mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-31 08:51:55 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			202 lines
		
	
	
		
			7.3 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			202 lines
		
	
	
		
			7.3 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
| #include "softmax.cuh"
 | |
| 
 | |
| template <bool vals_smem, int ncols_template, int block_size_template>
 | |
| static __global__ void soft_max_f32(const float * x, const float * mask, const float * pos, float * dst, const int ncols_par, const int nrows_y, const float scale, const float max_bias, const float m0, const float m1, uint32_t n_head_log2) {
 | |
|     const int ncols = ncols_template == 0 ? ncols_par : ncols_template;
 | |
| 
 | |
|     const int tid  = threadIdx.x;
 | |
|     const int rowx = blockIdx.x;
 | |
|     const int rowy = rowx % nrows_y; // broadcast the mask in the row dimension
 | |
| 
 | |
|     const int block_size = block_size_template == 0 ? blockDim.x : block_size_template;
 | |
| 
 | |
|     const int warp_id = threadIdx.x / WARP_SIZE;
 | |
|     const int lane_id = threadIdx.x % WARP_SIZE;
 | |
| 
 | |
|     float slope = 0.0f;
 | |
| 
 | |
|     // ALiBi
 | |
|     if (max_bias > 0.0f) {
 | |
|         const int h = rowx/nrows_y; // head index
 | |
| 
 | |
|         const float base = h < n_head_log2 ? m0 : m1;
 | |
|         const int   exp  = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1;
 | |
| 
 | |
|         slope = powf(base, exp);
 | |
|     }
 | |
| 
 | |
|     extern __shared__ float data_soft_max_f32[];
 | |
|     float * buf_iw = data_soft_max_f32; // shared memory buffer for inter-warp communication
 | |
|     // shared memory buffer to cache values between iterations:
 | |
|     float * vals = vals_smem ? buf_iw + WARP_SIZE : dst + rowx*ncols;
 | |
| 
 | |
|     float max_val = -INFINITY;
 | |
| 
 | |
| #pragma unroll
 | |
|     for (int col0 = 0; col0 < ncols; col0 += block_size) {
 | |
|         const int col = col0 + tid;
 | |
| 
 | |
|         if (ncols_template == 0 && col >= ncols) {
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         const int ix = rowx*ncols + col;
 | |
|         const int iy = rowy*ncols + col;
 | |
| 
 | |
|         const float val = x[ix]*scale + (mask ? mask[iy] : 0.0f) + (pos ? slope*pos[col] : 0.0f);
 | |
| 
 | |
|         vals[col] = val;
 | |
|         max_val = max(max_val, val);
 | |
|     }
 | |
| 
 | |
|     // find the max value in the block
 | |
|     max_val = warp_reduce_max(max_val);
 | |
|     if (block_size > WARP_SIZE) {
 | |
|         if (warp_id == 0) {
 | |
|             buf_iw[lane_id] = -INFINITY;
 | |
|         }
 | |
|         __syncthreads();
 | |
| 
 | |
|         if (lane_id == 0) {
 | |
|             buf_iw[warp_id] = max_val;
 | |
|         }
 | |
|         __syncthreads();
 | |
| 
 | |
|         max_val = buf_iw[lane_id];
 | |
|         max_val = warp_reduce_max(max_val);
 | |
|     }
 | |
| 
 | |
|     float tmp = 0.0f; // partial sum
 | |
| 
 | |
| #pragma unroll
 | |
|     for (int col0 = 0; col0 < ncols; col0 += block_size) {
 | |
|         const int col = col0 + tid;
 | |
| 
 | |
|         if (ncols_template == 0 && col >= ncols) {
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         const float val = expf(vals[col] - max_val);
 | |
|         tmp += val;
 | |
|         vals[col] = val;
 | |
|     }
 | |
| 
 | |
|     // find the sum of exps in the block
 | |
|     tmp = warp_reduce_sum(tmp);
 | |
|     if (block_size > WARP_SIZE) {
 | |
|         __syncthreads();
 | |
|         if (warp_id == 0) {
 | |
|             buf_iw[lane_id] = 0.0f;
 | |
|         }
 | |
|         __syncthreads();
 | |
| 
 | |
|         if (lane_id == 0) {
 | |
|             buf_iw[warp_id] = tmp;
 | |
|         }
 | |
|         __syncthreads();
 | |
| 
 | |
|         tmp = buf_iw[lane_id];
 | |
|         tmp = warp_reduce_sum(tmp);
 | |
|     }
 | |
| 
 | |
|     const float inv_sum = 1.0f / tmp;
 | |
| 
 | |
| #pragma unroll
 | |
|     for (int col0 = 0; col0 < ncols; col0 += block_size) {
 | |
|         const int col = col0 + tid;
 | |
| 
 | |
|         if (ncols_template == 0 && col >= ncols) {
 | |
|             return;
 | |
|         }
 | |
| 
 | |
|         const int idst = rowx*ncols + col;
 | |
|         dst[idst] = vals[col] * inv_sum;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void soft_max_f32_cuda(const float * x, const float * mask, const float * pos, float * dst, const int ncols_x, const int nrows_x, const int nrows_y, const float scale, const float max_bias, cudaStream_t stream) {
