->device;
 | 
						|
            const int64_t row_diff = dev[id].row_high - dev[id].row_low;
 | 
						|
 | 
						|
            ggml_cuda_set_device(id);
 | 
						|
            cudaStream_t stream = ctx.stream(id, is);
 | 
						|
 | 
						|
            // wait for main GPU data if necessary
 | 
						|
            if (split && (id != ctx.device || is != 0)) {
 | 
						|
                CUDA_CHECK(cudaStreamWaitEvent(stream, src0_extra->events[ctx.device][0], 0));
 | 
						|
            }
 | 
						|
 | 
						|
            for (int64_t i0 = 0; i0 < ne13*ne12; ++i0) {
 | 
						|
                const int64_t i03 = i0 / ne12;
 | 
						|
                const int64_t i02 = i0 % ne12;
 | 
						|
 | 
						|
                const size_t src1_ddq_i_offset = (i0*ne11 + src1_col_0) * src1_padded_col_size*q8_1_ts/q8_1_bs;
 | 
						|
 | 
						|
                // for split tensors the data begins at i0 == i0_offset_low
 | 
						|
                char  *  src0_dd_i =  dev[id].src0_dd + (i0/i02_divisor) * (ne01*ne00*src0_ts)/src0_bs;
 | 
						|
                float * src1_ddf_i = dev[id].src1_ddf + (i0*ne11 + src1_col_0) * ne10;
 | 
						|
                char  * src1_ddq_i = dev[id].src1_ddq +  src1_ddq_i_offset;
 | 
						|
                float *   dst_dd_i =   dev[id].dst_dd + (i0*ne1  + src1_col_0) * (dst_on_device ? ne0 : row_diff);
 | 
						|
 | 
						|
                // the main device memory buffer can be on VRAM scratch, with space for all partial results
 | 
						|
                // in that case an offset on dst_ddf_i is needed
 | 
						|
                if (id == ctx.device) {
 | 
						|
                    dst_dd_i += dev[id].row_low; // offset is 0 if no tensor split
 | 
						|
                }
 | 
						|
 | 
						|
                // copy src0, src1 to device if necessary
 | 
						|
                if (src1_is_contiguous) {
 | 
						|
                    if (id != ctx.device) {
 | 
						|
                        if (convert_src1_to_q8_1) {
 | 
						|
                            char * src1_ddq_i_source = dev[ctx.device].src1_ddq + src1_ddq_i_offset;
 | 
						|
                            CUDA_CHECK(cudaMemcpyPeerAsync(src1_ddq_i, id, src1_ddq_i_source, ctx.device,
 | 
						|
                                                            src1_ncols*src1_padded_col_size*q8_1_ts/q8_1_bs, stream));
 | 
						|
                        } else {
 | 
						|
                            float * src1_ddf_i_source = (float *) src1->data;
 | 
						|
                            src1_ddf_i_source += (i0*ne11 + src1_col_0) * ne10;
 | 
						|
                            CUDA_CHECK(cudaMemcpyPeerAsync(src1_ddf_i, id, src1_ddf_i_source, ctx.device,
 | 
						|
                                                            src1_ncols*ne10*sizeof(float), stream));
 | 
						|
                        }
 | 
						|
                    }
 | 
						|
                } else if (src1_on_device && !src1_is_contiguous) {
 | 
						|
                    CUDA_CHECK(ggml_cuda_cpy_tensor_2d(
 | 
						|
                                src1_ddf_i, src1, i03, i02, src1_col_0, src1_col_0+src1_ncols, stream));
 | 
						|
                } else {
 | 
						|
                    GGML_ASSERT(false);
 | 
						|
                }
 | 
						|
 | 
						|
                if (convert_src1_to_q8_1 && !src1_is_contiguous) {
 | 
						|
                    quantize_row_q8_1_cuda(src1_ddf_i, src1_ddq_i, ne10, src1_ncols, src1_padded_col_size, stream);
 | 
						|
                    CUDA_CHECK(cudaGetLastError());
 | 
						|
                }
 | 
						|
 | 
						|
                if (src1_col_0 == 0 && !src0_is_contiguous && i02 % i02_divisor == 0) {
 | 
						|
                    CUDA_CHECK(ggml_cuda_cpy_tensor_2d(src0_dd_i, src0, i03, i02/i02_divisor, dev[id].row_low, dev[id].row_high, stream));
 | 
						|
                }
 | 
						|
 | 
						|
                // do the computation
 | 
						|
                op(ctx, src0, src1, dst, src0_dd_i, src1_ddf_i, src1_ddq_i, dst_dd_i,
 | 
						|
                    dev[id].row_low, dev[id].row_high, src1_ncols, src1_padded_col_size, stream);
 | 
						|
                CUDA_CHECK(cudaGetLastError());
 | 
						|
 | 
						|
                // copy dst to host or other device if necessary
 | 
						|
                if (!dst_on_device) {
 | 
						|
                    void * dst_off_device = dst->data;
 | 
						|
                    if (split) {
 | 
						|
                        // src0 = weight matrix is saved as a transposed matrix for better memory layout.
 | 
						|
                        // dst is NOT transposed.
 | 
						|
                        // The outputs of matrix matrix multiplications can therefore NOT simply be concatenated for >1 GPU.
 | 
						|
                        // Instead they need to be copied to the correct slice in ne0 = dst row index.
 | 
						|
                        // If dst is a vector with ne0 == 1 then you don't have to do this but it still produces correct results.
 | 
						|
                        float * dhf_dst_i = (float *) ((char *) dst_off_device + i02*nb2 + i03*nb3);
 | 
						|
                        GGML_ASSERT(dst->nb[1] == ne0*sizeof(float));
 | 
						|
                        dhf_dst_i += src1_col_0*ne0 + dev[id].row_low;
 | 
						|
#if !defined(GGML_USE_HIPBLAS)
 | 
						|
                        // cudaMemcpy2DAsync may fail with copies between vmm pools of different devices
 | 
						|
                        cudaMemcpy3DPeerParms p = {};
 | 
						|
                        p.dstDevice = ctx.device;
 | 
						|
                        p.dstPtr = make_cudaPitchedPtr(dhf_dst_i, ne0*sizeof(float), row_diff, src1_ncols);
 | 
						|
                        p.srcDevice = id;
 | 
						|
                        p.srcPtr = make_cudaPitchedPtr(dst_dd_i, row_diff*sizeof(float), row_diff, src1_ncols);
 | 
						|
                        p.extent = make_cudaExtent(row_diff*sizeof(float), src1_ncols, 1);
 | 
						|
                        CUDA_CHECK(cudaMemcpy3DPeerAsync(&p, stream));
 | 
						|
#else
 | 
						|
                        // HIP does not support cudaMemcpy3DPeerAsync or vmm pools
 | 
						|
                        CUDA_CHECK(cudaMemcpy2DAsync(dhf_dst_i, ne0*sizeof(float),
 | 
						|
                                                        dst_dd_i, row_diff*sizeof(float),
 | 
						|
                                                        row_diff*sizeof(float), src1_ncols,
 | 
						|
                                                        cudaMemcpyDeviceToDevice, stream));
 | 
						|
#endif
 | 
						|
                    } else {
 | 
						|
                        float * dhf_dst_i = (float *) ((char *) dst_off_device + i02*nb2 + i03*nb3);
 | 
						|
                        GGML_ASSERT(dst->nb[1] == ne0*sizeof(float));
 | 
						|
                        dhf_dst_i += src1_col_0*ne0;
 | 
						|
                        CUDA_CHECK(cudaMemcpyAsync(dhf_dst_i, dst_dd_i, src1_ncols*ne0*sizeof(float), cudaMemcpyDeviceToDevice, stream));
 | 
						|
                    }
 | 
						|
                }
 | 
						|
 | 
						|
                // add event for the main device to wait on until other device is done
 | 
						|
                if (split && (id != ctx.device || is != 0)) {
 | 
						|
                    CUDA_CHECK(cudaEventRecord(src0_extra->events[id][is], stream));
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    // main device waits for all other devices to be finished
 | 
						|
    if (split && ggml_backend_cuda_get_device_count() > 1) {
 | 
						|
        int64_t is_max = (ne11 + MUL_MAT_SRC1_COL_STRIDE - 1) / MUL_MAT_SRC1_COL_STRIDE;
 | 
						|
        is_max = is_max <= GGML_CUDA_MAX_STREAMS ? is_max : GGML_CUDA_MAX_STREAMS;
 | 
						|
 | 
						|
        ggml_cuda_set_device(ctx.device);
 | 
						|
        for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
 | 
						|
            if (dev[id].row_low == dev[id].row_high) {
 | 
						|
                continue;
 | 
						|
            }
 | 
						|
            for (int64_t is = 0; is < is_max; ++is) {
 | 
						|
                CUDA_CHECK(cudaStreamWaitEvent(ctx.stream(), src0_extra->events[id][is], 0));
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void ggml_cuda_mul_mat_vec_p021(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
 | 
						|
    GGML_ASSERT(ggml_is_permuted(src0) && ggml_is_permuted(src1));
 | 
						|
    GGML_ASSERT(ggml_backend_buffer_is_cuda(src0->buffer));
 | 
						|
    GGML_ASSERT(src0->nb[0] <= src0->nb[1] && src0->nb[2] <= src0->nb[3]); // 0213 permutation
 | 
						|
    GGML_ASSERT(src1->nb[0] <= src1->nb[1] && src1->nb[2] <= src1->nb[3]); // 0213 permutation
 | 
						|
    GGML_ASSERT(src0->type == GGML_TYPE_F16);
 | 
						|
    GGML_ASSERT(src1->type == GGML_TYPE_F32);
 | 
						|
 | 
						|
    const int64_t ne00 = src0->ne[0];
 | 
						|
    const int64_t ne01 = src0->ne[1];
 | 
						|
    const int64_t ne02 = src0->ne[2];
 | 
						|
 | 
						|
    const int64_t ne12 = src1->ne[2];
 | 
						|
 | 
						|
    cudaStream_t main_stream = ctx.stream();
 | 
						|
 | 
						|
    void  * src0_ddq = src0->data;
 | 
						|
    float * src1_ddf = (float *) src1->data;
 | 
						|
    float * dst_ddf  = (float *) dst->data;
 | 
						|
 | 
						|
    ggml_mul_mat_p021_f16_f32_cuda(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, ne02, ne12, main_stream);
 | 
						|
}
 | 
						|
 | 
						|
static void ggml_cuda_mul_mat_vec_nc(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
 | 
						|
    GGML_ASSERT(!ggml_is_transposed(src0));
 | 
						|
    GGML_ASSERT(!ggml_is_transposed(src1));
 | 
						|
    GGML_ASSERT(!ggml_is_permuted(src0));
 | 
						|
    GGML_ASSERT(ggml_backend_buffer_is_cuda(src0->buffer));
 | 
						|
    GGML_ASSERT(src0->type == GGML_TYPE_F16);
 | 
						|
    GGML_ASSERT(src1->type == GGML_TYPE_F32);
 | 
						|
 | 
						|
    const int64_t ne00 = src0->ne[0];
