mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-11-03 09:22:01 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			602 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			602 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
#include "gptneox-common.h"
 | 
						|
 | 
						|
#include <cmath>
 | 
						|
#include <cstring>
 | 
						|
#include <fstream>
 | 
						|
#include <regex>
 | 
						|
#include <locale>
 | 
						|
#include <codecvt>
 | 
						|
#include <sstream>
 | 
						|
 | 
						|
#if defined(_MSC_VER)
 | 
						|
#pragma warning(disable: 4244 4267) // possible loss of data
 | 
						|
#endif
 | 
						|
 | 
						|
// Function to check if the next argument exists
 | 
						|
std::string get_next_arg(int& i, int argc, char** argv, const std::string& flag, gpt_params& params) {
 | 
						|
    if (i + 1 < argc && argv[i + 1][0] != '-') {
 | 
						|
        return argv[++i];
 | 
						|
    } else {
 | 
						|
        fprintf(stderr, "error: %s requires one argument.\n", flag.c_str());
 | 
						|
        gpt_print_usage(argc, argv, params);
 | 
						|
        exit(0);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
 | 
						|
    for (int i = 1; i < argc; i++) {
 | 
						|
        std::string arg = argv[i];
 | 
						|
 | 
						|
        if (arg == "-s" || arg == "--seed") {
 | 
						|
            params.seed = std::stoi(get_next_arg(i, argc, argv, arg, params));
 | 
						|
        } else if (arg == "-t" || arg == "--threads") {
 | 
						|
            params.n_threads = std::stoi(get_next_arg(i, argc, argv, arg, params));
 | 
						|
        } else if (arg == "-ngl" || arg == "--gpu-layers" || arg == "--n-gpu-layers") {
 | 
						|
            params.n_gpu_layers = std::stoi(get_next_arg(i, argc, argv, arg, params));
 | 
						|
        } else if (arg == "-p" || arg == "--prompt") {
 | 
						|
            params.prompt = get_next_arg(i, argc, argv, arg, params);
 | 
						|
        } else if (arg == "-n" || arg == "--n_predict") {
 | 
						|
            params.n_predict = std::stoi(get_next_arg(i, argc, argv, arg, params));
 | 
						|
        } else if (arg == "--top_k") {
 | 
						|
            params.top_k = std::stoi(get_next_arg(i, argc, argv, arg, params));
 | 
						|
        } else if (arg == "--top_p") {
 | 
						|
            params.top_p = std::stof(get_next_arg(i, argc, argv, arg, params));
 | 
						|
        } else if (arg == "--temp") {
 | 
						|
            params.temp = std::stof(get_next_arg(i, argc, argv, arg, params));
 | 
						|
        } else if (arg == "--repeat-last-n") {
 | 
						|
            params.repeat_last_n = std::stoi(get_next_arg(i, argc, argv, arg, params));
 | 
						|
        } else if (arg == "--repeat-penalty") {
 | 
						|
            params.repeat_penalty = std::stof(get_next_arg(i, argc, argv, arg, params));
 | 
						|
        } else if (arg == "-b" || arg == "--batch_size") {
 | 
						|
            params.n_batch= std::stoi(get_next_arg(i, argc, argv, arg, params));
 | 
						|
        } else if (arg == "-m" || arg == "--model") {
 | 
						|
            params.model = get_next_arg(i, argc, argv, arg, params);
 | 
						|
        } else if (arg == "-i" || arg == "--interactive") {
 | 
						|
            params.interactive = true;
 | 
						|
        } else if (arg == "-ip" || arg == "--interactive-port") {
 | 
						|
            params.interactive = true;
 | 
						|
            params.interactive_port = std::stoi(get_next_arg(i, argc, argv, arg, params));
 | 
						|
        } else if (arg == "-h" || arg == "--help") {
 | 
						|
            gpt_print_usage(argc, argv, params);
 | 
						|
            exit(0);
 | 
						|
        } else if (arg == "-f" || arg == "--file") {
 | 
						|
            get_next_arg(i, argc, argv, arg, params);
 | 
						|
            std::ifstream file(argv[i]);
 | 
						|
            if (!file) {
 | 
						|
                fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
