mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-31 08:51:55 +00:00 
			
		
		
		
	 d9d54e498d
			
		
	
	d9d54e498d
	
	
	
		
			
			* speculative : refactor and add a simpler example ggml-ci * speculative : clean-up and add comments and TODOs [no ci] * speculative : manage context in common_speculative ggml-ci * speculative : simplify ggml-ci * speculative : simplify (cont) ggml-ci * speculative : add --draft-min CLI arg * speculative : minor fixup * make : build fixes * speculative : do not redraft previous drafts ggml-ci * speculative : fix the draft sampling ggml-ci * speculative : fix compile warning * common : refactor args ggml-ci * common : change defaults [no ci] * common : final touches ggml-ci
		
			
				
	
	
		
			330 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			330 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #include "arg.h"
 | |
| #include "base64.hpp"
 | |
| #include "log.h"
 | |
| #include "common.h"
 | |
| #include "sampling.h"
 | |
| #include "clip.h"
 | |
| #include "llava.h"
 | |
| #include "llama.h"
 | |
| #include "ggml.h"
 | |
| 
 | |
| #include <cstdio>
 | |
| #include <cstdlib>
 | |
| #include <cstring>
 | |
| #include <vector>
 | |
| 
 | |
| static bool eval_tokens(struct llama_context * ctx_llama, std::vector<llama_token> tokens, int n_batch, int * n_past) {
 | |
|     int N = (int) tokens.size();
 | |
|     for (int i = 0; i < N; i += n_batch) {
 | |
|         int n_eval = (int) tokens.size() - i;
 | |
|         if (n_eval > n_batch) {
 | |
|             n_eval = n_batch;
 | |
|         }
 | |
|         if (llama_decode(ctx_llama, llama_batch_get_one(&tokens[i], n_eval))) {
 | |
|             LOG_ERR("%s : failed to eval. token %d/%d (batch size %d, n_past %d)\n", __func__, i, N, n_batch, *n_past);
 | |
|             return false;
 | |
|         }
 | |
|         *n_past += n_eval;
 | |
|     }
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| static bool eval_id(struct llama_context * ctx_llama, int id, int * n_past) {
 | |
|     std::vector<llama_token> tokens;
 | |
|     tokens.push_back(id);
 | |
|     return eval_tokens(ctx_llama, tokens, 1, n_past);
 | |
| }
 | |
| 
 | |
| static bool eval_string(struct llama_context * ctx_llama, const char* str, int n_batch, int * n_past, bool add_bos){
 | |
|     std::string              str2     = str;
 | |
|     std::vector<llama_token> embd_inp = common_tokenize(ctx_llama, str2, add_bos, true);
 | |
|     eval_tokens(ctx_llama, embd_inp, n_batch, n_past);
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| static const char * sample(struct common_sampler * smpl,
 | |
|                            struct llama_context * ctx_llama,
 | |
|                            int * n_past) {
 | |
|     const llama_token id = common_sampler_sample(smpl, ctx_llama, -1);
 | |
|     common_sampler_accept(smpl, id, true);
 | |
|     static std::string ret;
 | |
|     if (llama_token_is_eog(llama_get_model(ctx_llama), id)) {
 | |
|         ret = "</s>";
 | |
|     } else {
 | |
|         ret = common_token_to_piece(ctx_llama, id);
 | |
|     }
 | |
|     eval_id(ctx_llama, id, n_past);
 | |
|     return ret.c_str();
 | |
| }
 | |
| 
 | |
| static const char* IMG_BASE64_TAG_BEGIN = "<img src=\"data:image/jpeg;base64,";
 | |
| static const char* IMG_BASE64_TAG_END = "\">";
 | |
| 
 | |
| static void find_image_tag_in_prompt(const std::string& prompt, size_t& begin_out, size_t& end_out) {
 | |
|     begin_out = prompt.find(IMG_BASE64_TAG_BEGIN);
 | |
|     end_out = prompt.find(IMG_BASE64_TAG_END, (begin_out == std::string::npos) ? 0UL : begin_out);
 | |
| }
 | |
| 
 | |
| static bool prompt_contains_image(const std::string& prompt) {
 | |
|     size_t begin, end;
 | |
|     find_image_tag_in_prompt(prompt, begin, end);
 | |
|     return (begin != std::string::npos);
 | |
| }
 | |
| 
 | |