 | 
						|
    const int64_t ne01 = src0->ne[1];
 | 
						|
    const int64_t ne02 = src0->ne[2];
 | 
						|
 | 
						|
    const int64_t nb01 = src0->nb[1];
 | 
						|
    const int64_t nb02 = src0->nb[2];
 | 
						|
 | 
						|
    const int64_t ne12 = src1->ne[2];
 | 
						|
 | 
						|
    cudaStream_t main_stream = ctx.stream();
 | 
						|
 | 
						|
    void  * src0_ddq = src0->data;
 | 
						|
    float * src1_ddf = (float *) src1->data;
 | 
						|
    float * dst_ddf  = (float *) dst->data;
 | 
						|
 | 
						|
    const int64_t row_stride_x = nb01 / sizeof(half);
 | 
						|
    const int64_t channel_stride_x = nb02 / sizeof(half);
 | 
						|
 | 
						|
    ggml_mul_mat_vec_nc_f16_f32_cuda(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, row_stride_x, ne02, ne12, channel_stride_x, main_stream);
 | 
						|
}
 | 
						|
 | 
						|
static __global__ void k_compute_batched_ptrs(
 | 
						|
        const half * src0_as_f16, const half * src1_as_f16, char * dst,
 | 
						|
        const void ** ptrs_src, void ** ptrs_dst,
 | 
						|
        int64_t ne12, int64_t ne13,
 | 
						|
        int64_t ne23,
 | 
						|
        size_t  nb02, size_t  nb03,
 | 
						|
        size_t  nb12, size_t  nb13,
 | 
						|
        size_t  nbd2, size_t  nbd3,
 | 
						|
        int64_t r2,   int64_t r3) {
 | 
						|
    int64_t i13 = blockIdx.x * blockDim.x + threadIdx.x;
 | 
						|
    int64_t i12 = blockIdx.y * blockDim.y + threadIdx.y;
 | 
						|
 | 
						|
    if (i13 >= ne13 || i12 >= ne12) {
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    int64_t i03 = i13 / r3;
 | 
						|
    int64_t i02 = i12 / r2;
 | 
						|
 | 
						|
    ptrs_src[0*ne23 + i12 + i13*ne12] = (const char *) src0_as_f16 + i02*nb02 + i03*nb03;
 | 
						|
    ptrs_src[1*ne23 + i12 + i13*ne12] = (const char *) src1_as_f16 + i12*nb12 + i13*nb13;
 | 
						|
    ptrs_dst[0*ne23 + i12 + i13*ne12] = (      char *)         dst + i12*nbd2 + i13*nbd3;
 | 
						|
}
 | 
						|
 | 
						|
static void ggml_cuda_mul_mat_batched_cublas(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
 | 
						|
    GGML_ASSERT(!ggml_is_transposed(src0));
 | 
						|
    GGML_ASSERT(!ggml_is_transposed(src1));
 | 
						|
 | 
						|
    GGML_ASSERT(ggml_backend_buffer_is_cuda(src0->buffer));
 | 
						|
    GGML_ASSERT(src0->type == GGML_TYPE_F16);
 | 
						|
 | 
						|
    GGML_TENSOR_BINARY_OP_LOCALS
 | 
						|
 | 
						|
    const int64_t ne_dst = ggml_nelements(dst);
 | 
						|
 | 
						|
    cudaStream_t main_stream = ctx.stream();
 | 
						|
 | 
						|
    CUBLAS_CHECK(cublasSetStream(ctx.cublas_handle(), main_stream));
 | 
						|
 | 
						|
    void * src0_ddq = src0->data;
 | 
						|
    half * src0_f16 = (half *) src0_ddq;
 | 
						|
    float * src1_ddf = (float *) src1->data;
 | 
						|
    float * dst_ddf  = (float *) dst->data;
 | 
						|
 | 
						|
    // convert src1 to fp16
 | 
						|
    ggml_cuda_pool_alloc<half> src1_f16_alloc(ctx.pool());
 | 
						|
    if (src1->type != GGML_TYPE_F16) {
 | 
						|
        const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src1->type);
 | 
						|
        const int64_t ne_src1 = ggml_nelements(src1);
 | 
						|
        src1_f16_alloc.alloc(ne_src1);
 | 
						|
        GGML_ASSERT(to_fp16_cuda != nullptr);
 | 
						|
        to_fp16_cuda(src1_ddf, src1_f16_alloc.get(), ne_src1, main_stream);
 | 
						|
    }
 | 
						|
    half * src1_f16 = src1->type == GGML_TYPE_F16 ? (half *) src1_ddf : src1_f16_alloc.get();
 | 
						|
 | 
						|
    ggml_cuda_pool_alloc<half> dst_f16(ctx.pool());
 | 
						|
    char * dst_t;
 | 
						|
 | 
						|
    cublasComputeType_t cu_compute_type = CUBLAS_COMPUTE_16F;
 | 
						|
    cudaDataType_t      cu_data_type    = CUDA_R_16F;
 | 
						|
 | 
						|
    // dst strides
 | 
						|
    size_t nbd2 = dst->nb[2];
 | 
						|
    size_t nbd3 = dst->nb[3];
 | 
						|
 | 
						|
    const half  alpha_f16 = 1.0f;
 | 
						|
    const half  beta_f16  = 0.0f;
 | 
						|
 | 
						|
    const float alpha_f32 = 1.0f;
 | 
						|
    const float beta_f32  = 0.0f;
 | 
						|
 | 
						|
    const void * alpha = &alpha_f16;
 | 
						|
    const void * beta  = &beta_f16;
 | 
						|
 | 
						|
    if (dst->op_params[0] == GGML_PREC_DEFAULT) {
 | 
						|
        dst_t = (char *) dst_f16.alloc(ne_dst);
 | 
						|
 | 
						|
        nbd2 /= sizeof(float) / sizeof(half);
 | 
						|
        nbd3 /= sizeof(float) / sizeof(half);
 | 
						|
    } else {
 | 
						|
        dst_t = (char *) dst_ddf;
 | 
						|
 | 
						|
        cu_compute_type = CUBLAS_COMPUTE_32F;
 | 
						|
        cu_data_type    = CUDA_R_32F;
 | 
						|
 | 
						|
        alpha = &alpha_f32;
 | 
						|
        beta  = &beta_f32;
 | 
						|
    }
 | 
						|
 | 
						|
    GGML_ASSERT(ne12 % ne02 == 0);
 | 
						|
    GGML_ASSERT(ne13 % ne03 == 0);
 | 
						|
 | 
						|
    // broadcast factors
 | 
						|
    const int64_t r2 = ne12/ne02;
 | 
						|
    const int64_t r3 = ne13/ne03;
 | 
						|
 | 
						|
#if 0
 | 
						|
    // use cublasGemmEx
 | 
						|
    {
 | 
						|
        for (int i13 = 0; i13 < ne13; ++i13) {
 | 
						|
            for (int i12 = 0; i12 < ne12; ++i12) {
 | 
						|
                int i03 = i13 / r3;
 | 
						|
                int i02 = i12 / r2;
 | 
						|
 | 
						|
                CUBLAS_CHECK(
 | 
						|
                        cublasGemmEx(g_cublas_handles[g_main_device], CUBLAS_OP_T, CUBLAS_OP_N,
 | 
						|
                            ne01, ne11, ne10,
 | 
						|
                            alpha, (const char *) src0_as_f16 + i02*src0->nb[2]   + i03*src0->nb[3]  , CUDA_R_16F,   nb01/sizeof(half),
 | 
						|
                                   (const char *) src1_as_f16 + i12*src1->nb[2]/2 + i13*src1->nb[3]/2, CUDA_R_16F,   nb11/sizeof(float),
 | 
						|
                            beta,  (      char *)       dst_t + i12*nbd2          + i13*nbd3,          cu_data_type, ne01,
 | 
						|
                            cu_compute_type,
 | 
						|
                            CUBLAS_GEMM_DEFAULT_TENSOR_OP));
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
#else
 | 
						|
    if (r2 == 1 && r3 == 1 && src0->nb[2]*src0->ne[2] == src0->nb[3] && src1->nb[2]*src1->ne[2] == src1->nb[3]) {
 | 
						|
        // there is no broadcast and src0, src1 are contiguous across dims 2, 3
 | 
						|
        // use cublasGemmStridedBatchedEx
 | 
						|
        CUBLAS_CHECK(
 | 
						|
        cublasGemmStridedBatchedEx(ctx.cublas_handle(), CUBLAS_OP_T, CUBLAS_OP_N,
 | 
						|
                ne01, ne11, ne10,
 | 
						|
                alpha, (const char *) src0_f16, CUDA_R_16F,   nb01/nb00, nb02/nb00,  // strideA
 | 
						|
                       (const char *) src1_f16, CUDA_R_16F,   nb11/nb10, nb12/nb10,  // strideB
 | 
						|
                beta,  (      char *)    dst_t, cu_data_type, ne01,       nb2/nb0,   // strideC
 | 
						|
                ne12*ne13,
 | 
						|
                cu_compute_type,
 | 
						|
                CUBLAS_GEMM_DEFAULT_TENSOR_OP));
 | 
						|
    } else {
 | 
						|
        // use cublasGemmBatchedEx
 | 
						|
        const int ne23 = ne12*ne13;
 | 
						|
 | 
						|
        ggml_cuda_pool_alloc<const void *> ptrs_src(ctx.pool(), 2*ne23);
 | 
						|
        ggml_cuda_pool_alloc<      void *> ptrs_dst(ctx.pool(), 1*ne23);
 | 
						|
 | 
						|
        dim3 block_dims(ne13, ne12);
 | 
						|
        k_compute_batched_ptrs<<<1, block_dims, 0, main_stream>>>(
 | 
						|
                src0_f16, src1_f16, dst_t,
 | 
						|
                ptrs_src.get(), ptrs_dst.get(),
 | 
						|
                ne12, ne13,
 | 
						|
                ne23,
 | 
						|
                nb02, nb03,
 | 
						|
                src1->type == GGML_TYPE_F16 ? nb12 : nb12/2,
 | 
						|
                src1->type == GGML_TYPE_F16 ? nb13 : nb13/2,
 | 
						|
                nbd2, nbd3,
 | 
						|
                r2, r3);
 | 
						|
        CUDA_CHECK(cudaGetLastError());
 | 
						|
 | 
						|
        CUBLAS_CHECK(
 | 
						|
        cublasGemmBatchedEx(ctx.cublas_handle(), CUBLAS_OP_T, CUBLAS_OP_N,
 | 
						|
                ne01, ne11, ne10,
 | 
						|
                alpha, (const void **) (ptrs_src.get() + 0*ne23), CUDA_R_16F,   nb01/nb00,
 | 
						|
                       (const void **) (ptrs_src.get() + 1*ne23), CUDA_R_16F,   nb11/nb10,
 | 
						|
                beta,  (      void **) (ptrs_dst.get() + 0*ne23), cu_data_type, ne01,
 | 
						|
                ne23,
 | 
						|
                cu_compute_type,
 | 
						|
                CUBLAS_GEMM_DEFAULT_TENSOR_OP));
 | 
						|
    }
 | 
						|
#endif
 | 
						|
 | 
						|
    if (dst->op_params[0] == GGML_PREC_DEFAULT) {
 | 
						|
        const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(GGML_TYPE_F16);
 | 
						|
        to_fp32_cuda(dst_f16.get(), dst_ddf, ne_dst, main_stream);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void ggml_cuda_mul_mat(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
 | 
						|
    const bool split = ggml_backend_buffer_is_cuda_split(src0->buffer);
 | 
						|
 | 
						|
    int64_t min_compute_capability = INT_MAX;
 | 
						|
 | 
						|
    bool any_pascal_with_slow_fp16 = false;
 | 
						|
    if (split) {
 | 
						|
        ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *) src0->buffer->buft->context;
 | 
						|
        auto & tensor_split = buft_ctx->tensor_split;
 | 
						|
        for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
 | 
						|
            // skip devices that are not going to do any work:
 | 
						|
            if (tensor_split[id] >= (id + 1 < ggml_backend_cuda_get_device_count() ? tensor_split[id + 1] : 1.0f)) {
 | 
						|
                continue;
 | 
						|
            }
 | 
						|
 | 
						|
            if (min_compute_capability > ggml_cuda_info().devices[id].cc) {
 | 
						|
                min_compute_capability = ggml_cuda_info().devices[id].cc;