 | 
						|
                break;
 | 
						|
            }
 | 
						|
            std::copy(std::istreambuf_iterator<char>(file), std::istreambuf_iterator<char>(), back_inserter(params.prompt));
 | 
						|
            if (params.prompt.back() == '\n') {
 | 
						|
                params.prompt.pop_back();
 | 
						|
            }
 | 
						|
        } else if (arg == "-tt" || arg == "--token_test") {
 | 
						|
            params.token_test = get_next_arg(i, argc, argv, arg, params);
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
 | 
						|
            gpt_print_usage(argc, argv, params);
 | 
						|
            exit(0);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    return true;
 | 
						|
}
 | 
						|
 | 
						|
void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
 | 
						|
    fprintf(stderr, "usage: %s [options]\n", argv[0]);
 | 
						|
    fprintf(stderr, "\n");
 | 
						|
    fprintf(stderr, "options:\n");
 | 
						|
    fprintf(stderr, "  -h, --help            show this help message and exit\n");
 | 
						|
    fprintf(stderr, "  -s SEED, --seed SEED  RNG seed (default: -1)\n");
 | 
						|
    fprintf(stderr, "  -t N, --threads N     number of threads to use during computation (default: %d)\n", params.n_threads);
 | 
						|
    fprintf(stderr, "  -ngl N, --gpu-layers N  number of layers to offload to GPU on supported models (default: %d)\n", params.n_gpu_layers);
 | 
						|
    fprintf(stderr, "  -p PROMPT, --prompt PROMPT\n");
 | 
						|
    fprintf(stderr, "                        prompt to start generation with (default: random)\n");
 | 
						|
    fprintf(stderr, "  -f FNAME, --file FNAME\n");
 | 
						|
    fprintf(stderr, "                        load prompt from a file\n");
 | 
						|
    fprintf(stderr, "  -tt TOKEN_TEST, --token_test TOKEN_TEST\n");
 | 
						|
    fprintf(stderr, "                        test tokenization\n");
 | 
						|
    fprintf(stderr, "  -n N, --n_predict N   number of tokens to predict (default: %d)\n", params.n_predict);
 | 
						|
    fprintf(stderr, "  --top_k N             top-k sampling (default: %d)\n", params.top_k);
 | 
						|
    fprintf(stderr, "  --top_p N             top-p sampling (default: %.1f)\n", params.top_p);
 | 
						|
    fprintf(stderr, "  --temp N              temperature (default: %.1f)\n", params.temp);
 | 
						|
    fprintf(stderr, "  --repeat-last-n N     last n tokens to consider for penalize (default: %d, 0 = disabled)\n", params.repeat_last_n);
 | 
						|
    fprintf(stderr, "  --repeat-penalty N    penalize repeat sequence of tokens (default: %.2f, 1.0 = disabled)\n", (double)params.repeat_penalty);
 | 
						|
    fprintf(stderr, "  -b N, --batch_size N  batch size for prompt processing (default: %d)\n", params.n_batch);
 | 
						|
    fprintf(stderr, "  -m FNAME, --model FNAME\n");
 | 
						|
    fprintf(stderr, "                        model path (default: %s)\n", params.model.c_str());
 | 
						|
    fprintf(stderr, "\n");
 | 
						|
}
 | 
						|
 | 
						|
std::string gpt_random_prompt(std::mt19937 & rng) {
 | 
						|
    const int r = rng() % 10;
 | 
						|
    switch (r) {
 | 
						|
        case 0: return "So";
 | 
						|
        case 1: return "Once upon a time";
 | 
						|
        case 2: return "When";
 | 
						|
        case 3: return "The";
 | 
						|
        case 4: return "After";
 | 
						|
        case 5: return "If";
 | 
						|
        case 6: return "import";
 | 
						|
        case 7: return "He";
 | 
						|
        case 8: return "She";
 | 
						|
        case 9: return "They";
 | 
						|
        default: return "To";
 | 
						|
    }
 | 
						|
 | 
						|
    return "The";
 | 
						|
}
 | 
						|
 | 
						|
std::string trim(const std::string & s) {
 | 
						|
    std::regex e("^\\s+|\\s+$");
 | 
						|
    return std::regex_replace(s, e, "");
 | 
						|
}
 | 
						|
 | 
						|
