mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-31 08:51:55 +00:00 
			
		
		
		
	 0c50923944
			
		
	
	0c50923944
	
	
	
		
			
			* clip : use smart pointers * fix warmup * add forward declaration * misisng include * fix include (2) * composite * simplify batch ptr * fix conflict
		
			
				
	
	
		
			342 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			342 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #include "clip.h"
 | |
| #include "clip-impl.h"
 | |
| #include "mtmd.h"
 | |
| 
 | |
| #include "llama.h"
 | |
| 
 | |
| #include <algorithm>
 | |
| #include <cerrno>
 | |
| #include <cstdio>
 | |
| #include <cstdlib>
 | |
| #include <cstring>
 | |
| #include <limits>
 | |
| #include <vector>
 | |
| 
 | |
| struct mtmd_context {
 | |
|     struct clip_ctx * ctx_clip;
 | |
|     const struct llama_model * text_model;
 | |
|     std::vector<float> image_embd_v; // image embedding vector
 | |
|     bool print_timings;
 | |
|     int n_threads;
 | |
|     std::string image_marker;
 | |
| 
 | |
|     // TODO @ngxson : add timings
 | |
| 
 | |
|     mtmd_context(const char * mmproj_fname,
 | |
|                    const llama_model * text_model,
 | |
|                    const mtmd_context_params & ctx_params) : print_timings(ctx_params.print_timings), n_threads(ctx_params.n_threads), image_marker(ctx_params.image_marker) {
 | |
|         clip_context_params ctx_clip_params;
 | |
|         ctx_clip_params.use_gpu   = ctx_params.use_gpu;
 | |
|         ctx_clip_params.verbosity = ctx_params.verbosity;
 | |
|         ctx_clip = clip_init(mmproj_fname, ctx_clip_params);
 | |
|         if (!ctx_clip) {
 | |
|             throw std::runtime_error(string_format("Failed to load CLIP model from %s\n", mmproj_fname));
 | |
|         }
 | |
|         this->text_model = text_model;
 | |
|     }
 | |
| 
 | |
|     ~mtmd_context() {
 | |
|         clip_free(ctx_clip);
 | |
|     }
 | |
| };
 | |
| 
 | |
| struct mtmd_image_tokens_data {
 | |
|     clip_image_f32_batch batch_f32; // preprocessed image patches
 | |
| };
 | |
| 
 | |
| struct mtmd_image_tokens {
 | |
|     uint32_t nx; // number of tokens in x direction
 | |
|     uint32_t ny; // number of tokens in y direction
 | |
|     uint32_t n_tokens() const { return nx * ny; }
 | |
|     clip_image_f32_batch batch_f32; // preprocessed image patches
 | |
| };
 | |
| 
 | |
| mtmd_context * mtmd_init_from_file(const char * mmproj_fname,
 | |
|         const struct llama_model * text_model,
 | |
|         const struct mtmd_context_params ctx_params) {
 | |
|     try {
 | |
|         return new mtmd_context(mmproj_fname, text_model, ctx_params);
 | |
|     } catch (const std::exception & e) {
 | |
|         LOG_ERR("%s: error: %s\n", __func__, e.what());
 | |
|         return nullptr;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void mtmd_free(mtmd_context * ctx) {
 | |
|     if (ctx) {
 | |
|         delete ctx;
 | |
|     }
 | |
| }
 | |
| 
 | |
| // copied from common_tokenize
 | |
| static std::vector<llama_token> mtmd_tokenize_text_internal(
 | |
|     const struct llama_vocab * vocab,
 | |
|            const std::string & text,
 | |
|                         bool   add_special,
 | |
|                         bool   parse_special) {
 | |
|     // upper limit for the number of tokens
 | |
|     int n_tokens = text.length() + 2 * add_special;
 | |
|     std::vector<llama_token> result(n_tokens);
 | |
|     n_tokens = llama_tokenize(vocab, text.data(), text.length(), result.data(), result.size(), add_special, parse_special);
 | |
|     if (n_tokens < 0) {
 | |
|         result.resize(-n_tokens);
 | |
|         int check = llama_tokenize(vocab, text.data(), text.length(), result.data(), result.size(), add_special, parse_special);