 | 
						|
            }
 | 
						|
            if (ggml_cuda_info().devices[id].cc == 610) {
 | 
						|
                any_pascal_with_slow_fp16 = true;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        min_compute_capability    = ggml_cuda_info().devices[ctx.device].cc;
 | 
						|
        any_pascal_with_slow_fp16 = ggml_cuda_info().devices[ctx.device].cc == 610;
 | 
						|
    }
 | 
						|
 | 
						|
    // check data types and tensor shapes for custom matrix multiplication kernels:
 | 
						|
    bool use_dequantize_mul_mat_vec = (ggml_is_quantized(src0->type) || src0->type == GGML_TYPE_F16)
 | 
						|
        && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32
 | 
						|
        && src0->ne[0] % GGML_CUDA_DMMV_X == 0 && src1->ne[1] == 1;
 | 
						|
 | 
						|
    bool          use_mul_mat_vec_q =  ggml_is_quantized(src0->type)
 | 
						|
        && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32
 | 
						|
        && src1->ne[1] <= MMVQ_MAX_BATCH_SIZE;
 | 
						|
 | 
						|
    bool              use_mul_mat_q =  ggml_cuda_supports_mmq(src0->type)
 | 
						|
        && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32;
 | 
						|
 | 
						|
#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
 | 
						|
 | 
						|
    const bool fp16_performance_good = min_compute_capability >= CC_RDNA1;
 | 
						|
 | 
						|
#ifdef CUDA_USE_TENSOR_CORES
 | 
						|
    use_mul_mat_q = use_mul_mat_q && min_compute_capability < CC_RDNA3;
 | 
						|
#endif // CUDA_USE_TENSOR_CORES
 | 
						|
 | 
						|
#else
 | 
						|
 | 
						|
    // fp16 performance is good on Volta or newer and on P100 (compute capability 6.0)
 | 
						|
    const bool fp16_performance_good = min_compute_capability >= CC_PASCAL && !any_pascal_with_slow_fp16;
 | 
						|
 | 
						|
    // mmvq and mmq need the __dp4a instruction which on NVIDIA is only available for CC >= 6.1
 | 
						|
    use_mul_mat_vec_q = use_mul_mat_vec_q && min_compute_capability >= MIN_CC_DP4A;
 | 
						|
    use_mul_mat_q     = use_mul_mat_q     && min_compute_capability >= MIN_CC_DP4A;
 | 
						|
 | 
						|
#ifdef CUDA_USE_TENSOR_CORES
 | 
						|
    // when tensor cores are available, use them for large batch size
 | 
						|
    // ref: https://github.com/ggerganov/llama.cpp/pull/3776
 | 
						|
    use_mul_mat_q     = use_mul_mat_q     && (!fp16_performance_good || src1->ne[1] <= MMQ_MAX_BATCH_SIZE);
 | 
						|
#endif // CUDA_USE_TENSOR_CORES
 | 
						|
 | 
						|
#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
 | 
						|
 | 
						|
    // if mmvq is available it's a better choice than dmmv:
 | 
						|
#ifndef GGML_CUDA_FORCE_DMMV
 | 
						|
    use_dequantize_mul_mat_vec = use_dequantize_mul_mat_vec && !use_mul_mat_vec_q;
 | 
						|
#endif // GGML_CUDA_FORCE_DMMV
 | 
						|
 | 
						|
    // debug helpers
 | 
						|
    //printf("src0: %8d %8d %8d %8d\n", src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3]);
 | 
						|
    //printf("      %8d %8d %8d %8d\n", src0->nb[0], src0->nb[1], src0->nb[2], src0->nb[3]);
 | 
						|
    //printf("src1: %8d %8d %8d %8d\n", src1->ne[0], src1->ne[1], src1->ne[2], src1->ne[3]);
 | 
						|
    //printf("      %8d %8d %8d %8d\n", src1->nb[0], src1->nb[1], src1->nb[2], src1->nb[3]);
 | 
						|
    //printf("src0 is contiguous %d, transposed %d, type = %s, name = %s\n", ggml_is_contiguous(src0), ggml_is_transposed(src0), ggml_type_name(src0->type), src0->name);
 | 
						|
    //printf("src1 is contiguous %d, transposed %d, type = %s, name = %s\n", ggml_is_contiguous(src1), ggml_is_transposed(src1), ggml_type_name(src1->type), src1->name);
 | 
						|
 | 
						|
    if (!split && !fp16_performance_good && src0->type == GGML_TYPE_F16 && ggml_is_permuted(src0) && ggml_is_permuted(src1) && src1->ne[1] == 1) {
 | 
						|
        // KQ single-batch
 | 
						|
        ggml_cuda_mul_mat_vec_p021(ctx, src0, src1, dst);
 | 
						|
    } else if (!split && !fp16_performance_good && src0->type == GGML_TYPE_F16 && !ggml_is_contiguous(src0) && !ggml_is_transposed(src1) && src1->ne[1] == 1) {
 | 
						|
        // KQV single-batch
 | 
						|
        ggml_cuda_mul_mat_vec_nc(ctx, src0, src1, dst);
 | 
						|
    } else if (!split && src0->type == GGML_TYPE_F16 && (src1->type == GGML_TYPE_F16 || fp16_performance_good) && !ggml_is_transposed(src0) && !ggml_is_transposed(src1) && src1->ne[2]*src1->ne[3] > 1) {
 | 
						|
        // KQ + KQV multi-batch
 | 
						|
        ggml_cuda_mul_mat_batched_cublas(ctx, src0, src1, dst);
 | 
						|
    } else if (use_dequantize_mul_mat_vec) {
 | 
						|
        ggml_cuda_op_mul_mat(ctx, src0, src1, dst, ggml_cuda_op_dequantize_mul_mat_vec, false);
 | 
						|
    } else if (use_mul_mat_vec_q) {
 | 
						|
        ggml_cuda_op_mul_mat(ctx, src0, src1, dst, ggml_cuda_op_mul_mat_vec_q, true);
 | 
						|
    } else if (use_mul_mat_q) {
 | 
						|
        ggml_cuda_op_mul_mat(ctx, src0, src1, dst, ggml_cuda_op_mul_mat_q, true);
 | 
						|
    } else {
 | 
						|
        ggml_cuda_op_mul_mat(ctx, src0, src1, dst, ggml_cuda_op_mul_mat_cublas, false);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
struct mmid_row_mapping {
 | 
						|
    int32_t i1;
 | 
						|
    int32_t i2;
 | 
						|
};
 | 
						|
 | 
						|
static __global__ void k_copy_src1_to_contiguous(const char * __restrict__ src1_original, char * __restrict__ src1_contiguous,
 | 
						|
                                                 int * __restrict__ cur_src1_row, mmid_row_mapping * __restrict__ row_mapping,
 | 
						|
                                                 const char * __restrict ids, int64_t i02, size_t ids_nb1, size_t ids_nb0,
 | 
						|
                                                 int64_t ne11, int64_t ne10,
 | 
						|
                                                 size_t nb11, size_t nb12) {
 | 
						|
    int32_t iid1 = blockIdx.x;
 | 
						|
    int32_t id = blockIdx.y;
 | 
						|
 | 
						|
    const int32_t row_id_i = *(const int32_t *) (ids + iid1*ids_nb1 + id*ids_nb0);
 | 
						|
 | 
						|
    if (row_id_i != i02) {
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    const int64_t i11 = id % ne11;
 | 
						|
    const int64_t i12 = iid1;
 | 
						|
 | 
						|
    __shared__ int src1_row;
 | 
						|
    if (threadIdx.x == 0) {
 | 
						|
        src1_row = atomicAdd(cur_src1_row, 1);
 | 
						|
        row_mapping[src1_row] = {id, iid1};
 | 
						|
    }
 | 
						|
    __syncthreads();
 | 
						|
 | 
						|
    const float * src1_row_original = (const float *)(src1_original + i11*nb11 + i12*nb12);
 | 
						|
    float * src1_row_contiguous = (float *)(src1_contiguous + src1_row*nb11);
 | 
						|
 | 
						|
    for (int i = threadIdx.x; i < ne10; i += blockDim.x) {
 | 
						|
        src1_row_contiguous[i] = src1_row_original[i];
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static __global__ void k_copy_dst_from_contiguous(char * __restrict__ dst_original, const char * __restrict__ dst_contiguous,
 | 
						|
                                                  const mmid_row_mapping * __restrict__ row_mapping,
 | 
						|
                                                  int64_t ne0,
 | 
						|
                                                  size_t nb1, size_t nb2) {
 | 
						|
    int32_t i = blockIdx.x;
 | 
						|
 | 
						|
    const int32_t i1 = row_mapping[i].i1;
 | 
						|
    const int32_t i2 = row_mapping[i].i2;
 | 
						|
 | 
						|
    const float * dst_row_contiguous = (const float *)(dst_contiguous + i*nb1);
 | 
						|
    float * dst_row_original = (float *)(dst_original + i1*nb1 + i2*nb2);
 | 
						|
 | 
						|
    for (int j = threadIdx.x; j < ne0; j += blockDim.x) {
 | 
						|
        dst_row_original[j] = dst_row_contiguous[j];
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void ggml_cuda_mul_mat_id(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
 | 
						|
    const ggml_tensor * src0 = dst->src[0];
 | 
						|
    const ggml_tensor * src1 = dst->src[1];
 | 
						|
    const ggml_tensor * ids  = dst->src[2];
 | 
						|
 | 
						|
    GGML_TENSOR_BINARY_OP_LOCALS
 | 
						|
 | 
						|
    GGML_ASSERT(!ggml_backend_buffer_is_cuda_split(src0->buffer) && "mul_mat_id does not support split buffers");
 | 
						|
 | 
						|
    cudaStream_t stream = ctx.stream();
 | 
						|
 | 
						|
    const int64_t n_as = ne02;
 | 
						|
    const int64_t n_ids = ids->ne[0];
 | 
						|
 | 
						|
    std::vector<char> ids_host(ggml_nbytes(ids));
 | 
						|
    const char * ids_dev = (const char *) ids->data;
 | 
						|
    CUDA_CHECK(cudaMemcpyAsync(ids_host.data(), ids_dev, ggml_nbytes(ids), cudaMemcpyDeviceToHost, stream));
 | 
						|
    CUDA_CHECK(cudaStreamSynchronize(stream));
 | 
						|
 | 
						|
    ggml_tensor src0_row = *src0;
 | 
						|
    ggml_tensor src1_row = *src1;
 | 
						|
    ggml_tensor dst_row  = *dst;
 | 
						|
 | 
						|
    char * src0_original = (char *) src0->data;
 | 
						|
    char * src1_original = (char *) src1->data;
 | 
						|
    char * dst_original  = (char *)  dst->data;
 | 
						|
 | 
						|
    src0_row.ne[2] = 1;
 | 
						|
    src0_row.ne[3] = 1;
 | 
						|
    src0_row.nb[3] = nb02;
 | 
						|
 | 
						|
    src1_row.ne[1] = 1;
 | 
						|
    src1_row.ne[2] = 1;
 | 
						|
    src1_row.ne[3] = 1;
 | 
						|
    src1_row.nb[2] = nb11;
 | 
						|
    src1_row.nb[3] = nb11;
 | 
						|
 | 
						|
    dst_row.ne[1] = 1;
 | 
						|
    dst_row.ne[2] = 1;
 | 
						|
    dst_row.ne[3] = 1;
 | 
						|
    dst_row.nb[2] = nb1;
 | 
						|
    dst_row.nb[3] = nb1;
 | 
						|
 | 
						|
    if (ne12 == 1) {
 | 
						|
        for (int64_t iid1 = 0; iid1 < ids->ne[1]; iid1++) {
 | 
						|
            for (int64_t id = 0; id < n_ids; id++) {
 | 
						|
                const int32_t i02 = *(const int32_t *) (ids_host.data() + iid1*ids->nb[1] + id*ids->nb[0]);
 | 
						|
 | 
						|