| // replaces the base64 image tag in the prompt with `replacement`
 | |
| static llava_image_embed * llava_image_embed_make_with_prompt_base64(struct clip_ctx * ctx_clip, int n_threads, const std::string& prompt) {
 | |
|     size_t img_base64_str_start, img_base64_str_end;
 | |
|     find_image_tag_in_prompt(prompt, img_base64_str_start, img_base64_str_end);
 | |
|     if (img_base64_str_start == std::string::npos || img_base64_str_end == std::string::npos) {
 | |
|         LOG_ERR("%s: invalid base64 image tag. must be %s<base64 byte string>%s\n", __func__, IMG_BASE64_TAG_BEGIN, IMG_BASE64_TAG_END);
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     auto base64_bytes_start = img_base64_str_start + strlen(IMG_BASE64_TAG_BEGIN);
 | |
|     auto base64_bytes_count = img_base64_str_end - base64_bytes_start;
 | |
|     auto base64_str = prompt.substr(base64_bytes_start, base64_bytes_count );
 | |
| 
 | |
|     auto required_bytes = base64::required_encode_size(base64_str.size());
 | |
|     auto img_bytes = std::vector<unsigned char>(required_bytes);
 | |
|     base64::decode(base64_str.begin(), base64_str.end(), img_bytes.begin());
 | |
| 
 | |
|     auto embed = llava_image_embed_make_with_bytes(ctx_clip, n_threads, img_bytes.data(), img_bytes.size());
 | |
|     if (!embed) {
 | |
|         LOG_ERR("%s: could not load image from base64 string.\n", __func__);
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     return embed;
 | |
| }
 | |
| 
 | |
| static std::string remove_image_from_prompt(const std::string& prompt, const char * replacement = "") {
 | |
|     size_t begin, end;
 | |
|     find_image_tag_in_prompt(prompt, begin, end);
 | |
|     if (begin == std::string::npos || end == std::string::npos) {
 | |
|         return prompt;
 | |
|     }
 | |
|     auto pre = prompt.substr(0, begin);
 | |
|     auto post = prompt.substr(end + strlen(IMG_BASE64_TAG_END));
 | |
|     return pre + replacement + post;
 | |
| }
 | |
| 
 | |
| struct llava_context {
 | |
|     struct clip_ctx * ctx_clip = NULL;
 | |
|     struct llama_context * ctx_llama = NULL;
 | |
|     struct llama_model * model = NULL;
 | |
| };
 | |
| 
 | |
| static void print_usage(int, char ** argv) {
 | |
|     LOG("\n example usage:\n");
 | |
|     LOG("\n     %s -m <llava-v1.5-7b/ggml-model-q5_k.gguf> --mmproj <llava-v1.5-7b/mmproj-model-f16.gguf> --image <path/to/an/image.jpg> --image <path/to/another/image.jpg> [--temp 0.1] [-p \"describe the image in detail.\"]\n", argv[0]);
 | |
|     LOG("\n note: a lower temperature value like 0.1 is recommended for better quality.\n");
 | |
| }
 | |
| 
 | |
| static struct llava_image_embed * load_image(llava_context * ctx_llava, common_params * params, const std::string & fname) {
 | |
| 
 | |
|     // load and preprocess the image
 | |
|     llava_image_embed * embed = NULL;
 | |
|     auto prompt = params->prompt;
 | |
|     if (prompt_contains_image(prompt)) {
 | |
|         if (!params->image.empty()) {
 | |
|             LOG_INF("using base64 encoded image instead of command line image path\n");
 | |
|         }
 | |
|         embed = llava_image_embed_make_with_prompt_base64(ctx_llava->ctx_clip, params->cpuparams.n_threads, prompt);
 | |
|         if (!embed) {
 | |
|             LOG_ERR("%s: can't load image from prompt\n", __func__);
 | |
|             return NULL;
 | |
|         }
 | |
|         params->prompt = remove_image_from_prompt(prompt);
 | |
|     } else {
 | |
|         embed = llava_image_embed_make_with_filename(ctx_llava->ctx_clip, params->cpuparams.n_threads, fname.c_str());
 | |
|         if (!embed) {
 | |
|             fprintf(stderr, "%s: is %s really an image file?\n", __func__, fname.c_str());
 | |
|             return NULL;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return embed;
 | |
| }
 | |
| 
 | |