 | |
|     int nth = WARP_SIZE;
 | |
|     while (nth < ncols_x && nth < CUDA_SOFT_MAX_BLOCK_SIZE) nth *= 2;
 | |
|     const dim3 block_dims(nth,     1, 1);
 | |
|     const dim3 block_nums(nrows_x, 1, 1);
 | |
|     const size_t shmem = (GGML_PAD(ncols_x, WARP_SIZE) + WARP_SIZE)*sizeof(float);
 | |
|     static_assert(CUDA_SOFT_MAX_BLOCK_SIZE == 1024, "These values need to be adjusted.");
 | |
| 
 | |
|     const uint32_t n_head_kv   = nrows_x/nrows_y;
 | |
|     const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head_kv));
 | |
| 
 | |
|     const float m0 = powf(2.0f, -(max_bias       ) / n_head_log2);
 | |
|     const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
 | |
| 
 | |
|     if (shmem < ggml_cuda_info().devices[ggml_cuda_get_device()].smpb) {
 | |
|         switch (ncols_x) {
 | |
|             case 32:
 | |
|                 soft_max_f32<true, 32, 32><<<block_nums, block_dims, shmem, stream>>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
 | |
|                 break;
 | |
|             case 64:
 | |
|                 soft_max_f32<true, 64, 64><<<block_nums, block_dims, shmem, stream>>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
 | |
|                 break;
 | |
|             case 128:
 | |
|                 soft_max_f32<true, 128, 128><<<block_nums, block_dims, shmem, stream>>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
 | |
|                 break;
 | |
|             case 256:
 | |
|                 soft_max_f32<true, 256, 256><<<block_nums, block_dims, shmem, stream>>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
 | |
|                 break;
 | |
|             case 512:
 | |
|                 soft_max_f32<true, 512, 512><<<block_nums, block_dims, shmem, stream>>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
 | |
|                 break;
 | |
|             case 1024:
 | |
|                 soft_max_f32<true, 1024, 1024><<<block_nums, block_dims, shmem, stream>>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
 | |
|                 break;
 | |
|             case 2048:
 | |
|                 soft_max_f32<true, 2048, 1024><<<block_nums, block_dims, shmem, stream>>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
 | |
|                 break;
 | |
|             case 4096:
 | |
|                 soft_max_f32<true, 4096, 1024><<<block_nums, block_dims, shmem, stream>>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
 | |
|                 break;
 | |
|             default:
 | |
|                 soft_max_f32<true, 0, 0><<<block_nums, block_dims, shmem, stream>>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
 | |
|                 break;
 | |
|         }
 | |
|     } else {
 | |
|         const size_t shmem_low = WARP_SIZE*sizeof(float);
 | |
|         soft_max_f32<false, 0, 0><<<block_nums, block_dims, shmem_low, stream>>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void ggml_cuda_op_soft_max(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
 | |
|     const ggml_tensor * src0 = dst->src[0];
 | |
|     const ggml_tensor * src1 = dst->src[1];
 | |
|     const float * src0_d = (const float *)src0->data;
 | |
|     const float * src1_d = src1 ? (const float *)src1->data : nullptr;
 | |
|     float * dst_d = (float *)dst->data;
 | |
|     cudaStream_t stream = ctx.stream();
 | |
| 
 | |
|     GGML_ASSERT(src0->type == GGML_TYPE_F32);
 | |
|     GGML_ASSERT( dst->type == GGML_TYPE_F32);
 | |
| 
 | |
|     GGML_ASSERT(!src1 || src1->type == GGML_TYPE_F32); // src1 contains mask and it is optional
 | |
| 
 | |
|     const int64_t ne00    = src0->ne[0];
 | |
|     const int64_t nrows_x = ggml_nrows(src0);
 | |
|     const int64_t nrows_y = src0->ne[1];
 | |
| 
 | |
|     float scale    = 1.0f;
 | |
|     float max_bias = 0.0f;
 | |
| 
 | |
|     memcpy(&scale,    (float *) dst->op_params + 0, sizeof(float));
 | |
|     memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
 | |
| 
 | |
|     // positions tensor
 | |
|     float * src2_dd = nullptr;
 | |
| 
 | |
|     ggml_tensor * src2 = dst->src[2];
 | |
|     const bool use_src2 = src2 != nullptr;
 | |
| 
 | |
|     if (use_src2) {
 | |
|         src2_dd = (float *)src2->data;
 | |
|     }
 | |
| 
 | |
|     soft_max_f32_cuda(src0_d, src1_d, src2_dd, dst_d, ne00, nrows_x, nrows_y, scale, max_bias, stream);
 | |
| }
 | 