                GGML_ASSERT(i02 >= 0 && i02 < n_as);
 | 
						|
 | 
						|
                const int64_t i11 = id % ne11;
 | 
						|
                const int64_t i12 = iid1;
 | 
						|
 | 
						|
                const int64_t i1 = id;
 | 
						|
                const int64_t i2 = i12;
 | 
						|
 | 
						|
                src0_row.data = src0_original + i02*nb02;
 | 
						|
                src1_row.data = src1_original + i11*nb11 + i12*nb12;
 | 
						|
                dst_row.data  =  dst_original + i1*nb1   + i2*nb2;
 | 
						|
 | 
						|
                ggml_cuda_mul_mat(ctx, &src0_row, &src1_row, &dst_row);
 | 
						|
            }
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        ggml_cuda_pool_alloc<char> src1_contiguous(ctx.pool(), sizeof(float)*ggml_nelements(src1));
 | 
						|
        ggml_cuda_pool_alloc<char>  dst_contiguous(ctx.pool(), sizeof(float)*ggml_nelements(dst));
 | 
						|
 | 
						|
        src1_row.data = src1_contiguous.get();
 | 
						|
        dst_row.data  =  dst_contiguous.get();
 | 
						|
 | 
						|
        for (int64_t i02 = 0; i02 < n_as; i02++) {
 | 
						|
            int64_t num_src1_rows = 0;
 | 
						|
 | 
						|
            for (int64_t iid1 = 0; iid1 < ids->ne[1]; iid1++) {
 | 
						|
                for (int64_t id = 0; id < n_ids; id++) {
 | 
						|
                    const int32_t row_id_i = *(const int32_t *) (ids_host.data() + iid1*ids->nb[1] + id*ids->nb[0]);
 | 
						|
 | 
						|
                    GGML_ASSERT(row_id_i >= 0 && row_id_i < n_as);
 | 
						|
 | 
						|
                    if (row_id_i != i02) {
 | 
						|
                        continue;
 | 
						|
                    }
 | 
						|
 | 
						|
                    num_src1_rows++;
 | 
						|
                }
 | 
						|
            }
 | 
						|
 | 
						|
            if (num_src1_rows == 0) {
 | 
						|
                continue;
 | 
						|
            }
 | 
						|
 | 
						|
            ggml_cuda_pool_alloc<int> dev_cur_src1_row(ctx.pool(), 1);
 | 
						|
            ggml_cuda_pool_alloc<mmid_row_mapping> dev_row_mapping(ctx.pool(), num_src1_rows);
 | 
						|
            CUDA_CHECK(cudaMemsetAsync(dev_cur_src1_row.get(), 0, sizeof(int), stream));
 | 
						|
 | 
						|
            {
 | 
						|
                dim3 block_dims(std::min((unsigned int)ne10, 768u));
 | 
						|
                dim3 grid_dims(ids->ne[1], n_ids);
 | 
						|
                k_copy_src1_to_contiguous<<<grid_dims, block_dims, 0, stream>>>(
 | 
						|
                        src1_original, src1_contiguous.get(),
 | 
						|
                        dev_cur_src1_row.get(), dev_row_mapping.get(),
 | 
						|
                        ids_dev, i02, ids->nb[1], ids->nb[0],
 | 
						|
                        ne11, ne10,
 | 
						|
                        nb11, nb12);
 | 
						|
                CUDA_CHECK(cudaGetLastError());
 | 
						|
            }
 | 
						|
 | 
						|
            src0_row.data = src0_original + i02*nb02;
 | 
						|
 | 
						|
            GGML_ASSERT(nb11 == sizeof(float)*ne10);
 | 
						|
            GGML_ASSERT(nb1 == sizeof(float)*ne0);
 | 
						|
 | 
						|
            src1_row.ne[1] = num_src1_rows;
 | 
						|
            src1_row.nb[1] = nb11;
 | 
						|
            src1_row.nb[2] = num_src1_rows*nb11;
 | 
						|
            src1_row.nb[3] = num_src1_rows*nb11;
 | 
						|
 | 
						|
            dst_row.ne[1] = num_src1_rows;
 | 
						|
            dst_row.nb[1] = nb1;
 | 
						|
            dst_row.nb[2] = num_src1_rows*nb1;
 | 
						|
            dst_row.nb[3] = num_src1_rows*nb1;
 | 
						|
 | 
						|
            ggml_cuda_mul_mat(ctx, &src0_row, &src1_row, &dst_row);
 | 
						|
 | 
						|
            {
 | 
						|
                dim3 block_dims(std::min((unsigned int)ne0, 768u));
 | 
						|
                dim3 grid_dims(num_src1_rows);
 | 
						|
                k_copy_dst_from_contiguous<<<grid_dims, block_dims, 0, stream>>>(
 | 
						|
                        dst_original, dst_contiguous.get(),
 | 
						|
                        dev_row_mapping.get(),
 | 
						|
                        ne0,
 | 
						|
                        nb1, nb2);
 | 
						|
                CUDA_CHECK(cudaGetLastError());
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct ggml_tensor * dst) {
 | 
						|
    // why is this here instead of mul_mat?
 | 
						|
    if (dst->src[0] != nullptr && ggml_backend_buffer_is_cuda_split(dst->src[0]->buffer)) {
 | 
						|
        ggml_cuda_set_peer_access(dst->src[1]->ne[1], ctx.device);
 | 
						|
    }
 | 
						|
 | 
						|
    switch (dst->op) {
 | 
						|
        case GGML_OP_REPEAT:
 | 
						|
            ggml_cuda_op_repeat(ctx, dst);
 | 
						|
            break;
 | 
						|
        case GGML_OP_GET_ROWS:
 | 
						|
            ggml_cuda_op_get_rows(ctx, dst);
 | 
						|
            break;
 | 
						|
        case GGML_OP_DUP:
 | 
						|
            ggml_cuda_dup(ctx, dst);
 | 
						|
            break;
 | 
						|
        case GGML_OP_CPY:
 | 
						|
            ggml_cuda_cpy(ctx, dst->src[0], dst->src[1]);
 | 
						|
            break;
 | 
						|
        case GGML_OP_CONT:
 | 
						|
            ggml_cuda_dup(ctx, dst);
 | 
						|
            break;
 | 
						|
        case GGML_OP_ADD:
 | 
						|
            ggml_cuda_op_add(ctx, dst);
 | 
						|
            break;
 | 
						|
        case GGML_OP_ACC:
 | 
						|
            ggml_cuda_op_acc(ctx, dst);
 | 
						|
            break;
 | 
						|
        case GGML_OP_MUL:
 | 
						|
            ggml_cuda_op_mul(ctx, dst);
 | 
						|
            break;
 | 
						|
        case GGML_OP_DIV:
 | 
						|
            ggml_cuda_op_div(ctx, dst);
 | 
						|
            break;
 | 
						|
        case GGML_OP_UNARY:
 | 
						|
            switch (ggml_get_unary_op(dst)) {
 | 
						|
                case GGML_UNARY_OP_GELU:
 | 
						|
                    ggml_cuda_op_gelu(ctx, dst);
 | 
						|
                    break;
 | 
						|
                case GGML_UNARY_OP_SILU:
 | 
						|
                    ggml_cuda_op_silu(ctx, dst);
 | 
						|
                    break;
 | 
						|
                case GGML_UNARY_OP_GELU_QUICK:
 | 
						|
                    ggml_cuda_op_gelu_quick(ctx, dst);
 | 
						|
                    break;
 | 
						|
                case GGML_UNARY_OP_TANH:
 | 
						|
                    ggml_cuda_op_tanh(ctx, dst);
 | 
						|
                    break;
 | 
						|
                case GGML_UNARY_OP_RELU:
 | 
						|
                    ggml_cuda_op_relu(ctx, dst);
 | 
						|
                    break;
 | 
						|
                case GGML_UNARY_OP_SIGMOID:
 | 
						|
                    ggml_cuda_op_sigmoid(ctx, dst);
 | 
						|
                    break;
 | 
						|
                case GGML_UNARY_OP_HARDSIGMOID:
 | 
						|
                    ggml_cuda_op_hardsigmoid(ctx, dst);
 | 
						|
                    break;
 | 
						|
                case GGML_UNARY_OP_HARDSWISH:
 | 
						|
                    ggml_cuda_op_hardswish(ctx, dst);
 | 
						|
                    break;
 | 
						|
                default:
 | 
						|
                    return false;
 | 
						|
            }
 | 
						|
            break;
 | 
						|
        case GGML_OP_NORM:
 | 
						|
            ggml_cuda_op_norm(ctx, dst);
 | 
						|
            break;
 | 
						|
        case GGML_OP_GROUP_NORM:
 | 
						|
            ggml_cuda_op_group_norm(ctx, dst);
 | 
						|
            break;
 | 
						|
        case GGML_OP_CONCAT:
 | 
						|
            ggml_cuda_op_concat(ctx, dst);
 | 
						|
            break;
 | 
						|
        case GGML_OP_UPSCALE:
 | 
						|
            ggml_cuda_op_upscale(ctx, dst);
 | 
						|
            break;
 | 
						|
        case GGML_OP_PAD:
 | 
						|
            ggml_cuda_op_pad(ctx, dst);
 | 
						|
            break;
 | 
						|
        case GGML_OP_ARANGE:
 | 
						|
            ggml_cuda_op_arange(ctx, dst);
 | 
						|
            break;
 | 
						|
        case GGML_OP_TIMESTEP_EMBEDDING:
 | 
						|
            ggml_cuda_op_timestep_embedding(ctx, dst);
 | 
						|
            break;
 | 
						|
        case GGML_OP_LEAKY_RELU:
 | 
						|
            ggml_cuda_op_leaky_relu(ctx, dst);
 | 
						|
            break;
 | 
						|
        case GGML_OP_RMS_NORM:
 | 
						|
            ggml_cuda_op_rms_norm(ctx, dst);
 | 
						|
            break;
 | 
						|
        case GGML_OP_MUL_MAT:
 | 
						|
            if (dst->src[0]->ne[3] != dst->src[1]->ne[3]) {
 | 
						|
                fprintf(stderr, "%s: cannot compute %s: src0->ne[3] = %" PRId64 ", src1->ne[3] = %" PRId64 " - fallback to CPU\n", __func__, dst->name, dst->src[0]->ne[3], dst->src[1]->ne[3]);
 | 
						|
                return false;
 | 
						|
            } else {
 | 
						|
                ggml_cuda_mul_mat(ctx, dst->src[0], dst->src[1], dst);
 | 
						|
            }
 | 
						|
            break;
 | 
						|
        case GGML_OP_MUL_MAT_ID:
 | 
						|
            ggml_cuda_mul_mat_id(ctx, dst);
 | 
						|
            break;
 | 
						|
        case GGML_OP_SCALE:
 | 
						|
            ggml_cuda_op_scale(ctx, dst);
 | 
						|
            break;
 | 
						|
        case GGML_OP_SQR:
 | 
						|
            ggml_cuda_op_sqr(ctx, dst);
 | 
						|
            break;
 | 
						|
        case GGML_OP_CLAMP:
 | 
						|
            ggml_cuda_op_clamp(ctx, dst);
 | 
						|
            break;
 | 
						|
        case GGML_OP_NONE:
 | 
						|
        case GGML_OP_RESHAPE:
 | 
						|
        case GGML_OP_VIEW:
 | 
						|
        case GGML_OP_PERMUTE:
 | 
						|
        case GGML_OP_TRANSPOSE:
 | 
						|
                break;
 | 
						|
        case GGML_OP_DIAG_MASK_INF:
 | 
						|
            ggml_cuda_op_diag_mask_inf(ctx, dst);
 | 
						|
            break;
 | 
						|
        case GGML_OP_SOFT_MAX:
 | 
						|
            ggml_cuda_op_soft_max(ctx, dst);
 | 
						|
            break;
 | 
						|
        case GGML_OP_ROPE:
 | 
						|
            ggml_cuda_op_rope(ctx, dst);
 | 
						|
            break;
 | 
						|
        case GGML_OP_IM2COL:
 | 
						|
            ggml_cuda_op_im2col(ctx, dst);
 | 
						|
            break;
 | 
						|
        case GGML_OP_POOL_2D:
 | 
						|
            ggml_cuda_op_pool2d(ctx, dst);
 | 
						|
            break;
 | 
						|
        case GGML_OP_SUM_ROWS:
 | 
						|
            ggml_cuda_op_sum_rows(ctx, dst);
 | 
						|
            break;
 | 
						|
        case GGML_OP_ARGSORT:
 | 
						|
            ggml_cuda_op_argsort(ctx, dst);
 | 
						|
            break;
 | 
						|
        case GGML_OP_FLASH_ATTN_EXT:
 | 
						|
            ggml_cuda_flash_attn_ext(ctx, dst);
 | 
						|
            break;
 | 
						|
        default:
 | 
						|
            return false;
 | 
						|
    }
 | 
						|
 | 
						|
    cudaError_t err = cudaGetLastError();
 | 
						|
    if (err != cudaSuccess) {
 | 
						|
        fprintf(stderr, "%s: %s failed\n", __func__, ggml_op_desc(dst));
 | 
						|
        CUDA_CHECK(err);
 | 
						|
    }
 | 
						|
 | 
						|
    return true;
 | 
						|
}
 | 
						|
 | 
						|
////////////////////////////////////////////////////////////////////////////////
 | 
						|
 | 
						|
// backend
 | 
						|
 | 
						|
GGML_CALL static const char * ggml_backend_cuda_name(ggml_backend_t backend) {
 | 
						|
    ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
 | 
						|
 | 
						|
    return cuda_ctx->name.c_str();
 | 
						|
}
 | 
						|
 | 
						|
GGML_CALL static void ggml_backend_cuda_free(ggml_backend_t backend) {
 | 
						|
    ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
 | 
						|
 | 
						|
    delete cuda_ctx;
 | 
						|
    delete backend;
 | 
						|
}
 | 
						|
 | 
						|
GGML_CALL static ggml_backend_buffer_type_t ggml_backend_cuda_get_default_buffer_type(ggml_backend_t backend) {
 | 
						|
    ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
 | 
						|
 | 
						|
    return ggml_backend_cuda_buffer_type(cuda_ctx->device);
 | 
						|
}
 | 
						|
 | 
						|
GGML_CALL static void ggml_backend_cuda_set_tensor_async(ggml_backend_t backend, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
 | 
						|
    ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
 | 
						|
    ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
 | 
						|
 | 
						|
    GGML_ASSERT(buf->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device) && "unsupported buffer type");
 | 
						|
 | 
						|
    CUDA_CHECK(cudaMemcpyAsync((char *)tensor->data + offset, data, size, cudaMemcpyHostToDevice, cuda_ctx->stream()));
 | 
						|
}
 | 
						|
 | 
						|
GGML_CALL static void ggml_backend_cuda_get_tensor_async(ggml_backend_t backend, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
 | 
						|
    ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
 | 
						|
    ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
 | 
						|
 | 
						|
    GGML_ASSERT(buf->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device) && "unsupported buffer type");
 | 
						|
 | 
						|
    CUDA_CHECK(cudaMemcpyAsync(data, (const char *)tensor->data + offset, size, cudaMemcpyDeviceToHost, cuda_ctx->stream()));
 | 
						|
}
 | 
						|
 | 
						|
GGML_CALL static bool ggml_backend_cuda_cpy_tensor_async(ggml_backend_t backend_src, ggml_backend_t backend_dst, const ggml_tensor * src, ggml_tensor * dst) {
 | 
						|
    GGML_ASSERT(ggml_backend_is_cuda(backend_src) || ggml_backend_is_cuda(backend_dst));
 | 
						|
 | 
						|
    ggml_backend_buffer_t buf_src = src->view_src ? src->view_src->buffer : src->buffer;
 | 
						|
    ggml_backend_buffer_t buf_dst = dst->view_src ? dst->view_src->buffer : dst->buffer;
 | 
						|
 | 
						|
    if (!ggml_backend_buffer_is_cuda(src->buffer)) {
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
 | 
						|
    if (!ggml_backend_buffer_is_cuda(dst->buffer)) {
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
 | 
						|
    // device -> device
 | 
						|
    ggml_backend_cuda_context * cuda_ctx_src = (ggml_backend_cuda_context *)backend_src->context;
 | 
						|
    ggml_backend_cuda_context * cuda_ctx_dst = (ggml_backend_cuda_context *)backend_dst->context;
 | 
						|
 | 
						|
    if (backend_src != backend_dst) {
 | 
						|
        ggml_backend_cuda_buffer_context * buf_ctx_src = (ggml_backend_cuda_buffer_context *)buf_src->context;
 | 
						|
        ggml_backend_cuda_buffer_context * buf_ctx_dst = (ggml_backend_cuda_buffer_context *)buf_dst->context;
 | 
						|
 | 
						|
        GGML_ASSERT(cuda_ctx_src->device == buf_ctx_src->device);
 | 
						|
        GGML_ASSERT(cuda_ctx_dst->device == buf_ctx_dst->device);
 | 
						|
 | 
						|
        // copy on src stream
 | 
						|
        if (cuda_ctx_src->device == cuda_ctx_dst->device) {
 | 
						|
            CUDA_CHECK(cudaMemcpyAsync(dst->data, src->data, ggml_nbytes(dst), cudaMemcpyDeviceToDevice, cuda_ctx_dst->stream()));
 | 
						|
        } else {
 | 
						|
#ifdef GGML_CUDA_NO_PEER_COPY
 | 
						|
            return false;
 | 
						|
#else
 | 
						|
            CUDA_CHECK(cudaMemcpyPeerAsync(dst->data, cuda_ctx_dst->device, src->data, cuda_ctx_src->device, ggml_nbytes(dst), cuda_ctx_src->stream()));
 | 
						|
#endif
 | 
						|
        }
 | 
						|
 | 
						|
        // record event on src stream
 | 
						|
        if (!cuda_ctx_src->copy_event) {
 | 
						|
            ggml_cuda_set_device(cuda_ctx_src->device);
 | 
						|
            CUDA_CHECK(cudaEventCreateWithFlags(&cuda_ctx_src->copy_event, cudaEventDisableTiming));
 | 
						|
        }
 | 
						|
 | 
						|
        CUDA_CHECK(cudaEventRecord(cuda_ctx_src->copy_event, cuda_ctx_src->stream()));
 | 
						|
 | 
						|
        // wait on dst stream for the copy to complete
 | 
						|
        CUDA_CHECK(cudaStreamWaitEvent(cuda_ctx_dst->stream(), cuda_ctx_src->copy_event, 0));
 | 
						|
    } else {
 | 
						|
        // src and dst are on the same backend
 | 
						|
        CUDA_CHECK(cudaMemcpyAsync(dst->data, src->data, ggml_nbytes(dst), cudaMemcpyDeviceToDevice, cuda_ctx_dst->stream()));
 | 
						|
    }
 | 
						|
    return true;
 | 
						|
}
 | 
						|
 | 
						|
GGML_CALL static void ggml_backend_cuda_synchronize(ggml_backend_t backend) {
 | 
						|
    ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
 | 
						|
 | 
						|
    CUDA_CHECK(cudaStreamSynchronize(cuda_ctx->stream()));
 | 
						|
 | 
						|
    GGML_UNUSED(backend);
 | 
						|
}
 | 
						|
 | 
						|
static void set_ggml_graph_node_properties(ggml_tensor * node, ggml_graph_node_properties * graph_node_properties) {
 | 
						|
    graph_node_properties->node_address = node->data;
 | 
						|
    graph_node_properties->node_op = node->op;
 | 
						|
    for (int i = 0; i < GGML_MAX_DIMS; i++) {
 | 
						|
        graph_node_properties->ne[i] = node->ne[i];
 | 
						|
        graph_node_properties->nb[i] = node->nb[i];
 | 
						|
    }
 | 
						|
    for (int i = 0; i < GGML_MAX_SRC; i++) {
 | 
						|
        graph_node_properties->src_address[i] = node->src[i] ? node->src[i]->data : nullptr;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static bool ggml_graph_node_has_matching_properties(ggml_tensor * node, ggml_graph_node_properties * graph_node_properties) {
 | 
						|
    if (node->data != graph_node_properties->node_address &&
 | 
						|
          node->op != GGML_OP_CPY &&
 | 
						|
          node->op != GGML_OP_VIEW) {
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
 | 
						|
    if (node->op != graph_node_properties->node_op) {
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
 | 
						|
    for (int i = 0; i < GGML_MAX_DIMS; i++) {
 | 
						|
        if (node->ne[i] != graph_node_properties->ne[i]) {
 | 
						|
            return false;
 | 
						|
        }
 | 
						|
        if (node->nb[i] != graph_node_properties->nb[i]) {
 | 
						|
            return false;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    for (int i = 0; i < GGML_MAX_SRC; i++) {
 | 
						|
        if (node->src[i] &&
 | 
						|
            node->src[i]->data != graph_node_properties->src_address[i] &&
 | 
						|
            node->op != GGML_OP_CPY &&
 | 
						|
            node->op != GGML_OP_VIEW
 | 
						|
        ) {
 | 
						|
            return false;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return true;
 | 
						|
}
 | 
						|
 | 
						|
GGML_CALL static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
 | 
						|
    ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
 | 
						|
 | 
						|
    ggml_cuda_set_device(cuda_ctx->device);
 | 
						|
 | 
						|
#ifdef USE_CUDA_GRAPH
 | 
						|
    static const bool disable_cuda_graphs_due_to_env = (getenv("GGML_CUDA_DISABLE_GRAPHS") != nullptr);
 | 
						|
 | 
						|
    // Objects required for CUDA Graph
 | 
						|
    if (cuda_ctx->cuda_graph == nullptr) {
 | 
						|
        cuda_ctx->cuda_graph.reset(new ggml_cuda_graph());
 | 
						|
    }
 | 
						|
 | 
						|
    bool use_cuda_graph = true;
 | 
						|
    bool cuda_graph_update_required = false;
 | 
						|
    // pointer to CUDA cpy kernel, which is required to identify
 | 
						|
    // kernel parameters which need updated in the graph for each token
 | 
						|
    void * ggml_cuda_cpy_fn_ptr = nullptr;
 | 
						|
 | 
						|
    if (cuda_ctx->cuda_graph->graph == nullptr) {
 | 
						|
        if (ggml_cuda_info().devices[cuda_ctx->device].cc < CC_AMPERE) {
 | 
						|
            cuda_ctx->cuda_graph->disable_due_to_gpu_arch = true;
 | 
						|
#ifndef NDEBUG
 | 
						|
            fprintf(stderr, "%s: disabling CUDA graphs due to GPU architecture\n", __func__);
 | 
						|
#endif
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    // Disable CUDA graphs in presence of env var, old GPU, use-case which is changing too rapidly,
 | 
						|
    // or previous graph capture failure.
