Files
llama.cpp/ggml/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_base.glsl
Acly e29acf74fe vulkan : incremental shader builds (#16341)
* vulkan (DRAFT): split shader generation by GLSL source file, to improve incremental build times

* support dep-files so shaders are recompiled if their included files change

* rename shader files which are used as "headers" to use .glsl extension
* move glslc extension detection shaders to separate folders
* the above is to prevent them from getting glob'd with the actual compute shaders that need to be compiled

* vulkan : only write embedded shader .hpp/.cpp when they change

* avoid recompiling ggml-vulkan.cpp when editing shaders
* pass single --source argument instead of --input-dir & --filter to shader gen
* check for source file match earlier

* fix hang in vulkan-shaders-gen when there are compilation errors

* early out did not decrement compile_count

* clean up

* fix glslc integer dot product test

* unconditionally write the embedded shader cpp output

* replace output filepath in generated dep-files to match output in CMakeLists

---------

Co-authored-by: Jeff Bolz <jbolz@nvidia.com>
2025-10-04 11:42:56 +02:00

183 lines
5.2 KiB
GLSL

#extension GL_EXT_control_flow_attributes : enable
#extension GL_EXT_shader_16bit_storage : require
#extension GL_EXT_shader_8bit_storage : require
#if USE_SUBGROUP_ADD || USE_SUBGROUP_ADD_NO_SHMEM
#extension GL_KHR_shader_subgroup_basic : require
#extension GL_KHR_shader_subgroup_arithmetic : require
#endif
#ifdef MUL_MAT_ID
#define EXPERT_COUNT 8
#endif
#include "types.glsl"
#ifndef MMQ
layout (binding = 0) readonly buffer A {A_TYPE data_a[];};
#else
layout (binding = 0) readonly buffer A {A_TYPE_PACKED16 data_a[];};
#endif
layout (binding = 1) readonly buffer B {B_TYPE data_b[];};
#ifdef B_TYPE_VEC2
layout (binding = 1) readonly buffer BV2 {B_TYPE_VEC2 data_b_v2[];};
#endif
#ifdef B_TYPE_VEC4
layout (binding = 1) readonly buffer BV4 {B_TYPE_VEC4 data_b_v4[];};
#endif
layout (binding = 2) writeonly buffer D {D_TYPE data_d[];};
#ifdef MUL_MAT_ID
layout (binding = 3) readonly buffer IDS {int data_ids[];};
#endif
#include "dequant_funcs.glsl"
layout (push_constant) uniform parameter
{
uint ncols;
uint stride_a;
uint stride_b;
uint stride_d;
uint batch_stride_a;
uint batch_stride_b;
uint batch_stride_d;
#ifdef MUL_MAT_ID
uint nei0;
uint ne11;
#else
uint ne02;
uint ne12;
uint broadcast2;
uint broadcast3;
#endif
} p;
void get_offsets(out uint a_offset, out uint b_offset, out uint d_offset) {
#ifdef MUL_MAT_ID
const uint expert_idx = gl_GlobalInvocationID.y;
#else
const uint batch_idx = gl_GlobalInvocationID.y;
#endif
#ifndef MUL_MAT_ID
uint batch_idx_a = 0;
if (batch_idx != 0) {
const uint i13 = batch_idx / p.ne12;
const uint i12 = batch_idx % p.ne12;
const uint i03 = i13 / p.broadcast3;
const uint i02 = i12 / p.broadcast2;
batch_idx_a = i03 * p.ne02 + i02;
}
#else
const uint expert_id = data_ids[expert_idx];
#endif
a_offset =
#ifdef MUL_MAT_ID
expert_id * p.batch_stride_a;
#else
batch_idx_a * p.batch_stride_a;
#endif
b_offset =
#ifdef MUL_MAT_ID
(expert_idx % p.ne11) * p.stride_b;
#else
batch_idx * p.batch_stride_b;
#endif
d_offset =
#ifdef MUL_MAT_ID
expert_idx * p.stride_d;
#else
batch_idx * p.batch_stride_d;
#endif
}
layout (constant_id = 0) const uint BLOCK_SIZE = 32;
layout (constant_id = 1) const uint NUM_ROWS = 1;
layout (constant_id = 2) const uint NUM_COLS = 1;
#ifdef USE_SUBGROUP_ADD_NO_SHMEM
void reduce_result(inout FLOAT_TYPE temp[NUM_COLS][NUM_ROWS], const in uint32_t d_offset, const in uint32_t first_row, const in uint32_t num_rows, const in uint32_t tid) {
[[unroll]] for (uint j = 0; j < NUM_COLS; ++j) {
[[unroll]] for (uint n = 0; n < num_rows; ++n) {
temp[j][n] = subgroupAdd(temp[j][n]);
}
}
if (tid == 0) {
[[unroll]] for (uint j = 0; j < NUM_COLS; ++j) {
[[unroll]] for (uint n = 0; n < num_rows; ++n) {
data_d[j*p.batch_stride_d + d_offset + first_row + n] = D_TYPE(temp[j][n]);
}
}
}
}
#else
shared FLOAT_TYPE tmpsh[NUM_COLS][NUM_ROWS][BLOCK_SIZE];
void reduce_result(FLOAT_TYPE temp[NUM_COLS][NUM_ROWS], const in uint32_t d_offset, const in uint32_t first_row, const in uint32_t num_rows, const in uint32_t tid) {
// subgroupAdd is probably faster on devices that support it,
// particularly when the workgroup has more than one subgroup
#if USE_SUBGROUP_ADD
// sum up partial sums within a subgroup
[[unroll]] for (uint j = 0; j < NUM_COLS; ++j) {
[[unroll]] for (uint n = 0; n < num_rows; ++n) {
temp[j][n] = subgroupAdd(temp[j][n]);
}
}
// Go through shared memory to sum partials across subgroups
if (gl_SubgroupInvocationID == 0) {
[[unroll]] for (uint j = 0; j < NUM_COLS; ++j) {
[[unroll]] for (uint n = 0; n < num_rows; ++n) {
tmpsh[j][n][gl_SubgroupID] = temp[j][n];
}
}
}
barrier();
if (tid == 0) {
[[unroll]] for (uint j = 0; j < NUM_COLS; ++j) {
[[unroll]] for (uint n = 0; n < num_rows; ++n) {
temp[j][n] = FLOAT_TYPE(0);
[[unroll]] for (uint s = 0; s < gl_NumSubgroups; ++s) {
temp[j][n] += tmpsh[j][n][s];
}
data_d[j*p.batch_stride_d + d_offset + first_row + n] = D_TYPE(temp[j][n]);
}
}
}
#else
// sum up partial sums and write back result
[[unroll]] for (uint j = 0; j < NUM_COLS; ++j) {
[[unroll]] for (uint n = 0; n < num_rows; ++n) {
tmpsh[j][n][tid] = temp[j][n];
}
}
barrier();
[[unroll]] for (uint s = BLOCK_SIZE/2; s > 0; s >>= 1) {
if (tid < s) {
[[unroll]] for (uint j = 0; j < NUM_COLS; ++j) {
[[unroll]] for (uint n = 0; n < num_rows; ++n) {
tmpsh[j][n][tid] += tmpsh[j][n][tid + s];
}
}
}
barrier();
}
if (tid == 0) {
[[unroll]] for (uint j = 0; j < NUM_COLS; ++j) {
[[unroll]] for (uint n = 0; n < num_rows; ++n) {
data_d[j*p.batch_stride_d + d_offset + first_row + n] = D_TYPE(tmpsh[j][n][0]);
}
}
}
#endif
}
#endif