 | |
|         GGML_ASSERT(check == -n_tokens);
 | |
|     } else {
 | |
|         result.resize(n_tokens);
 | |
|     }
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| mtmd_input_chunks * mtmd_tokenize(mtmd_context * ctx,
 | |
|                                 const mtmd_input_text & text,
 | |
|                                 const std::vector<mtmd_bitmap> & bitmaps) {
 | |
|     mtmd_input_chunks * output = new mtmd_input_chunks;
 | |
|     auto vocab = llama_model_get_vocab(ctx->text_model);
 | |
| 
 | |
|     std::string prompt_modified(text.text);
 | |
|     std::string marker_modified(ctx->image_marker);
 | |
|     projector_type proj_type = clip_get_projector_type(ctx->ctx_clip);
 | |
|     // a bit hacky here, but works for now
 | |
|     // for some models, we need to add prefix and suffix to the image embeddings
 | |
|     if (proj_type == PROJECTOR_TYPE_GEMMA3) {
 | |
|         // <start_of_image> ... (image embeddings) ... <end_of_image>
 | |
|         marker_modified = "<start_of_image>" + ctx->image_marker + "<end_of_image>";
 | |
|         string_replace_all(prompt_modified, ctx->image_marker, marker_modified);
 | |
|     }
 | |
| 
 | |
|     std::vector<std::string> parts = string_split_str(text.text, ctx->image_marker);
 | |
|     output->clear();
 | |
|     output->reserve(parts.size());
 | |
| 
 | |
|     size_t i_img = 0;
 | |
| 
 | |
|     for (const auto & part : parts) {
 | |
|         //printf("tokenizing part: %s\n", part.c_str());
 | |
|         bool add_bos = &parts.front() == ∂
 | |
|         auto tokens = mtmd_tokenize_text_internal(vocab, part, text.add_special && add_bos, text.parse_special);
 | |
|         if (tokens.empty()) {
 | |
|             continue;
 | |
|         }
 | |
|         mtmd_input_chunk chunk{
 | |
|             MTMD_INPUT_CHUNK_TYPE_TEXT,
 | |
|             std::move(tokens),
 | |
|             {},
 | |
|         };
 | |
|         output->emplace_back(std::move(chunk));
 | |
| 
 | |
|         if (&parts.back() != &part) {
 | |
|             // add image token to middle of 2 parts
 | |
| 
 | |
|             if (i_img >= bitmaps.size()) {
 | |
|                 LOG_ERR("%s: error: not enough images for %d parts\n", __func__, (int)parts.size());
 | |
|                 return nullptr;
 | |
|             }
 | |
| 
 | |
|             // shim layer
 | |
|             clip_image_u8_ptr img_u8(clip_image_u8_init());
 | |
|             img_u8->nx = bitmaps[i_img].nx;
 | |
|             img_u8->ny = bitmaps[i_img].ny;
 | |
|             img_u8->buf.resize(bitmaps[i_img].data.size());
 | |
|             std::memcpy(img_u8->buf.data(), bitmaps[i_img].data.data(), img_u8->nx * img_u8->ny * 3);
 | |
| 
 | |
|             // preprocess image
 | |
|             clip_image_f32_batch batch_f32;
 | |
|             bool ok = clip_image_preprocess(ctx->ctx_clip, img_u8.get(), &batch_f32);
 | |
|             if (!ok) {
 | |
|                 LOG_ERR("Unable to preprocess image\n");
 | |
|                 return nullptr;
 | |
|             }
 | |
| 
 | |
|             mtmd_image_tokens * image_tokens = new mtmd_image_tokens;
 | |
|             image_tokens->nx = clip_n_patches(ctx->ctx_clip); // TODO @ngxson : use clip_n_patches_by_image
 | |
|             image_tokens->ny = 1; // TODO
 | |
|             image_tokens->batch_f32 = std::move(batch_f32);
 | |
| 
 | |
|             mtmd_input_chunk chunk{
 | |
|                 MTMD_INPUT_CHUNK_TYPE_IMAGE,
 | |
|                 {},
 | |
|                 image_tokens,
 | |
|             };
 | |
|             output->emplace_back(std::move(chunk));
 | |
|             i_img++;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return output;
 | |
| }
 | |
| 
 | |
| void mtmd_input_chunks_free(mtmd_input_chunks * chunks) {