 | 
						|
    // Also disable for multi-gpu for now. TO DO investigate
 | 
						|
    if (disable_cuda_graphs_due_to_env
 | 
						|
        || cuda_ctx->cuda_graph->disable_due_to_gpu_arch
 | 
						|
        || cuda_ctx->cuda_graph->disable_due_to_too_many_updates
 | 
						|
        || cuda_ctx->cuda_graph->disable_due_to_failed_graph_capture) {
 | 
						|
        use_cuda_graph = false;
 | 
						|
    }
 | 
						|
 | 
						|
    if (use_cuda_graph) {
 | 
						|
        if (cuda_ctx->cuda_graph->instance == nullptr) {
 | 
						|
            cuda_graph_update_required = true;
 | 
						|
        }
 | 
						|
 | 
						|
        // Check if the graph size has changed
 | 
						|
        if (cuda_ctx->cuda_graph->ggml_graph_properties.size() != (size_t)cgraph->n_nodes) {
 | 
						|
            cuda_graph_update_required = true;
 | 
						|
            cuda_ctx->cuda_graph->ggml_graph_properties.resize(cgraph->n_nodes);
 | 
						|
        }
 | 
						|
 | 
						|
        // Loop over nodes in GGML graph to determine if CUDA graph update is required
 | 
						|
        // and store properties to allow this comparison for the next token
 | 
						|
        for (int i = 0; i < cgraph->n_nodes; i++) {
 | 
						|
            bool has_matching_properties = true;
 | 
						|
            if (!cuda_graph_update_required) {
 | 
						|
                has_matching_properties = ggml_graph_node_has_matching_properties(cgraph->nodes[i], &cuda_ctx->cuda_graph->ggml_graph_properties[i]);
 | 
						|
            }
 | 
						|
            if (!has_matching_properties) {
 | 
						|
                cuda_graph_update_required = true;
 | 
						|
            }
 | 
						|
            set_ggml_graph_node_properties(cgraph->nodes[i], &cuda_ctx->cuda_graph->ggml_graph_properties[i]);
 | 
						|
        }
 | 
						|
 | 
						|
        // Loop over nodes in GGML graph to obtain info needed for CUDA graph
 | 
						|
        cuda_ctx->cuda_graph->updated_kernel_arg.clear();
 | 
						|
        for (int i = 0; i < cgraph->n_nodes; i++) {
 | 
						|
            ggml_tensor * node = cgraph->nodes[i];
 | 
						|
 | 
						|
            if (node->src[0] && ggml_backend_buffer_is_cuda_split(node->src[0]->buffer)) {
 | 
						|
                use_cuda_graph = false; // Split buffers are not supported by CUDA graph capture
 | 
						|
#ifndef NDEBUG
 | 
						|
                fprintf(stderr, "%s: disabling CUDA graphs due to split buffer\n", __func__);
 | 
						|
#endif
 | 
						|
            }
 | 
						|
 | 
						|
            if (node->op == GGML_OP_MUL_MAT_ID) {
 | 
						|
                use_cuda_graph = false; // This node type is not supported by CUDA graph capture
 | 
						|
#ifndef NDEBUG
 | 
						|
                fprintf(stderr, "%s: disabling CUDA graphs due to mul_mat_id\n", __func__);
 | 
						|
#endif
 | 
						|
            }
 | 
						|
 | 
						|
            if (node->op == GGML_OP_ADD && node->src[1] && node->src[1]->ne[1] > 1) {
 | 
						|
                // disable CUDA graphs for batch size > 1 for now.
 | 
						|
                // Changes in batch size or context size can cause changes to the grid size of some kernels.
 | 
						|
                use_cuda_graph = false;
 | 
						|
#ifndef NDEBUG
 | 
						|
                fprintf(stderr, "%s: disabling CUDA graphs due to batch size > 1 [%s] [%ld %ld %ld %ld]\n", __func__, node->name, node->ne[0], node->ne[1], node->ne[2], node->ne[3]);
 | 
						|
#endif
 | 
						|
            }
 | 
						|
 | 
						|
            if (node->op == GGML_OP_CPY) {
 | 
						|
                // store the copy op parameter which changes with each token.
 | 
						|
                cuda_ctx->cuda_graph->updated_kernel_arg.push_back((char **) &(node->src[1]->data));
 | 
						|
                if (ggml_cuda_cpy_fn_ptr == nullptr) {
 | 
						|
                    // store a pointer to the copy op CUDA kernel to identify it later
 | 
						|
                    ggml_cuda_cpy_fn_ptr = ggml_cuda_cpy_fn(node->src[0], node->src[1]);
 | 
						|
                }
 | 
						|
            }
 | 
						|
 | 
						|
            if (!use_cuda_graph) {
 | 
						|
                break;
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        // Disable CUDA graphs (from the next token) if the use-case is demanding too many consecutive graph updates.
 | 
						|
        if (cuda_graph_update_required) {
 | 
						|
            cuda_ctx->cuda_graph->number_consecutive_updates++;
 | 
						|
        } else {
 | 
						|
            cuda_ctx->cuda_graph->number_consecutive_updates = 0;
 | 
						|
        }
 | 
						|
 | 
						|
        if (cuda_ctx->cuda_graph->number_consecutive_updates >= 4) {
 | 
						|
            cuda_ctx->cuda_graph->disable_due_to_too_many_updates = true;
 | 
						|
#ifndef NDEBUG
 | 
						|
            fprintf(stderr, "%s: disabling CUDA graphs due to too many consecutive updates\n", __func__);
 | 
						|
#endif
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    if (use_cuda_graph && cuda_graph_update_required) { // Start CUDA graph capture
 | 
						|
        CUDA_CHECK(cudaStreamBeginCapture(cuda_ctx->stream(), cudaStreamCaptureModeRelaxed));
 | 
						|
    }
 | 
						|
 | 
						|
#else
 | 
						|
    bool use_cuda_graph = false;
 | 
						|
    bool cuda_graph_update_required = false;
 | 
						|
#endif // USE_CUDA_GRAPH
 | 
						|
 | 
						|
    bool graph_evaluated_or_captured = false;
 | 
						|
 | 
						|
    while (!graph_evaluated_or_captured) {
 | 
						|
        // Only perform the graph execution if CUDA graphs are not enabled, or we are capturing the graph.
 | 
						|
        // With the use of CUDA graphs, the execution will be performed by the graph launch.
 | 
						|
        if (!use_cuda_graph || cuda_graph_update_required) {
 | 
						|
            for (int i = 0; i < cgraph->n_nodes; i++) {
 | 
						|
                ggml_tensor * node = cgraph->nodes[i];
 | 
						|
 | 
						|
                if (ggml_is_empty(node) || node->op == GGML_OP_RESHAPE || node->op == GGML_OP_TRANSPOSE || node->op == GGML_OP_VIEW || node->op == GGML_OP_PERMUTE || node->op == GGML_OP_NONE) {
 | 
						|
                    continue;
 | 
						|
                }
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
                assert(node->buffer->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device));
 | 
						|
                for (int j = 0; j < GGML_MAX_SRC; j++) {
 | 
						|
                    if (node->src[j] != nullptr) {
 | 
						|
                        assert(node->src[j]->buffer->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device) || ggml_backend_buffer_is_cuda_split(node->src[j]->buffer));
 | 
						|
                    }
 | 
						|
                }
 | 
						|
#endif
 | 
						|
 | 
						|
                bool ok = ggml_cuda_compute_forward(*cuda_ctx, node);
 | 
						|
                if (!ok) {
 | 
						|
                    fprintf(stderr, "%s: error: op not supported %s (%s)\n", __func__, node->name, ggml_op_name(node->op));
 | 
						|
                }
 | 
						|
                GGML_ASSERT(ok);
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
#ifdef USE_CUDA_GRAPH
 | 
						|
        if (use_cuda_graph && cuda_graph_update_required) { // End CUDA graph capture
 | 
						|
            if (cuda_ctx->cuda_graph->graph != nullptr) {
 | 
						|
                CUDA_CHECK(cudaGraphDestroy(cuda_ctx->cuda_graph->graph));
 | 
						|
                cuda_ctx->cuda_graph->graph = nullptr;
 | 
						|
            }
 | 
						|
            CUDA_CHECK(cudaStreamEndCapture(cuda_ctx->stream(), &cuda_ctx->cuda_graph->graph));
 | 
						|
 | 
						|
#if 0
 | 
						|
            if (disable_cuda_graphs_due_to_failed_capture) {
 | 
						|
                use_cuda_graph = false;
 | 
						|
                cuda_ctx->cuda_graph->disable_due_to_failed_graph_capture = true;
 | 
						|
#ifndef NDEBUG
 | 
						|
                fprintf(stderr, "%s: disabling CUDA graphs due to failed graph capture\n", __func__);
 | 
						|
#endif
 | 
						|
            } else {
 | 
						|
                graph_evaluated_or_captured = true; // CUDA graph has been captured
 | 
						|
            }
 | 
						|
#endif
 | 
						|
            graph_evaluated_or_captured = true; // CUDA graph has been captured
 | 
						|
        } else {
 | 
						|
            graph_evaluated_or_captured = true; // ggml graph has been directly evaluated
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    if (use_cuda_graph) {
 | 
						|
        if (cuda_ctx->cuda_graph->instance == nullptr) { // Create executable graph from captured graph.