std::string replace(const std::string & s, const std::string & from, const std::string & to) {
 | 
						|
    std::string result = s;
 | 
						|
    size_t pos = 0;
 | 
						|
    while ((pos = result.find(from, pos)) != std::string::npos) {
 | 
						|
        result.replace(pos, from.length(), to);
 | 
						|
        pos += to.length();
 | 
						|
    }
 | 
						|
    return result;
 | 
						|
}
 | 
						|
 | 
						|
void gpt_vocab::add_special_token(const std::string & token) {
 | 
						|
    special_tokens.push_back(token);
 | 
						|
}
 | 
						|
 | 
						|
std::map<std::string, int32_t> json_parse(const std::string & fname) {
 | 
						|
    std::map<std::string, int32_t> result;
 | 
						|
 | 
						|
    // read file into string
 | 
						|
    std::string json;
 | 
						|
    {
 | 
						|
        std::ifstream ifs(fname);
 | 
						|
        if (!ifs) {
 | 
						|
            fprintf(stderr, "Failed to open %s\n", fname.c_str());
 | 
						|
            exit(1);
 | 
						|
        }
 | 
						|
 | 
						|
        json = std::string((std::istreambuf_iterator<char>(ifs)),
 | 
						|
                (std::istreambuf_iterator<char>()));
 | 
						|
    }
 | 
						|
 | 
						|
    if (json[0] != '{') {
 | 
						|
        return result;
 | 
						|
    }
 | 
						|
 | 
						|
    // parse json
 | 
						|
    {
 | 
						|
        bool has_key  = false;
 | 
						|
        bool in_token = false;
 | 
						|
 | 
						|
        std::string str_key = "";
 | 
						|
        std::string str_val = "";
 | 
						|
 | 
						|
        int n = json.size();
 | 
						|
        for (int i = 1; i < n; ++i) {
 | 
						|
            if (!in_token) {
 | 
						|
                if (json[i] == ' ') continue;
 | 
						|
                if (json[i] == '"') {
 | 
						|
                    in_token = true;
 | 
						|
                    continue;
 | 
						|
                }
 | 
						|
            } else {
 | 
						|
                if (json[i] == '\\' && i+1 < n) {
 | 
						|
                    if (has_key == false) {
 | 
						|
                        str_key += json[i];
 | 
						|
                    } else {
 | 
						|
                        str_val += json[i];
 | 
						|
                    }
 | 
						|
                    ++i;
 | 
						|
                } else if (json[i] == '"') {
 | 
						|
                    if (has_key == false) {
 | 
						|
                        has_key = true;
 | 
						|
                        ++i;
 | 
						|
                        while (json[i] == ' ') ++i;
 | 
						|
                        ++i; // :
 | 
						|
                        while (json[i] == ' ') ++i;
 | 
						|
                        if (json[i] != '\"') {
 | 
						|
                            while (json[i] != ',' && json[i] != '}') {
 | 
						|
                                str_val += json[i++];
 | 
						|
                            }
 | 
						|
                            has_key = false;
 | 
						|
                        } else {
 | 
						|
                            in_token = true;
 | 
						|
                            continue;
 | 
						|
                        }
 | 
						|
                    } else {
 | 
						|
                        has_key = false;
 | 
						|
                    }
 | 
						|
 | 
						|
                    str_key = ::replace(str_key, "\\u0120", " " ); // \u0120 -> space
 | 
						|
                    str_key = ::replace(str_key, "\\u010a", "\n"); // \u010a -> new line
 | 
						|
                    str_key = ::replace(str_key, "\\\"",    "\""); // \\\"   -> "
 | 
						|
 | 
						|
                    try {
 | 
						|
                        result[str_key] = std::stoi(str_val);
 | 
						|
                    } catch (...) {
 | 
						|
                        //fprintf(stderr, "%s: ignoring key '%s' with value '%s'\n", fname.c_str(), str_key.c_str(), str_val.c_str());
 | 
						|
 | 
						|
                    }
 | 
						|
                    str_key = "";
