mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-30 08:42:00 +00:00 
			
		
		
		
	 745aa5319b
			
		
	
	745aa5319b
	
	
	
		
			
			* llama : deprecate llama_kv_self_ API ggml-ci * llama : allow llama_memory_(nullptr) ggml-ci * memory : add flag for optional data clear in llama_memory_clear ggml-ci
		
			
				
	
	
		
			257 lines
		
	
	
		
			7.3 KiB
		
	
	
	
		
			Swift
		
	
	
	
	
	
			
		
		
	
	
			257 lines
		
	
	
		
			7.3 KiB
		
	
	
	
		
			Swift
		
	
	
	
	
	
| import Foundation
 | |
| import llama
 | |
| 
 | |
| let arguments = CommandLine.arguments
 | |
| 
 | |
| // Check that we have at least one argument (the model path)
 | |
| guard arguments.count > 1 else {
 | |
|     print("Usage: swift MODEL_PATH [PROMPT] [PARALLEL]")
 | |
|     exit(1)
 | |
| }
 | |
| 
 | |
| let modelPath: String = arguments[1]
 | |
| let prompt: String = arguments.count > 2 ? arguments[2] : "Hello my name is"
 | |
| let n_parallel: Int = arguments.count > 3 && Int(arguments[3]) != nil ? Int(arguments[3])! : 1
 | |
| 
 | |
| // total length of the sequences including the prompt
 | |
| let n_len: Int = 32
 | |
| 
 | |
| // init LLM
 | |
| llama_backend_init()
 | |
| defer {
 | |
|     llama_backend_free()
 | |
| }
 | |
| 
 | |
| let model_params = llama_model_default_params()
 | |
| guard let model = llama_model_load_from_file(modelPath.cString(using: .utf8), model_params) else {
 | |
|     print("Failed to load model")
 | |
|     exit(1)
 | |
| }
 | |
| defer {
 | |
|     llama_model_free(model)
 | |
| }
 | |
| 
 | |
| guard let vocab = llama_model_get_vocab(model) else {
 | |
|     print("Failed to get vocab")
 | |
|     exit(1)
 | |
| }
 | |
| 
 | |
| var tokens = tokenize(text: prompt, add_bos: true)
 | |
| 
 | |
| let n_kv_req = UInt32(tokens.count) + UInt32((n_len - Int(tokens.count)) * n_parallel)
 | |
| 
 | |
| var context_params = llama_context_default_params()
 | |
| context_params.n_ctx = n_kv_req
 | |
| context_params.n_batch = UInt32(max(n_len, n_parallel))
 | |
| context_params.n_threads = 8
 | |
| context_params.n_threads_batch = 8
 | |
| 
 | |
| let context = llama_init_from_model(model, context_params)
 | |
| guard context != nil else {
 | |
|     print("Failed to initialize context")
 | |
|     exit(1)
 | |
| }
 | |
| defer {
 | |
|     llama_free(context)
 | |
| }
 | |
| 
 | |
| var sparams = llama_sampler_chain_default_params()
 | |
| 
 | |
| let smpl = llama_sampler_chain_init(sparams)
 | |
| guard smpl != nil else {
 | |
|     print("Failed to initialize sampling")
 | |
|     exit(1)
 | |
| }
 | |
| defer {
 | |
|     llama_sampler_free(smpl)
 | |
| }
 | |
| 
 | |
| llama_sampler_chain_add(smpl, llama_sampler_init_top_k(40));
 | |
| llama_sampler_chain_add(smpl, llama_sampler_init_top_p(0.9, 1));
 | |
| llama_sampler_chain_add(smpl, llama_sampler_init_temp (0.4));
 | |
| llama_sampler_chain_add(smpl, llama_sampler_init_dist (1234));
 | |
| 
 | |
| let n_ctx = llama_n_ctx(context)
 | |
| 
 | |
| print("\nn_len = \(n_len), n_ctx = \(n_ctx), n_batch = \(context_params.n_batch), n_parallel = \(n_parallel), n_kv_req = \(n_kv_req)\n")
 | |
| 
 | |
| if n_kv_req > n_ctx {
 | |
|     print("error: n_kv_req (%d) > n_ctx, the required KV cache size is not big enough\n", n_kv_req)
 | |