 | 
						|
            CUDA_CHECK(cudaGraphInstantiate(&cuda_ctx->cuda_graph->instance, cuda_ctx->cuda_graph->graph, NULL, NULL, 0));
 | 
						|
        }
 | 
						|
 | 
						|
        // Perform update to graph (if required for this token), and change copy parameter (required for every token)
 | 
						|
 | 
						|
        if (cuda_graph_update_required) {
 | 
						|
            // Extract nodes from graph
 | 
						|
            if (cuda_ctx->cuda_graph->num_nodes == 0) {
 | 
						|
                // First call with null argument gets number of nodes in graph
 | 
						|
                CUDA_CHECK(cudaGraphGetNodes(cuda_ctx->cuda_graph->graph, nullptr, &cuda_ctx->cuda_graph->num_nodes));
 | 
						|
            }
 | 
						|
            // Subsequent call with non-null argument gets nodes
 | 
						|
            cuda_ctx->cuda_graph->nodes.resize(cuda_ctx->cuda_graph->num_nodes);
 | 
						|
            cuda_ctx->cuda_graph->params.resize(cuda_ctx->cuda_graph->num_nodes);
 | 
						|
            if (cuda_ctx->cuda_graph->num_nodes > 0) {
 | 
						|
                CUDA_CHECK(cudaGraphGetNodes(cuda_ctx->cuda_graph->graph, cuda_ctx->cuda_graph->nodes.data(), &cuda_ctx->cuda_graph->num_nodes));
 | 
						|
 | 
						|
                // Loop over nodes, and extract kernel parameters from each node
 | 
						|
                for (size_t i = 0; i < cuda_ctx->cuda_graph->num_nodes; i++) {
 | 
						|
                    cudaGraphNodeType node_type;
 | 
						|
                    CUDA_CHECK(cudaGraphNodeGetType(cuda_ctx->cuda_graph->nodes[i], &node_type));
 | 
						|
                    if (node_type == cudaGraphNodeTypeKernel) {
 | 
						|
                        cudaError_t stat = cudaGraphKernelNodeGetParams(cuda_ctx->cuda_graph->nodes[i], &cuda_ctx->cuda_graph->params[i]); // Get params using runtime
 | 
						|
                        if (stat == cudaErrorInvalidDeviceFunction) {
 | 
						|
                            // Fails due to incorrect handling by CUDA runtime of CUDA BLAS node.
 | 
						|
                            // We don't need to update blas nodes, so clear error and move on.
 | 
						|
                            cudaGetLastError();
 | 
						|
                        } else {
 | 
						|
                            GGML_ASSERT(stat == cudaSuccess);
 | 
						|
                        }
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        // One of the arguments to the copy kernel is updated for each token, hence we need to
 | 
						|
        // replace that argument with the updated value in the CUDA graph
 | 
						|
        if (!cuda_graph_update_required) { // on update steps, the live parameters will already be captured
 | 
						|
            int k = 0;
 | 
						|
            for (size_t i = 0; i < cuda_ctx->cuda_graph->num_nodes; i++) {
 | 
						|
                if (cuda_ctx->cuda_graph->params[i].func == ggml_cuda_cpy_fn_ptr) {
 | 
						|
                    char ** updated_kernel_arg_ptr = cuda_ctx->cuda_graph->updated_kernel_arg.at(k++);
 | 
						|
                    cuda_ctx->cuda_graph->params[i].kernelParams[1] = updated_kernel_arg_ptr;
 | 
						|
                    CUDA_CHECK(cudaGraphKernelNodeSetParams(cuda_ctx->cuda_graph->nodes[i], &cuda_ctx->cuda_graph->params[i]));
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        // Update graph executable
 | 
						|
        cudaGraphExecUpdateResultInfo result_info;
 | 
						|
        cudaError_t stat = cudaGraphExecUpdate(cuda_ctx->cuda_graph->instance, cuda_ctx->cuda_graph->graph, &result_info);
 | 
						|
        if (stat == cudaErrorGraphExecUpdateFailure) {
 | 
						|
#ifndef NDEBUG
 | 
						|
            fprintf(stderr, "%s: CUDA graph update failed\n", __func__);
 | 
						|
#endif
 | 
						|
            // The pre-existing graph exec cannot be updated due to violated constraints
 | 
						|
            // so instead clear error and re-instantiate
 | 
						|
            cudaGetLastError();
 | 
						|
            CUDA_CHECK(cudaGraphExecDestroy(cuda_ctx->cuda_graph->instance));
 | 
						|
            cuda_ctx->cuda_graph->instance = nullptr;
 | 
						|
            CUDA_CHECK(cudaGraphInstantiate(&cuda_ctx->cuda_graph->instance, cuda_ctx->cuda_graph->graph, NULL, NULL, 0));
 | 
						|
        } else {
 | 
						|
            GGML_ASSERT(stat == cudaSuccess);
 | 
						|
        }
 | 
						|
        // Launch graph
 | 
						|
        CUDA_CHECK(cudaGraphLaunch(cuda_ctx->cuda_graph->instance, cuda_ctx->stream()));
 | 
						|
#else
 | 
						|
        graph_evaluated_or_captured = true;
 | 
						|
#endif // USE_CUDA_GRAPH
 | 
						|
    }
 | 
						|
 | 
						|
    return GGML_STATUS_SUCCESS;
 | 
						|
}
 | 
						|
 | 
						|
GGML_CALL static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, const ggml_tensor * op) {
 | 
						|
    ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *) backend->context;
 | 
						|
    switch (op->op) {
 | 
						|
        case GGML_OP_UNARY:
 | 
						|
            switch (ggml_get_unary_op(op)) {
 | 
						|
                case GGML_UNARY_OP_GELU:
 | 
						|
                case GGML_UNARY_OP_SILU:
 | 
						|
                case GGML_UNARY_OP_RELU:
 | 
						|
                case GGML_UNARY_OP_SIGMOID:
 | 
						|
                case GGML_UNARY_OP_HARDSIGMOID:
 | 
						|
                case GGML_UNARY_OP_HARDSWISH:
 | 
						|
                case GGML_UNARY_OP_GELU_QUICK:
 | 
						|
                case GGML_UNARY_OP_TANH:
 | 
						|
                    return true;
 | 
						|
                default:
 | 
						|
                    return false;
 | 
						|
            }
 | 
						|
            break;
 | 
						|
        case GGML_OP_MUL_MAT:
 | 
						|
        case GGML_OP_MUL_MAT_ID:
 | 
						|
            {
 | 
						|
                struct ggml_tensor * a;
 | 
						|
                struct ggml_tensor * b;
 | 
						|
                if (op->op == GGML_OP_MUL_MAT) {
 | 
						|
                    a = op->src[0];
 | 
						|
                    b = op->src[1];
 | 
						|
                } else {
 | 
						|
                    a = op->src[2];
 | 
						|
                    b = op->src[1];
 | 
						|
                }
 | 
						|
                if (a->ne[3] != b->ne[3]) {
 | 
						|
                    return false;
 | 
						|
                }
 | 
						|
                ggml_type a_type = a->type;
 | 
						|
                if (a_type == GGML_TYPE_IQ2_XXS || a_type == GGML_TYPE_IQ2_XS || a_type == GGML_TYPE_IQ3_XXS ||
 | 
						|
                    a_type == GGML_TYPE_IQ1_S   || a_type == GGML_TYPE_IQ4_NL || a_type == GGML_TYPE_IQ3_S   ||
 | 
						|
                    a_type == GGML_TYPE_IQ1_M   || a_type == GGML_TYPE_IQ2_S  || a_type == GGML_TYPE_IQ4_XS) {
 | 
						|
                    if (b->ne[1] == 1 && ggml_nrows(b) > 1) {
 | 
						|
                        return false;
 | 
						|
                    }
 | 
						|
                }
 | 
						|
                return true;
 | 
						|
            } break;
 | 
						|
        case GGML_OP_GET_ROWS:
 | 
						|
            {
 | 
						|
                switch (op->src[0]->type) {
 | 
						|
                    case GGML_TYPE_F16:
 | 
						|
                    case GGML_TYPE_F32:
 | 
						|
                    case GGML_TYPE_Q4_0:
 | 
						|
                    case GGML_TYPE_Q4_1:
 | 
						|
                    case GGML_TYPE_Q5_0:
 | 
						|
                    case GGML_TYPE_Q5_1:
 | 
						|
                    case GGML_TYPE_Q8_0:
 | 
						|
                        return true;
 | 
						|
                    default:
 | 
						|
                        return false;
 | 
						|
                }
 | 
						|
            } break;
 | 
						|
        case GGML_OP_CPY:
 | 
						|
            {
 | 
						|
                ggml_type src0_type = op->src[0]->type;
 | 
						|
                ggml_type src1_type = op->src[1]->type;
 | 
						|
                if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_F32) {
 | 
						|
                    return true;
 | 
						|
                }
 | 
						|
                if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_F16) {
 | 
						|
                    return true;
 | 
						|
                }
 | 
						|
                if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_Q8_0) {
 | 
						|
                    return true;
 | 
						|
                }
 | 
						|
                if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_Q4_0) {
 | 
						|
                    return true;
 | 
						|
                }
 | 
						|
                if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_Q4_1) {
 | 
						|
                    return true;
 | 
						|
                }
 | 
						|
                if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_Q5_0) {
 | 
						|
                    return true;
 | 
						|
                }
 | 
						|
                if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_Q5_1) {
 | 
						|
                    return true;
 | 
						|
                }
 | 
						|
                if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_IQ4_NL) {
 | 
						|
                    return true;
 | 
						|
                }
 | 
						|
                if (src0_type == GGML_TYPE_F16 && src1_type == GGML_TYPE_F16) {
 | 
						|
                    return true;
 | 
						|
                }
 | 
						|
                if (src0_type == GGML_TYPE_F16 && src1_type == GGML_TYPE_F32) {
 | 
						|
                    return true;
 | 
						|
                }
 | 
						|
                return false;
 | 
						|
            } break;
 | 
						|
        case GGML_OP_DUP:
 | 
						|
        case GGML_OP_REPEAT:
 | 
						|
        case GGML_OP_CONCAT:
 | 
						|
            {
 | 
						|
                ggml_type src0_type = op->src[0]->type;
 | 
						|
                return src0_type != GGML_TYPE_I32 && src0_type != GGML_TYPE_I16;
 | 
						|
            } break;
 | 
						|
        case GGML_OP_NONE:
 | 
						|
        case GGML_OP_RESHAPE:
 | 
						|
        case GGML_OP_VIEW:
 | 
						|
        case GGML_OP_PERMUTE:
 | 
						|
        case GGML_OP_TRANSPOSE:
 | 
						|
        case GGML_OP_NORM:
 | 
						|
        case GGML_OP_ADD:
 | 
						|
        case GGML_OP_MUL:
 | 
						|
        case GGML_OP_DIV:
 | 
						|
        case GGML_OP_RMS_NORM:
 | 
						|
        case GGML_OP_SCALE:
 | 
						|
        case GGML_OP_SQR:
 | 
						|
        case GGML_OP_CLAMP:
 | 
						|
        case GGML_OP_CONT:
 | 
						|
        case GGML_OP_DIAG_MASK_INF:
 | 
						|
        case GGML_OP_SOFT_MAX:
 | 
						|
        case GGML_OP_ROPE:
 | 
						|
        case GGML_OP_IM2COL:
 | 
						|
        case GGML_OP_POOL_2D:
 | 
						|
        case GGML_OP_SUM_ROWS:
 | 
						|
        case GGML_OP_ARGSORT:
 | 
						|
        case GGML_OP_ACC:
 | 
						|
        case GGML_OP_GROUP_NORM:
 | 
						|
        case GGML_OP_UPSCALE:
 | 
						|
        case GGML_OP_PAD:
 | 
						|
        case GGML_OP_ARANGE:
 | 
						|
        case GGML_OP_TIMESTEP_EMBEDDING:
 | 
						|
        case GGML_OP_LEAKY_RELU:
 | 
						|
            return true;
 | 
						|
        case GGML_OP_FLASH_ATTN_EXT:
 | 
						|
#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
 | 
						|
            return op->src[0]->ne[0] == 64 || op->src[0]->ne[0] == 128;
 | 
						|
#else
 | 
						|
            if (op->src[0]->ne[0] == 64 || op->src[0]->ne[0] == 128) {
 | 
						|
                return true;
 | 
						|
            }
 | 
						|
            return ggml_cuda_info().devices[cuda_ctx->device].cc >= CC_VOLTA;
 | 
						|
#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
 | 
						|
        default:
 | 
						|
            return false;
 | 
						|
    }
 | 
						|
 | 
						|
    GGML_UNUSED(backend);
 | 
						|
}
 | 
						|
 | 
						|
GGML_CALL static bool ggml_backend_cuda_offload_op(ggml_backend_t backend, const ggml_tensor * op) {
 | 
						|
    const int min_batch_size = 32;
 | 
						|
 | 
						|
    return (op->ne[1] >= min_batch_size && op->op != GGML_OP_GET_ROWS) ||
 | 
						|
           (op->ne[2] >= min_batch_size && op->op == GGML_OP_MUL_MAT_ID);
 | 
						|
 | 
						|
    GGML_UNUSED(backend);
 | 
						|
}
 | 
						|
 | 
						|
static ggml_backend_event_t ggml_backend_cuda_event_new(ggml_backend_t backend) {
 | 
						|
#ifdef GGML_CUDA_NO_PEER_COPY
 | 
						|
    return nullptr;
 | 
						|
#else
 | 
						|
    ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
 | 
						|
 | 
						|
    ggml_cuda_set_device(cuda_ctx->device);
 | 
						|
 | 
						|
    cudaEvent_t event;
 | 
						|
    CUDA_CHECK(cudaEventCreateWithFlags(&event, cudaEventDisableTiming));
 | 
						|
 | 
						|
    return new ggml_backend_event {
 | 
						|
        /* .backend = */ backend,
 | 
						|
        /* .context = */ event,
 | 
						|
    };
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
static void ggml_backend_cuda_event_free(ggml_backend_event_t event) {
 | 
						|
    CUDA_CHECK(cudaEventDestroy((cudaEvent_t)event->context));
 | 
						|
 | 
						|
    delete event;
 | 
						|
}
 | 
						|
 | 
						|
static void ggml_backend_cuda_event_record(ggml_backend_event_t event) {
 | 
						|
    ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)event->backend->context;
 | 
						|
 | 
						|
    CUDA_CHECK(cudaEventRecord((cudaEvent_t)event->context, cuda_ctx->stream()));
 | 
						|
}
 | 
						|
 | 
						|
static void ggml_backend_cuda_event_wait(ggml_backend_t backend, ggml_backend_event_t event) {
 | 
						|
    ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
 | 
						|
 | 
						|
    if (ggml_backend_is_cuda(event->backend)) {
 | 
						|
        CUDA_CHECK(cudaStreamWaitEvent(cuda_ctx->stream(), (cudaEvent_t)event->context, 0));
 | 
						|
    } else {
 | 
						|
#if 0
 | 
						|
        // untested
 | 
						|
        auto wait_fn = [](void * user_data) {
 | 
						|
            ggml_backend_event_t event = (ggml_backend_event_t)user_data;
 | 
						|
            ggml_backend_event_synchronize(event);
 | 
						|
        };
 | 
						|
 | 
						|
        CUDA_CHECK(cudaLaunchHostFunc(cuda_ctx->stream(), wait_fn, event));
 | 
						|
#endif
 | 
						|
        GGML_ASSERT(false);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void ggml_backend_cuda_event_synchronize(ggml_backend_event_t event) {
 | 
						|
    CUDA_CHECK(cudaEventSynchronize((cudaEvent_t)event->context));
 | 
						|
}
 | 
						|
 | 
						|
static ggml_backend_i ggml_backend_cuda_interface = {
 | 
						|
    /* .get_name                = */ ggml_backend_cuda_name,
 | 
						|
    /* .free                    = */ ggml_backend_cuda_free,
 | 
						|
    /* .get_default_buffer_type = */ ggml_backend_cuda_get_default_buffer_type,
 | 
						|
    /* .set_tensor_async        = */ ggml_backend_cuda_set_tensor_async,
 | 
						|
    /* .get_tensor_async        = */ ggml_backend_cuda_get_tensor_async,
 | 
						|
    /* .cpy_tensor_async        = */ ggml_backend_cuda_cpy_tensor_async,
 | 
						|
    /* .synchronize             = */ ggml_backend_cuda_synchronize,
 | 
						|
    /* .graph_plan_create       = */ NULL,
 | 
						|
    /* .graph_plan_free         = */ NULL,
 | 
						|
    /* .graph_plan_compute      = */ NULL,
 | 
						|
    /* .graph_compute           = */ ggml_backend_cuda_graph_compute,
 | 
						|
    /* .supports_op             = */ ggml_backend_cuda_supports_op,
 | 
						|
    /* .offload_op              = */ ggml_backend_cuda_offload_op,
 | 
						|
    /* .event_new               = */ ggml_backend_cuda_event_new,
 | 
						|
    /* .event_free              = */ ggml_backend_cuda_event_free,
 | 
						|
    /* .event_record            = */ ggml_backend_cuda_event_record,
 | 
						|
    /* .event_wait              = */ ggml_backend_cuda_event_wait,
 | 
						|
    /* .event_synchronize       = */ ggml_backend_cuda_event_synchronize,
 | 
						|
};
 | 
						|
 | 
						|
static ggml_guid_t ggml_backend_cuda_guid() {
 | 
						|
    static ggml_guid guid = { 0x2c, 0xdd, 0xe8, 0x1c, 0x65, 0xb3, 0x65, 0x73, 0x6a, 0x12, 0x88, 0x61, 0x1c, 0xc9, 0xdc, 0x25 };
 | 
						|
    return &guid;
 | 
						|
}
 | 
						|
 | 
						|
GGML_CALL ggml_backend_t ggml_backend_cuda_init(int device) {
 | 
						|
    if (device < 0 || device >= ggml_backend_cuda_get_device_count()) {
 | 
						|
        fprintf(stderr, "%s: error: invalid device %d\n", __func__, device);
 | 
						|
        return nullptr;
 | 
						|
    }
 | 
						|
 | 
						|
    ggml_backend_cuda_context * ctx = new ggml_backend_cuda_context(device);
 | 
						|
    if (ctx == nullptr) {
 | 
						|
        fprintf(stderr, "%s: error: failed to allocate context\n", __func__);
 | 
						|
        return nullptr;
 | 
						|
    }
 | 
						|
 | 
						|
    ggml_backend_t cuda_backend = new ggml_backend {
 | 
						|
        /* .guid      = */ ggml_backend_cuda_guid(),
 | 
						|
        /* .interface = */ ggml_backend_cuda_interface,
 | 
						|
        /* .context   = */ ctx
 | 
						|
    };
 | 
						|
 | 
						|
    return cuda_backend;
 | 
						|
}
 | 
						|
 | 
						|
GGML_CALL bool ggml_backend_is_cuda(ggml_backend_t backend) {
 | 
						|
    return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_cuda_guid());
 | 
						|
}
 | 
						|
 | 
						|
GGML_CALL int ggml_backend_cuda_get_device_count() {
 | 
						|
    return ggml_cuda_info().device_count;
 | 
						|
}
 | 
						|
 | 
						|
GGML_CALL void ggml_backend_cuda_get_device_description(int device, char * description, size_t description_size) {
 | 
						|
    cudaDeviceProp prop;
 | 
						|
    CUDA_CHECK(cudaGetDeviceProperties(&prop, device));
 | 
						|
    snprintf(description, description_size, "%s", prop.name);
 | 
						|
}
 | 
						|
 | 
						|
GGML_CALL void ggml_backend_cuda_get_device_memory(int device, size_t * free, size_t * total) {
 | 
						|
    ggml_cuda_set_device(device);
 | 
						|
 | 
						|
    CUDA_CHECK(cudaMemGetInfo(free, total));
 | 
						|
}
 | 
						|
 | 
						|
GGML_CALL bool ggml_backend_cuda_register_host_buffer(void * buffer, size_t size) {
 | 
						|
    if (getenv("GGML_CUDA_REGISTER_HOST") == nullptr) {
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
 | 
						|
#if CUDART_VERSION >= 11100
 | 
						|
    cudaError_t err = cudaHostRegister(buffer, size, cudaHostRegisterPortable | cudaHostRegisterReadOnly);
 | 
						|
    if (err != cudaSuccess) {
 | 
						|
        // clear the error
 | 
						|
        cudaGetLastError();
 | 
						|
 | 
						|
        fprintf(stderr, "%s: warning: failed to register %.2f MiB of pinned memory: %s\n", __func__,
 | 
						|
                size/1024.0/1024.0, cudaGetErrorString(err));
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
    return true;
 | 
						|
#else
 | 
						|
    return false;
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
GGML_CALL void ggml_backend_cuda_unregister_host_buffer(void * buffer) {
 | 
						|
    if (getenv("GGML_CUDA_REGISTER_HOST") == nullptr) {
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    cudaError_t err = cudaHostUnregister(buffer);
 | 
						|
    if (err != cudaSuccess) {
 | 
						|
        // clear the error
 | 
						|
        cudaGetLastError();
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
// backend registry
 | 
						|
GGML_CALL static ggml_backend_t ggml_backend_reg_cuda_init(const char * params, void * user_data) {
 | 
						|
    ggml_backend_t cuda_backend = ggml_backend_cuda_init((int) (intptr_t) user_data);
 | 
						|
    return cuda_backend;
 | 
						|
 | 
						|
    GGML_UNUSED(params);
 | 
						|
}
 | 
						|
 | 
						|
extern "C" GGML_CALL int ggml_backend_cuda_reg_devices();
 | 
						|
 | 
						|
GGML_CALL int ggml_backend_cuda_reg_devices() {
 | 
						|
    int device_count = ggml_backend_cuda_get_device_count();
 | 
						|
    //int device_count = 1; // DEBUG: some tools require delaying CUDA initialization
 | 
						|
    for (int i = 0; i < device_count; i++) {
 | 
						|
        char name[128];
 | 
						|
        snprintf(name, sizeof(name), "%s%d", GGML_CUDA_NAME, i);
 | 
						|
        ggml_backend_register(name, ggml_backend_reg_cuda_init, ggml_backend_cuda_buffer_type(i), (void *) (intptr_t) i);
 | 
						|
    }
 | 
						|
    return device_count;
 | 
						|
}
 |