 | 
						|
                    str_val = "";
 | 
						|
                    in_token = false;
 | 
						|
                    continue;
 | 
						|
                }
 | 
						|
                if (has_key == false) {
 | 
						|
                    str_key += json[i];
 | 
						|
                } else {
 | 
						|
                    str_val += json[i];
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    return result;
 | 
						|
}
 | 
						|
 | 
						|
std::string convert_to_utf8(const std::wstring & input) {
 | 
						|
    std::wstring_convert<std::codecvt_utf8<wchar_t>> converter;
 | 
						|
    return converter.to_bytes(input);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
std::wstring convert_to_wstring(const std::string & input) {
 | 
						|
    std::wstring_convert<std::codecvt_utf8<wchar_t>> converter;
 | 
						|
    return converter.from_bytes(input);
 | 
						|
}
 | 
						|
 | 
						|
void gpt_split_words(std::string str, std::vector<std::string>& words) {
 | 
						|
    const std::string pattern = R"('s|'t|'re|'ve|'m|'ll|'d| ?[[:alpha:]]+| ?[[:digit:]]+| ?[^\s[:alpha:][:digit:]]+|\s+(?!\S)|\s+)";
 | 
						|
    const std::regex re(pattern);
 | 
						|
    std::smatch m;
 | 
						|
 | 
						|
    while (std::regex_search(str, m, re)) {
 | 
						|
        for (auto x : m) {
 | 
						|
            words.push_back(x);
 | 
						|
        }
 | 
						|
        str = m.suffix();
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
std::vector<gpt_vocab::id> gpt_tokenize(const gpt_vocab & vocab, const std::string & text) {
 | 
						|
    std::vector<std::string> words;
 | 
						|
 | 
						|
    // first split the text into words
 | 
						|
    {
 | 
						|
        std::string str = text;
 | 
						|
 | 
						|
        // Generate the subpattern from the special_tokens vector if it's not empty
 | 
						|
        if (!vocab.special_tokens.empty()) {
 | 
						|
            const std::regex escape(R"([\[\\\^\$\.\|\?\*\+\(\)\{\}])");
 | 
						|
            std::string special_tokens_subpattern;
 | 
						|
            for (const auto & token : vocab.special_tokens) {
 | 
						|
                if (!special_tokens_subpattern.empty()) {
 | 
						|
                    special_tokens_subpattern += "|";
 | 
						|
                }
 | 
						|
                special_tokens_subpattern += std::regex_replace(token, escape, R"(\$&)");
 | 
						|
            }
 | 
						|
 | 
						|
            std::regex re(special_tokens_subpattern);
 | 
						|
            std::smatch m;
 | 
						|
            // Split the text by special tokens.
 | 
						|
            while (std::regex_search(str, m, re)) {
 | 
						|
                // Split the substrings in-between special tokens into words.
 | 
						|
                gpt_split_words(m.prefix(), words);
 | 
						|
                // Add matched special tokens as words.
 | 
						|
                for (auto x : m) {
 | 
						|
                    words.push_back(x);
 | 
						|
                }
 | 
						|
                str = m.suffix();
 | 
						|
            }
 | 
						|
            // Remaining text without special tokens will be handled below.
 | 
						|
        }
 | 
						|
 | 
						|
        gpt_split_words(str, words);
 | 
						|
    }
 | 
						|
 | 
						|
    // find the longest token that forms each word in words:
 | 
						|
    std::vector<gpt_vocab::id> tokens;
 | 
						|
    for (const auto & word : words) {
 | 
						|
        for (int i = 0; i < (int) word.size(); ){
 | 
						|
            for (int j = word.size() - 1; j >= i; j--){
 | 
						|
                auto cand = word.substr(i, j-i+1);
 | 
						|
                auto it = vocab.token_to_id.find(cand);
 | 
						|
                if (it != vocab.token_to_id.end()){ // word.substr(i, j-i+1) in vocab
 | 
						|
                    tokens.push_back(it->second);
 | 
						|
                    i = j + 1;
 | 
						|
                    break;