 | |
|     for (auto & chunk : *chunks) {
 | |
|         if (chunk.type == MTMD_INPUT_CHUNK_TYPE_IMAGE && chunk.tokens_image) {
 | |
|             delete chunk.tokens_image;
 | |
|         }
 | |
|     }
 | |
|     delete chunks;
 | |
| }
 | |
| 
 | |
| int32_t mtmd_encode(mtmd_context * ctx, const mtmd_image_tokens * image_tokens) {
 | |
|     int n_mmproj_embd = clip_n_mmproj_embd(ctx->ctx_clip);
 | |
|     ctx->image_embd_v.resize(image_tokens->n_tokens() * n_mmproj_embd);
 | |
|     bool ok = clip_image_batch_encode(
 | |
|         ctx->ctx_clip,
 | |
|         ctx->n_threads,
 | |
|         &image_tokens->batch_f32,
 | |
|         ctx->image_embd_v.data());
 | |
|     return ok ? 0 : 1;
 | |
| }
 | |
| 
 | |
| float * mtmd_get_output_embd(mtmd_context * ctx) {
 | |
|     return ctx->image_embd_v.data();
 | |
| }
 | |
| 
 | |
| size_t mtmd_helper_get_n_tokens(mtmd_input_chunks * chunks) {
 | |
|     size_t n_tokens = 0;
 | |
|     for (auto & chunk : *chunks) {
 | |
|         if (chunk.type == MTMD_INPUT_CHUNK_TYPE_TEXT) {
 | |
|             n_tokens += chunk.tokens_text.size();
 | |
|         } else if (chunk.type == MTMD_INPUT_CHUNK_TYPE_IMAGE) {
 | |
|             n_tokens += chunk.tokens_image->n_tokens();
 | |
|         } else {
 | |
|             GGML_ASSERT(false && "chunk type not supported");
 | |
|         }
 | |
|     }
 | |
|     return n_tokens;
 | |
| }
 | |
| 
 | |
| // helper struct to make working with embd batch easier
 | |
| // note: this will be removed after llama_batch_ext refactoring
 | |
| struct decode_embd_batch {
 | |
|     std::vector<llama_pos>      pos;
 | |
|     std::vector<int32_t>        n_seq_id;
 | |
|     std::vector<llama_seq_id>   seq_id_0;
 | |
|     std::vector<llama_seq_id *> seq_ids;
 | |
|     std::vector<int8_t>         logits;
 | |
|     llama_batch batch;
 | |
|     decode_embd_batch(float * embd, int32_t n_tokens, llama_pos pos_0, llama_seq_id seq_id) {
 | |
|         pos     .resize(n_tokens);
 | |
|         n_seq_id.resize(n_tokens);
 | |
|         seq_ids .resize(n_tokens + 1);
 | |
|         logits  .resize(n_tokens);
 | |
|         seq_id_0.resize(1);
 | |
|         seq_id_0[0] = seq_id;
 | |
|         seq_ids [n_tokens] = nullptr;
 | |
|         batch = {
 | |
|             /*n_tokens       =*/ n_tokens,
 | |
|             /*tokens         =*/ nullptr,
 | |
|             /*embd           =*/ embd,
 | |
|             /*pos            =*/ pos.data(),
 | |
|             /*n_seq_id       =*/ n_seq_id.data(),
 | |
|             /*seq_id         =*/ seq_ids.data(),
 | |
|             /*logits         =*/ logits.data(),
 | |
|         };
 | |
|         for (int i = 0; i < n_tokens; i++) {
 | |
|             batch.pos     [i] = pos_0 + i;
 | |
|             batch.n_seq_id[i] = 1;
 | |
|             batch.seq_id  [i] = seq_id_0.data();
 | |
|             batch.logits  [i] = false;
 | |
|         }
 | |
|     }
 | |
| };
 | |
| 
 | |
| int32_t mtmd_helper_eval(mtmd_context * ctx,
 | |
|         llama_context * lctx,
 | |
|         mtmd_input_chunks * chunks,
 | |
|         llama_pos pos0,
 | |
|         llama_seq_id seq_id,
 | |
|         int32_t n_batch) {
 | |
|     int32_t ret;
 | |
|     llama_pos n_past = pos0;
 | |
|     llama_batch text_batch = llama_batch_init(n_batch, 0, 1);
 | |
| 
 | |
|     for (auto & chunk : *chunks) {
 | |
|         bool is_last = &chunk == &chunks->back();
 | |
|         if (chunk.type == MTMD_INPUT_CHUNK_TYPE_TEXT) {
 | |
|             // TODO @ngxson : may need to split into smaller batches
 | |
|             text_batch.n_tokens = chunk.tokens_text.size();
 | |
|             for (size_t i = 0; i < chunk.tokens_text.size(); i++) {
 | |
|                 text_batch.token   [i]    = chunk.tokens_text[i];