| static void process_prompt(struct llava_context * ctx_llava, struct llava_image_embed * image_embed, common_params * params, const std::string & prompt) {
 | |
|     int n_past = 0;
 | |
| 
 | |
|     const int max_tgt_len = params->n_predict < 0 ? 256 : params->n_predict;
 | |
| 
 | |
|     std::string system_prompt, user_prompt;
 | |
|     size_t image_pos = prompt.find("<image>");
 | |
|     if (image_pos != std::string::npos) {
 | |
|         // new templating mode: Provide the full prompt including system message and use <image> as a placeholder for the image
 | |
|         system_prompt = prompt.substr(0, image_pos);
 | |
|         user_prompt = prompt.substr(image_pos + std::string("<image>").length());
 | |
|         LOG_INF("system_prompt: %s\n", system_prompt.c_str());
 | |
|         if (params->verbose_prompt) {
 | |
|             auto tmp = common_tokenize(ctx_llava->ctx_llama, system_prompt, true, true);
 | |
|             for (int i = 0; i < (int) tmp.size(); i++) {
 | |
|                 LOG_INF("%6d -> '%s'\n", tmp[i], common_token_to_piece(ctx_llava->ctx_llama, tmp[i]).c_str());
 | |
|             }
 | |
|         }
 | |
|         LOG_INF("user_prompt: %s\n", user_prompt.c_str());
 | |
|         if (params->verbose_prompt) {
 | |
|             auto tmp = common_tokenize(ctx_llava->ctx_llama, user_prompt, true, true);
 | |
|             for (int i = 0; i < (int) tmp.size(); i++) {
 | |
|                 LOG_INF("%6d -> '%s'\n", tmp[i], common_token_to_piece(ctx_llava->ctx_llama, tmp[i]).c_str());
 | |
|             }
 | |
|         }
 | |
|     } else {
 | |
|         // llava-1.5 native mode
 | |
|         system_prompt = "A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.\nUSER:";
 | |
|         user_prompt = prompt + "\nASSISTANT:";
 | |
|         if (params->verbose_prompt) {
 | |
|             auto tmp = common_tokenize(ctx_llava->ctx_llama, user_prompt, true, true);
 | |
|             for (int i = 0; i < (int) tmp.size(); i++) {
 | |
|                 LOG_INF("%6d -> '%s'\n", tmp[i], common_token_to_piece(ctx_llava->ctx_llama, tmp[i]).c_str());
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     eval_string(ctx_llava->ctx_llama, system_prompt.c_str(), params->n_batch, &n_past, true);
 | |
|     llava_eval_image_embed(ctx_llava->ctx_llama, image_embed, params->n_batch, &n_past);
 | |
|     eval_string(ctx_llava->ctx_llama, user_prompt.c_str(), params->n_batch, &n_past, false);
 | |
| 
 | |
|     // generate the response
 | |
| 
 | |
|     LOG("\n");
 | |
| 
 | |
|     struct common_sampler * smpl = common_sampler_init(ctx_llava->model, params->sampling);
 | |
|     if (!smpl) {
 | |
|         LOG_ERR("%s: failed to initialize sampling subsystem\n", __func__);
 | |
|         exit(1);
 | |
|     }
 | |
| 
 | |
|     std::string response = "";
 | |
|     for (int i = 0; i < max_tgt_len; i++) {
 | |
|         const char * tmp = sample(smpl, ctx_llava->ctx_llama, &n_past);
 | |
|         response += tmp;
 | |
|         if (strcmp(tmp, "</s>") == 0) break;
 | |
|         if (strstr(tmp, "###")) break; // Yi-VL behavior
 | |
|         LOG("%s", tmp);
 | |
|         if (strstr(response.c_str(), "<|im_end|>")) break; // Yi-34B llava-1.6 - for some reason those decode not as the correct token (tokenizer works)
 | |
|         if (strstr(response.c_str(), "<|im_start|>")) break; // Yi-34B llava-1.6
 | |
|         if (strstr(response.c_str(), "USER:")) break; // mistral llava-1.6
 | |
| 
 | |
|         fflush(stdout);
 | |
|     }
 | |
| 
 | |
|     common_sampler_free(smpl);
 | |
|     LOG("\n");
 | |
| }
 | |
| 
 | |
| static struct llama_model * llava_init(common_params * params) {
 | |
|     llama_backend_init();
 | |
|     llama_numa_init(params->numa);
 | |
| 
 | |
|     llama_model_params model_params = common_model_params_to_llama(*params);
 | |
| 
 | |