 | 
						|
                }
 | 
						|
                else if (j == i){ // word.substr(i, 1) has no matching
 | 
						|
                    fprintf(stderr, "%s: unknown token '%s'\n", __func__, word.substr(i, 1).data());
 | 
						|
                    i++;
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    return tokens;
 | 
						|
}
 | 
						|
 | 
						|
std::vector<gpt_vocab::id> parse_tokens_from_string(const std::string& input, char delimiter) {
 | 
						|
    std::vector<gpt_vocab::id> output;
 | 
						|
    std::stringstream ss(input);
 | 
						|
    std::string token;
 | 
						|
 | 
						|
    while (std::getline(ss, token, delimiter)) {
 | 
						|
        output.push_back(std::stoi(token));
 | 
						|
    }
 | 
						|
 | 
						|
    return output;
 | 
						|
}
 | 
						|
 | 
						|
std::map<std::string, std::vector<gpt_vocab::id>> extract_tests_from_file(const std::string & fpath_test){
 | 
						|
    if (fpath_test.empty()){
 | 
						|
        fprintf(stderr, "%s : No test file found.\n", __func__);
 | 
						|
        return std::map<std::string, std::vector<gpt_vocab::id>>();
 | 
						|
    }
 | 
						|
 | 
						|
    std::map<std::string, std::vector<gpt_vocab::id>> tests;
 | 
						|
 | 
						|
    auto fin = std::ifstream(fpath_test, std::ios_base::in);
 | 
						|
    const char * delimeter = " => ";
 | 
						|
    const char del_tok = ',';
 | 
						|
    std::string line;
 | 
						|
    while (std::getline(fin, line)) {
 | 
						|
        size_t delimiterPos = line.find(delimeter);
 | 
						|
        if (delimiterPos != std::string::npos) {
 | 
						|
            std::string text = line.substr(0, delimiterPos);
 | 
						|
            std::string s_tokens = line.substr(delimiterPos + std::strlen(delimeter));
 | 
						|
            tests[text] = parse_tokens_from_string(s_tokens, del_tok);
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return tests;
 | 
						|
}
 | 
						|
 | 
						|
void test_gpt_tokenizer(gpt_vocab & vocab, const std::string & fpath_test){
 | 
						|
    std::map<std::string, std::vector<gpt_vocab::id>> tests = extract_tests_from_file(fpath_test);
 | 
						|
 | 
						|
    size_t n_fails = 0;
 | 
						|
 | 
						|
    for (const auto & test : tests) {
 | 
						|
        std::vector<gpt_vocab::id> tokens = gpt_tokenize(vocab, test.first);
 | 
						|
 | 
						|
        if (tokens != test.second){
 | 
						|
            n_fails++;
 | 
						|
 | 
						|
            // print out failure cases
 | 
						|
            fprintf(stderr, "%s : failed test: '%s'\n", __func__, test.first.c_str());
 | 
						|
            fprintf(stderr, "%s : tokens in hf:   ", __func__);
 | 
						|
            for (const auto & t : test.second) {
 | 
						|
                fprintf(stderr, "%s(%d), ", vocab.id_to_token[t].c_str(), t);
 | 
						|
            }
 | 
						|
            fprintf(stderr, "\n");
 | 
						|
            fprintf(stderr, "%s : tokens in ggml: ", __func__);
 | 
						|
            for (const auto & t : tokens) {
 | 
						|
                fprintf(stderr, "%s(%d), ", vocab.id_to_token[t].c_str(), t);
 | 
						|
            }
 | 
						|
            fprintf(stderr, "\n");
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    fprintf(stderr, "%s : %zu tests failed out of %zu tests.\n", __func__, n_fails, tests.size());
 | 
						|
}
 | 
						|
 | 
						|
bool gpt_vocab_init(const std::string & fname, gpt_vocab & vocab) {
 | 
						|
    printf("%s: loading vocab from '%s'\n", __func__, fname.c_str());
 | 
						|
 | 
						|
    vocab.token_to_id = ::json_parse(fname);
 | 
						|
 | 
						|
    for (const auto & kv : vocab.token_to_id) {
 | 
						|
        vocab.id_to_token[kv.second] = kv.first;
 | 
						|
    }
 | 
						|
 | 
						|
    printf("%s: vocab size = %d\n", __func__, (int) vocab.token_to_id.size());
 | 
						|
 | 
						|
    // print the vocabulary
 | 
						|