 | |
|                 text_batch.pos     [i]    = n_past++;
 | |
|                 text_batch.n_seq_id[i]    = 1;
 | |
|                 text_batch.seq_id  [i][0] = seq_id;
 | |
|                 text_batch.logits  [i]    = false;
 | |
|             }
 | |
|             if (is_last) {
 | |
|                 // always get logits for last input chunk
 | |
|                 text_batch.logits[text_batch.n_tokens - 1] = true;
 | |
|             }
 | |
|             ret = llama_decode(lctx, text_batch);
 | |
|             if (ret != 0) {
 | |
|                 LOG_ERR("failed to decode text\n");
 | |
|                 llama_batch_free(text_batch);
 | |
|                 return ret;
 | |
|             }
 | |
| 
 | |
|         } else if (chunk.type == MTMD_INPUT_CHUNK_TYPE_IMAGE) {
 | |
|             GGML_ASSERT(!is_last && "logits for last image chunk is not yet support");
 | |
|             GGML_ASSERT(chunk.tokens_image != nullptr);
 | |
|             int64_t t0 = ggml_time_ms();
 | |
|             if (ctx->print_timings) {
 | |
|                 LOG_INF("encoding image...\n");
 | |
|             }
 | |
|             ret = mtmd_encode(ctx, chunk.tokens_image);
 | |
|             if (ret != 0) {
 | |
|                 LOG_ERR("failed to encode image\n");
 | |
|                 llama_batch_free(text_batch);
 | |
|                 return ret;
 | |
|             }
 | |
|             if (ctx->print_timings) {
 | |
|                 LOG_INF("image encoded in %" PRId64 " ms\n", ggml_time_ms() - t0);
 | |
|             }
 | |
| 
 | |
|             int32_t n_tokens = chunk.tokens_image->n_tokens();
 | |
|             float * embd = mtmd_get_output_embd(ctx);
 | |
|             decode_embd_batch batch_img(embd, n_tokens, n_past, 0);
 | |
|             int64_t t1 = ggml_time_ms();
 | |
|             ret = llama_decode(lctx, batch_img.batch);
 | |
|             if (ret != 0) {
 | |
|                 LOG_ERR("failed to decode image\n");
 | |
|                 llama_batch_free(text_batch);
 | |
|                 return ret;
 | |
|             }
 | |
|             if (ctx->print_timings) {
 | |
|                 LOG_INF("image decoded in %" PRId64 " ms\n", ggml_time_ms() - t1);
 | |
|             }
 | |
| 
 | |
|             n_past += n_tokens;
 | |
| 
 | |
|         } else {
 | |
|             GGML_ASSERT(false && "chunk type not supported");
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     llama_batch_free(text_batch);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| int32_t mtmd_helper_bitmap_init_from_buf(const unsigned char * buf, size_t len, mtmd_bitmap & output) {
 | |
|     clip_image_u8_ptr img_u8(clip_image_u8_init());
 | |
|     bool ok = clip_image_load_from_bytes(buf, len, img_u8.get());
 | |
|     if (!ok) {
 | |
|         LOG_ERR("Unable to load image from buffer\n");
 | |
|         return 1;
 | |
|     }
 | |
|     unsigned char * data = clip_image_u8_get_data(img_u8.get(), &output.nx, &output.ny);
 | |
|     output.data.resize(output.nx * output.ny * 3);
 | |
|     std::memcpy(output.data.data(), data, output.nx * output.ny * 3);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| int32_t mtmd_helper_bitmap_init_from_file(const char * fname, mtmd_bitmap & output) {
 | |
|     clip_image_u8_ptr img_u8(clip_image_u8_init());
 | |
|     bool ok = clip_image_load_from_file(fname, img_u8.get());
 | |
|     if (!ok) {
 | |
|         LOG_ERR("Unable to load image %s\n", fname);
 | |
|         return 1;
 | |
|     }
 | |
|     unsigned char * data = clip_image_u8_get_data(img_u8.get(), &output.nx, &output.ny);
 | |
|     output.data.resize(output.nx * output.ny * 3);
 | |
|     std::memcpy(output.data.data(), data, output.nx * output.ny * 3);
 | |
|     return 0;
 | |
| }
 |