|     llama_model * model = llama_load_model_from_file(params->model.c_str(), model_params);
 | |
|     if (model == NULL) {
 | |
|         LOG_ERR("%s: unable to load model\n" , __func__);
 | |
|         return NULL;
 | |
|     }
 | |
|     return model;
 | |
| }
 | |
| 
 | |
| static struct llava_context * llava_init_context(common_params * params, llama_model * model) {
 | |
|     const char * clip_path = params->mmproj.c_str();
 | |
| 
 | |
|     auto prompt = params->prompt;
 | |
|     if (prompt.empty()) {
 | |
|         prompt = "describe the image in detail.";
 | |
|     }
 | |
| 
 | |
|     auto ctx_clip = clip_model_load(clip_path, /*verbosity=*/ 1);
 | |
| 
 | |
| 
 | |
|     llama_context_params ctx_params = common_context_params_to_llama(*params);
 | |
|     ctx_params.n_ctx           = params->n_ctx < 2048 ? 2048 : params->n_ctx; // we need a longer context size to process image embeddings
 | |
| 
 | |
|     llama_context * ctx_llama = llama_new_context_with_model(model, ctx_params);
 | |
| 
 | |
|     if (ctx_llama == NULL) {
 | |
|         LOG_ERR("%s: failed to create the llama_context\n" , __func__);
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     auto * ctx_llava = (struct llava_context *)malloc(sizeof(llava_context));
 | |
| 
 | |
|     ctx_llava->ctx_llama = ctx_llama;
 | |
|     ctx_llava->ctx_clip = ctx_clip;
 | |
|     ctx_llava->model = model;
 | |
|     return ctx_llava;
 | |
| }
 | |
| 
 | |
| static void llava_free(struct llava_context * ctx_llava) {
 | |
|     if (ctx_llava->ctx_clip) {
 | |
|         clip_free(ctx_llava->ctx_clip);
 | |
|         ctx_llava->ctx_clip = NULL;
 | |
|     }
 | |
| 
 | |
|     llama_free(ctx_llava->ctx_llama);
 | |
|     llama_free_model(ctx_llava->model);
 | |
|     llama_backend_free();
 | |
| }
 | |
| 
 | |
| int main(int argc, char ** argv) {
 | |
|     ggml_time_init();
 | |
| 
 | |
|     common_params params;
 | |
| 
 | |
|     if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_LLAVA, print_usage)) {
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     common_init();
 | |
| 
 | |
|     if (params.mmproj.empty() || (params.image.empty() && !prompt_contains_image(params.prompt))) {
 | |
|         print_usage(argc, argv);
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     auto * model = llava_init(¶ms);
 | |
|     if (model == NULL) {
 | |
|         fprintf(stderr, "%s: error: failed to init llava model\n", __func__);
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     if (prompt_contains_image(params.prompt)) {
 | |
|         auto * ctx_llava = llava_init_context(¶ms, model);
 | |
| 
 | |
|         auto * image_embed = load_image(ctx_llava, ¶ms, "");
 | |
| 
 | |
|         // process the prompt
 | |
|         process_prompt(ctx_llava, image_embed, ¶ms, params.prompt);
 | |
| 
 | |
|         llama_perf_context_print(ctx_llava->ctx_llama);
 | |
|         llava_image_embed_free(image_embed);
 | |
|         ctx_llava->model = NULL;
 | |
|         llava_free(ctx_llava);
 | |
|     } else {
 | |
|         for (auto & image : params.image) {
 | |
|             auto * ctx_llava = llava_init_context(¶ms, model);
 | |
| 
 | |
|             auto * image_embed = load_image(ctx_llava, ¶ms, image);
 | |
|             if (!image_embed) {
 | |
|                 LOG_ERR("%s: failed to load image %s. Terminating\n\n", __func__, image.c_str());
 | |
|                 return 1;
 | |
|             }
 | |
| 
 | |
|             // process the prompt
 | |
|             process_prompt(ctx_llava, image_embed, ¶ms, params.prompt);
 | |
| 
 | |
|             llama_perf_context_print(ctx_llava->ctx_llama);
 | |
|             llava_image_embed_free(image_embed);
 | |
|             ctx_llava->model = NULL;
 | |
|             llava_free(ctx_llava);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     llama_free_model(model);
 | |
| 
 | |
|     return 0;
 | |
| }
 |