    //for (auto kv : vocab.token_to_id) {
 | 
						|
    //    printf("'%s' -> %d\n", kv.first.data(), kv.second);
 | 
						|
    //}
 | 
						|
 | 
						|
    return true;
 | 
						|
}
 | 
						|
 | 
						|
gpt_vocab::id gpt_sample_top_k_top_p(
 | 
						|
        const gpt_vocab & vocab,
 | 
						|
        const float * logits,
 | 
						|
        int    top_k,
 | 
						|
        double top_p,
 | 
						|
        double temp,
 | 
						|
        std::mt19937 & rng) {
 | 
						|
    int n_logits = vocab.id_to_token.size();
 | 
						|
 | 
						|
    std::vector<std::pair<double, gpt_vocab::id>> logits_id;
 | 
						|
    logits_id.reserve(n_logits);
 | 
						|
 | 
						|
    {
 | 
						|
        const double scale = 1.0/temp;
 | 
						|
        for (int i = 0; i < n_logits; ++i) {
 | 
						|
            logits_id.push_back(std::make_pair(logits[i]*scale, i));
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    // find the top K tokens
 | 
						|
    std::partial_sort(
 | 
						|
            logits_id.begin(),
 | 
						|
            logits_id.begin() + top_k, logits_id.end(),
 | 
						|
            [](const std::pair<double, gpt_vocab::id> & a, const std::pair<double, gpt_vocab::id> & b) {
 | 
						|
        return a.first > b.first;
 | 
						|
    });
 | 
						|
 | 
						|
    logits_id.resize(top_k);
 | 
						|
 | 
						|
    double maxl = -INFINITY;
 | 
						|
    for (const auto & kv : logits_id) {
 | 
						|
        maxl = std::max(maxl, kv.first);
 | 
						|
    }
 | 
						|
 | 
						|
    // compute probs for the top K tokens
 | 
						|
    std::vector<double> probs;
 | 
						|
    probs.reserve(logits_id.size());
 | 
						|
 | 
						|
    double sum = 0.0;
 | 
						|
    for (const auto & kv : logits_id) {
 | 
						|
        double p = exp(kv.first - maxl);
 | 
						|
        probs.push_back(p);
 | 
						|
        sum += p;
 | 
						|
    }
 | 
						|
 | 
						|
    // normalize the probs
 | 
						|
    for (auto & p : probs) {
 | 
						|
        p /= sum;
 | 
						|
    }
 | 
						|
 | 
						|
    if (top_p < 1.0f) {
 | 
						|
        double cumsum = 0.0f;
 | 
						|
        for (int i = 0; i < top_k; i++) {
 | 
						|
            cumsum += probs[i];
 | 
						|
            if (cumsum >= top_p) {
 | 
						|
                top_k = i + 1;
 | 
						|
                probs.resize(top_k);
 | 
						|
                logits_id.resize(top_k);
 | 
						|
                break;
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        cumsum = 1.0/cumsum;
 | 
						|
        for (int i = 0; i < (int) probs.size(); i++) {
 | 
						|
            probs[i] *= cumsum;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    //printf("\n");
 | 
						|
    //for (int i = 0; i < (int) probs.size(); i++) {
 | 
						|
    //    printf("%d: '%s' %f\n", i, vocab.id_to_token.at(logits_id[i].second).c_str(), probs[i]);
 | 
						|
    //}
 | 
						|
    //exit(0);
 | 
						|
 | 
						|
    std::discrete_distribution<> dist(probs.begin(), probs.end());
 | 
						|
    int idx = dist(rng);
 | 
						|
 | 
						|
    return logits_id[idx].second;
 | 
						|
}
 | 
						|
 | 
						|
gpt_vocab::id gpt_sample_top_k_top_p_repeat(
 | 
						|
        const gpt_vocab & vocab,
 | 
						|
        const float * logits,
 | 
						|
        const int32_t * last_n_tokens_data,
 | 
						|
        size_t last_n_tokens_data_size,
 | 
						|
        int    top_k,
 | 
						|
        double top_p,
 | 
						|
        double temp,
 | 
						|
        int repeat_last_n,
 | 
						|
        float repeat_penalty,
 | 
						|
        std::mt19937 & rng) {
 | 
						|
 | 
						|
    int n_logits = vocab.id_to_token.size();
 | 
						|
 | 
						|
    const auto * plogits = logits;
 | 
						|
 | 
						|
    const auto last_n_tokens = std::vector<int32_t>(last_n_tokens_data, last_n_tokens_data + last_n_tokens_data_size);
 | 
						|
 | 
						|
    if (temp <= 0) {
 | 
						|