|     exit(1)
 | |
| }
 | |
| 
 | |
| var buffer: [CChar] = []
 | |
| for id: llama_token in tokens {
 | |
|     print(token_to_piece(token: id, buffer: &buffer) ?? "", terminator: "")
 | |
| }
 | |
| 
 | |
| print("\n")
 | |
| 
 | |
| var batch = llama_batch_init(max(Int32(tokens.count), Int32(n_parallel)), 0, 1)
 | |
| defer {
 | |
|     llama_batch_free(batch)
 | |
| }
 | |
| 
 | |
| // evaluate the initial prompt
 | |
| batch.n_tokens = Int32(tokens.count)
 | |
| 
 | |
| for (i, token) in tokens.enumerated() {
 | |
|     batch.token[i] = token
 | |
|     batch.pos[i] = Int32(i)
 | |
|     batch.n_seq_id[i] = 1
 | |
|     // batch.seq_id[i][0] = 0
 | |
|     // TODO: is this the proper way to do this?
 | |
|     if let seq_id = batch.seq_id[i] {
 | |
|         seq_id[0] = 0
 | |
|     }
 | |
|     batch.logits[i] = 0
 | |
| }
 | |
| 
 | |
| // llama_decode will output logits only for the last token of the prompt
 | |
| batch.logits[Int(batch.n_tokens) - 1] = 1
 | |
| 
 | |
| if llama_decode(context, batch) != 0 {
 | |
|     print("llama_decode() failed")
 | |
|     exit(1)
 | |
| }
 | |
| 
 | |
| for i in 1 ..< n_parallel {
 | |
|     llama_memory_seq_cp(llama_get_memory(context), 0, Int32(i), 0, batch.n_tokens)
 | |
| }
 | |
| 
 | |
| if n_parallel > 1 {
 | |
|     print("generating \(n_parallel) sequences ...\n")
 | |
| }
 | |
| 
 | |
| var streams: [String] = .init(repeating: "", count: n_parallel)
 | |
| var streamBuffers: [[CChar]] = .init(repeating: [], count: n_parallel)
 | |
| var i_batch = [Int32](repeating: batch.n_tokens - 1, count: n_parallel)
 | |
| 
 | |
| var n_cur = batch.n_tokens
 | |
| var n_decode = 0
 | |
| 
 | |
| let t_main_start = ggml_time_us()
 | |
| 
 | |
| while n_cur <= n_len {
 | |
|     // prepare the next batch
 | |
|     batch.n_tokens = 0
 | |
| 
 | |
|     // sample the next token for each parallel sequence / stream
 | |
|     for i in 0 ..< n_parallel {
 | |
|         if i_batch[i] < 0 {
 | |
|             // the stream has already finished
 | |
|             continue
 | |
|         }
 | |
| 
 | |
|         let new_token_id = llama_sampler_sample(smpl, context, i_batch[i])
 | |
| 
 | |
|         // is it an end of stream? -> mark the stream as finished
 | |
|         if llama_vocab_is_eog(vocab, new_token_id) || n_cur == n_len {
 | |
|             i_batch[i] = -1
 | |
|             // print("")
 | |
|             if n_parallel > 1 {
 | |
|                 print("stream \(i) finished at n_cur = \(n_cur)")
 | |
|             }
 | |
| 
 | |
|             continue
 | |
|         }
 | |
| 
 | |
|         let nextStringPiece = token_to_piece(token: new_token_id, buffer: &streamBuffers[i]) ?? ""
 | |
| 
 | |
|         // if there is only one stream, we print immediately to stdout
 | |
|         if n_parallel == 1 {
 | |
|             print(nextStringPiece, terminator: "")
 | |
|         }
 | |
|         streams[i] += nextStringPiece
 | |
| 
 | |
|         // push this new token for next evaluation
 | |
|         batch.token[Int(batch.n_tokens)] = new_token_id
 | |
|         batch.pos[Int(batch.n_tokens)] = n_cur
 | |
|         batch.n_seq_id[Int(batch.n_tokens)] = 1
 | |
|         if let seq_id = batch.seq_id[Int(batch.n_tokens)] {
 | |
|             seq_id[0] = Int32(i)
 | |
|         }
 | |
|         batch.logits[Int(batch.n_tokens)] = 1
 | |
| 
 | |
|         i_batch[i] = batch.n_tokens
 | |
| 
 | |
|         batch.n_tokens += 1
 | |
| 
 | |
|         n_decode += 1
 | |
|     }
 | |
| 
 | |
|     // all streams are finished
 | |
|     if batch.n_tokens == 0 {
 | |
|         break
 | |
|     }
 | |
| 
 | |
|     n_cur += 1
 | |
| 
 | |
|     // evaluate the current batch with the transformer model
 | |
|     if llama_decode(context, batch) != 0 {
 | |
|         print("llama_decode() failed")
 | |
|         exit(1)
 | |
|     }
 | |
| }
 | |
| 
 | |
| if n_parallel > 1 {
 | |
|     print("\n")
 | |
|     for (i, stream) in streams.enumerated() {
 | |
|         print("sequence \(i):\n\n\(prompt)\(stream)\n")
 | |
|     }
 | |
| }
 | |
| 
 | |
| let t_main_end = ggml_time_us()
 | |
| 
 | |
| print("decoded \(n_decode) tokens in \(String(format: "%.2f", Double(t_main_end - t_main_start) / 1_000_000.0)) s, speed: \(String(format: "%.2f", Double(n_decode) / (Double(t_main_end - t_main_start) / 1_000_000.0))) t/s\n\n")
 | |
| 
 | |
| llama_perf_sampler_print(smpl)
 | |
| llama_perf_context_print(context)
 | |
| 
 | |
| private func tokenize(text: String, add_bos: Bool) -> [llama_token] {
 | |
|     let utf8Count = text.utf8.count
 | |
|     let n_tokens = utf8Count + (add_bos ? 1 : 0)
 | |
|     let tokens = UnsafeMutablePointer<llama_token>.allocate(capacity: n_tokens)
 | |
|     let tokenCount = llama_tokenize(vocab, text, Int32(utf8Count), tokens, Int32(n_tokens), add_bos, /*special tokens*/ false)
 | |
|     var swiftTokens: [llama_token] = []
 | |
|     for i in 0 ..< tokenCount {
 | |
|         swiftTokens.append(tokens[Int(i)])
 | |
|     }
 | |
|     tokens.deallocate()
 | |
|     return swiftTokens
 | |
| }
 | |
| 
 | |
| private func token_to_piece(token: llama_token, buffer: inout [CChar]) -> String? {
 | |
|     var result = [CChar](repeating: 0, count: 8)
 | |
|     let nTokens = llama_token_to_piece(vocab, token, &result, Int32(result.count), 0, false)
 | |
|     if nTokens < 0 {
 | |
|         let actualTokensCount = -Int(nTokens)
 | |
|         result = .init(repeating: 0, count: actualTokensCount)
 | |
|         let check = llama_token_to_piece(
 | |
|             vocab,
 | |
|             token,
 | |
|             &result,
 | |
|             Int32(result.count),
 | |
|             0,
 | |
|             false
 | |
|         )
 | |
|         assert(check == actualTokensCount)
 | |
|     } else {
 | |
|         result.removeLast(result.count - Int(nTokens))
 | |
|     }
 | |
|     if buffer.isEmpty, let utfString = String(cString: result + [0], encoding: .utf8) {
 | |
|         return utfString
 | |
|     } else {
 | |
|         buffer.append(contentsOf: result)
 | |
|         let data = Data(buffer.map { UInt8(bitPattern: $0) })
 | |
|         if buffer.count >= 4 { // 4 bytes is the max length of a utf8 character so if we're here we need to reset the buffer
 | |
|             buffer = []
 | |
|         }
 | |
|         guard let bufferString = String(data: data, encoding: .utf8) else {
 | |
|             return nil
 | |
|         }
 | |
|         buffer = []
 | |
|         return bufferString
 | |
|     }
 | |
| }
 |