        // select the token with the highest logit directly
 | 
						|
        float max_logit = plogits[0];
 | 
						|
        gpt_vocab::id max_id = 0;
 | 
						|
 | 
						|
        for (int i = 1; i < n_logits; ++i) {
 | 
						|
            if (plogits[i] > max_logit) {
 | 
						|
                max_logit = plogits[i];
 | 
						|
                max_id = i;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        return max_id;
 | 
						|
    }
 | 
						|
 | 
						|
 | 
						|
    std::vector<std::pair<double, gpt_vocab::id>> logits_id;
 | 
						|
    logits_id.reserve(n_logits);
 | 
						|
 | 
						|
    {
 | 
						|
        const float scale = 1.0f/temp;
 | 
						|
        for (int i = 0; i < n_logits; ++i) {
 | 
						|
            // repetition penalty from ctrl paper (https://arxiv.org/abs/1909.05858)
 | 
						|
            // credit https://github.com/facebookresearch/llama/compare/main...shawwn:llama:main
 | 
						|
            if (repeat_last_n > 0 && std::find(last_n_tokens.end()-repeat_last_n, last_n_tokens.end(), i) != last_n_tokens.end()) {
 | 
						|
                // if score < 0 then repetition penalty has to multiplied to reduce the previous token probability
 | 
						|
                if (plogits[i] < 0.0f) {
 | 
						|
                    logits_id.push_back(std::make_pair(plogits[i]*scale*repeat_penalty, i));
 | 
						|
                } else {
 | 
						|
                    logits_id.push_back(std::make_pair(plogits[i]*scale/repeat_penalty, i));
 | 
						|
                }
 | 
						|
            } else {
 | 
						|
                logits_id.push_back(std::make_pair(plogits[i]*scale, i));
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    // find the top K tokens
 | 
						|
    std::partial_sort(
 | 
						|
            logits_id.begin(),
 | 
						|
            logits_id.begin() + top_k, logits_id.end(),
 | 
						|
            [](const std::pair<double, gpt_vocab::id> & a, const std::pair<double, gpt_vocab::id> & b) {
 | 
						|
        return a.first > b.first;
 | 
						|
    });
 | 
						|
 | 
						|
    logits_id.resize(top_k);
 | 
						|
 | 
						|
    double maxl = -INFINITY;
 | 
						|
    for (const auto & kv : logits_id) {
 | 
						|
        maxl = std::max(maxl, kv.first);
 | 
						|
    }
 | 
						|
 | 
						|
    // compute probs for the top K tokens
 | 
						|
    std::vector<double> probs;
 | 
						|
    probs.reserve(logits_id.size());
 | 
						|
 | 
						|
    double sum = 0.0;
 | 
						|
    for (const auto & kv : logits_id) {
 | 
						|
        double p = exp(kv.first - maxl);
 | 
						|
        probs.push_back(p);
 | 
						|
        sum += p;
 | 
						|
    }
 | 
						|
 | 
						|
    // normalize the probs
 | 
						|
    for (auto & p : probs) {
 | 
						|
        p /= sum;
 | 
						|
    }
 | 
						|
 | 
						|
    if (top_p < 1.0f) {
 | 
						|
        double cumsum = 0.0f;
 | 
						|
        for (int i = 0; i < top_k; i++) {
 | 
						|
            cumsum += probs[i];
 | 
						|
            if (cumsum >= top_p) {
 | 
						|
                top_k = i + 1;
 | 
						|
                probs.resize(top_k);
 | 
						|
                logits_id.resize(top_k);
 | 
						|
                break;
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        cumsum = 1.0/cumsum;
 | 
						|
        for (int i = 0; i < (int) probs.size(); i++) {
 | 
						|
            probs[i] *= cumsum;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
//    printf("\n");
 | 
						|
//    for (int i = 0; i < (int) probs.size(); i++) {
 | 
						|
//    for (int i = 0; i < 10; i++) {
 | 
						|
//        printf("%d: '%s' %f\n", i, vocab.id_to_token.at(logits_id[i].second).c_str(), probs[i]);
 | 
						|
//    }
 | 
						|
 | 
						|
    std::discrete_distribution<> dist(probs.begin(), probs.end());
 | 
						|
    int idx = dist(rng);
 | 
						|
 | 
						|
    return logits_id[idx].second;
 | 
						|
 | 
						|
}
 |